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1. I NTRODUCTION

During the past decades, studies on integral inequalities have been greatly enriched by the
recognition of their potential applications in various applied sciences [1] – [6]. Recently, in-
tegral inequalities with delays have received much attention from researchers [7] – [12]. In
this paper, we establish some new retarded integral inequalities and derive explicit bounds on
unknown functions, the results of which improve some known ones in [9].

2. M AIN RESULTS

Throughout the paper,R denotes the set of real numbers andR+ = [0, +∞). C(M, S)
denotes the class of all continuous functions fromM to S. C1(M, S) denotes the class of
functions with continuous first derivative.

Theorem 2.1. Suppose thatp > q ≥ 0 andc ≥ 0 are constants, andu, f, g, h ∈ C (R+, R+).
Let w ∈ (R+, R+) be nondecreasing withw(u) > 0 on (0,∞), and α ∈ C1 (R+, R+) be

The research was jointly supported by grants from the National Natural Science Foundation of China (No. 50578064) and the Natural

Science Foundation of Guangdong Province, China (No.06025219).

344-07

mailto:tanmc@jnu.edu.cn
http://www.ams.org/msc/


2 MAN-CHUN TAN AND ZHI-HONG L I

nondecreasing withα(t) ≤ t onR+. Then the following integral inequality

(2.1) up(t) ≤ c2 + 2

∫ α(t)

0

[
f(s)uq(s)

(∫ s

0

g(τ)w(u(τ))dτ

)
+ h(s)uq(s)

]
ds, t ∈ R+

implies for0 ≤ t ≤ T ,

(2.2) u(t) ≤

{
G−1

[
G(ξ(t)) +

2(p− q)

p

∫ α(t)

0

f(s)

∫ s

0

g(τ)dτds

]} 1
p−q

holds, where

(2.3) ξ(t) = c
2(p−q)

p +
2(p− q)

p

∫ α(t)

0

h(s)ds,

(2.4) G(r) =

∫ r

r0

1

w
(
s

1
p−q

)ds, r ≥ r0 > 0,

G−1 denotes the inverse function ofG, andT ∈ R+ is chosen so that

G(ξ(t)) +
2(p− q)

p

∫ α(t)

0

f(s)

∫ s

0

g(τ)dτds ∈ Dom
(
G−1

)
, for all 0 ≤ t ≤ T.

Proof. The conditionsα ∈ C1 (R+, R+) andα(t) ≤ t imply thatα(0) = 0. Firstly we assume
thatc > 0. Define the nondeceasing positive functionz(t) by

z(t) := c2 + 2

∫ α(t)

0

[
f(s)uq(s)

(∫ s

0

g(τ)w(u(τ))dτ

)
+ h(s)uq(s)

]
ds.

Thenz(0) = c2 and by (2.1) we have

(2.5) u(t) ≤ [z(t)]
1
p ,

and consequentlyu(α(t)) ≤ [z(α(t))]
1
p ≤ [z(t)]

1
p . By differentiation we get

z′(t) = 2uq(α(t))

[
f(α(t))

(∫ α(t)

0

g(τ)w(u(τ))dτ

)
+ h(α(t))

]
α′(t)

≤ 2 [z(t)]
q
p

[
f(α(t))

(∫ α(t)

0

g(τ)w(u(τ))dτ

)
+ h(α(t))

]
α′(t).

Hence
z′(t)

[z(t)]
q
p

≤ 2f(α(t))α′(t)

∫ α(t)

0

g(τ)w(u(τ))dτ + 2h(α(t))α′(t).

Integrating both sides of last relation on[0, t] yields

p

p− q
[z(t)]

p−q
p ≤ p

p− q
[z(0)]

p−q
p + 2

∫ α(t)

0

h(s)ds + 2

∫ α(t)

0

f(s)

∫ s

0

g(τ)w(u(τ))dτds,

which can be rewritten as

(2.6) [z(t)]
p−q

p ≤ c
2(p−q)

p +
2(p− q)

p

∫ α(t)

0

h(s)ds

+
2(p− q)

p

∫ α(t)

0

f(s)

∫ s

0

g(τ)w(u(τ))dτds.
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RETARDED INEQUALITY 3

Let T1(≤ T ) be an arbitrary number. For0 ≤ t ≤ T1, from (2.3) and (2.6) we have

(2.7) [z(t)]
p−q

p ≤ ξ(T1) +
2(p− q)

p

∫ α(t)

0

f(s)

∫ s

0

g(τ)w(u(τ))dτds.

Denoting the right-hand side of (2.7) bym(t), we knowu(t) ≤ [z(t)]
1
p ≤ [m(t)]

1
p−q . Sincew

is nondecreasing, we obtain

w[u(τ)] ≤ w
[
(z(τ))

1
p

]
≤ w

[
(z(α(t)))

1
p

]
≤ w

[
(z(t))

1
p

]
, for τ ∈ [0, α(t)].

Hence

m′(t) =
2(p− q)

p
f(α(t))α′(t)

∫ α(t)

0

g(τ)w(u(τ))dτ

≤ 2(p− q)

p
w
[
(z(t))

1
p

]
f(α(t))α′(t)

∫ α(t)

0

g(τ)dτ

≤ 2(p− q)

p
w
[
(m(t))

1
p−q

]
f(α(t))α′(t)

∫ α(t)

0

g(τ)dτ .

That is

(2.8)
m′(t)

w[(m(t))
1

p−q ]
≤ 2(p− q)

p
f(α(t))α′(t)

∫ α(t)

0

g(τ)dτ .

Integrating both sides of the last inequality on[0, t] and using the definition (2.4), we get

(2.9) G(m(t))−G(m(0)) ≤ 2(p− q)

p

∫ α(t)

0

f(s)

∫ s

0

g(τ)dτds.

Takingt = T1 in inequality (2.9) and usingu(t) ≤ [m(t)]
1

p−q , we have

u(T1) ≤

{
G−1

[
G [ξ(T1)] +

2(p− q)

p

∫ α(T1)

0

f(s)

∫ s

0

g(τ)dτds

]} 1
p−q

.

SinceT1(≤ T ) is arbitrary, we have proved the desired inequality (2.2).
The casec = 0 can be handled by repeating the above procedure withε > 0 instead ofc and

subsequently lettingε → 0. This completes the proof. �

Remark 1. If c = 0 andh(t) ≡ 0 hold,G(ξ(t)) = G(0) in (2.4) is not defined. In such a case,
the upper bound on solutions of the integral inequality (2.1) can be calculated as

u(t) ≤ lim
ε→0+

{
G−1

[
G(ε) +

2(p− q)

p

∫ α(t)

0

f(s)

∫ s

0

g(τ)dτds

]} 1
p−q

.

From Theorem 2.1, we can easily derive the following corollaries.

Corollary 2.2. Suppose thatu, h ∈ C (R+, R+) andc ≥ 0 is a constant. Letα ∈ C1 (R+, R+)
be nondecreasing withα(t) ≤ t onR+. Then the following inequality

u2(t) ≤ c2 + 2

∫ α(t)

0

h(s)u(s)ds,

implies

u(t) ≤ c +

∫ α(t)

0

h(s)ds.
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Remark 2. If α(t) ≡ t, from Corollary 2.2 we get the Ou-Iang inequality.

Corollary 2.3. Suppose thatu, f, g, h ∈ C (R+, R+), and c ≥ 0 is a constant. Letw ∈
(R+, R+) be nondecreasing withw(u) > 0 on (0,∞), andα ∈ C1 (R+, R+) be nondecreasing
with α(t) ≤ t onR+. Then the following inequality

u2(t) ≤ c2 + 2

∫ α(t)

0

[
f(s)u(s)

(∫ s

0

g(τ)u(τ)dτ

)
+ h(s)u(s)

]
ds

implies

u(t) ≤ ξ(t) exp

(∫ α(t)

0

f(s)

(∫ s

0

g(τ)dτ

)
ds

)
whereξ(t) = c +

∫ α(t)

0
h(s)ds.

Theorem 2.4. Suppose thatp > q ≥ 0 andc ≥ 0 are constants, andu, f, g, h ∈ C (R+, R+).
Let w ∈ (R+, R+) be nondecreasing withw(u) > 0 on (0,∞), and α ∈ C1 (R+, R+) be
nondecreasing withα(t) ≤ t onR+. Then the following integral inequality

(2.10) up(t) ≤ c2 + 2

∫ α(t)

0

[
f(s)uq(s)

(
w(u(s))

+

∫ s

0

g(τ)w(u(τ))dτ

)
+ h(s)uq(s)

]
ds, t ∈ R+

implies for0 ≤ t ≤ T

(2.11) u(t) ≤

{
G−1

[
G(ξ(t)) +

2(p− q)

p

∫ α(t)

0

f(s)

(
1 +

∫ s

0

g(τ)dτ

)
ds

]} 1
p−q

,

whereξ(t) andG(r) are defined by (2.3) and (2.4), respectively, andT ∈ R+ is chosen so that

G(ξ(t)) +
2(p− q)

p

∫ α(t)

0

f(s)

(
1 +

∫ s

0

g(τ)dτ

)
ds ∈ Dom

(
G−1

)
, for all 0 ≤ t ≤ T.

Proof. Firstly we assume thatc > 0. Define the nondeceasing positive function by

z(t) := c2 + 2

∫ α(t)

0

[
f(s)uq(s)

(
w(u(s))+

∫ s

0

g(τ)w(u(τ))dτ

)
+ h(s)uq(s)

]
ds,

thenz(0) = c2 and by (2.10) we have

(2.12) u(t) ≤ [z(t)]
1
p ,

and

z′(t) = 2uq(α(t))

[
f(α(t))

(
w(u(α(t))) +

∫ α(t)

0

g(τ)w(u(τ))dτ

)
+ h(α(t))

]
α′(t)

≤ 2 [z(t)]
q
p

[
f(α(t))

(
w(u(α(t))) +

∫ α(t)

0

g(τ)w(u(τ))dτ

)
+ h(α(t))

]
α′(t).

Hence

z′(t)

[z(t)]
q
p

≤ 2h(α(t))α′(t) + 2f(α(t))α′(t)

(
w(u(α(t)) +

∫ α(t)

0

g(τ)w(u(τ))dτ

)
.
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RETARDED INEQUALITY 5

Integrating both sides of the last inequality on[0, t], we get

p

p− q
[z(t)]

p−q
p ≤ p

p− q
[z(0)]

p−q
p + 2

∫ α(t)

0

h(s)ds

+ 2

∫ α(t)

0

f(s)

(
w(u(s)) +

∫ s

0

g(τ)w(u(τ))dτ

)
ds.

Using (2.3), we get

[z(t)]
p−q

p ≤ ξ(t) +
2(p− q)

p

∫ α(t)

0

f(s)

(
w(u(s)) +

∫ s

0

g(τ)w(u(τ))dτ

)
ds.

Let T1(≤ T ) be an arbitrary number. From last inequality we know the following relation holds
for t ∈ [0, T1],

[z(t)]
p−q

p ≤ ξ(T1) +
2(p− q)

p

∫ α(t)

0

f(s)

(
w(u(s)) +

∫ s

0

g(τ)w(u(τ))dτ

)
ds.

Letting

(2.13) m(t) = ξ(T1) +
2(p− q)

p

∫ α(t)

0

f(s)

(
w(u(s)) +

∫ s

0

g(τ)w(u(τ))dτ

)
ds,

we get[z(t)]
p−q

p ≤ m(t). Sincew is nondecreasing, we have

w[u(α(t))] ≤ w
[
(z(α(t)))

1
p

]
≤ w

[
(z(t))

1
p

]
≤ w

[
(m(t))

1
p−q

]
and

w[u(τ)] ≤ w
[
(z(τ))

1
p

]
≤ w

[
(z(α(t)))

1
p

]
≤ w

[
(z(t))

1
p

]
, for τ ∈ [0, α(t)].

From (2.13), by differentiation we obtain

m′(t) =
2(p− q)

p
f(α(t))

(
w(u(α(t))) +

∫ α(t)

0

g(τ)w(u(τ))dτ

)
α′(t)

≤ 2(p− q)

p
f(α(t))

{
w
(
[m(t)]

1
p−q

)
+

∫ α(t)

0

g(τ)w
(
[m(t)]

1
p−q

)
dτ

}
α′(t)

= w
(
[m(t)]

1
p−q

) 2(p− q)

p
f(α(t))

(
1 +

∫ α(t)

0

g(τ)dτ

)
α′(t).

Hence
m′(t)

w
(
[m(t)]

1
p−q

) ≤ 2(p− q)

p
f(α(t))

(
1 +

∫ α(t)

0

g(τ)dτ

)
α′(t).

Integrating both sides of the last inequality on[0, t], from (2.4) we get

G(m(t)) ≤ G(m(0)) +
2(p− q)

p

∫ α(t)

0

f(s)

(
1 +

∫ s

0

g(τ)dτ

)
ds.

Hence

(2.14) m(t) ≤ G−1

[
G(ξ(T1)) +

2(p− q)

p

∫ α(t)

0

f(s)

(
1 +

∫ s

0

g(τ)dτ

)
ds

]
.
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Takingt = T1 in inequality (2.14) and usingu(t) ≤ [m(t)]
1

p−q , we have

u(T1) ≤

{
G−1

[
G(ξ(T1)) +

2(p− q)

p

∫ α(T1)

0

f(s)

(
1 +

∫ s

0

g(τ)dτ

)
ds

]} 1
p−q

.

SinceT1(≤ T ) is arbitrary we have proved the desired inequality (2.11).
If c = 0, the result can be proved by repeating the above procedure withε > 0 instead ofc

and subsequently lettingε → 0. This completes the proof. �

Remark 3. Theorem 2.1 of Lipovan in [9] is special case of above Theorem 2.4, under the
assumptions thatp = 2, q = 1 andg(t) ≡ 0.

Theorem 2.5. Suppose thatp > q ≥ 0 andc ≥ 0 are constants, andu, f, g, h ∈ C (R+, R+).
Let w ∈ (R+, R+) be nondecreasing withw(u) > 0 on (0,∞), andα, β ∈ C1 (R+, R+) be
nondecreasing withα(t) ≤ t, β(t) ≤ t onR+. Then the following integral inequality

(2.15) up(t) ≤ c2 + 2

∫ α(t)

0

[
f(s)uq(s)

(
w(u(s)) +

∫ s

0

g(τ)w(u(τ))dτ

)]
ds

+ 2

∫ β(t)

0

h (s)uq (s) w (u (s)) ds, t ∈ R+

implies for0 ≤ t ≤ T

(2.16) u(t) ≤

{
G−1

[
G(c

2(p−q)
p ) +

2(p− q)

p

∫ α(t)

0

f(s)

(
1 +

∫ s

0

g(τ)dτ

)
ds

+
2(p− q)

p

∫ β(t)

0

h (s)ds

]} 1
p−q

,

whereG(r) is defined by (2.4) andT ∈ R+ is chosen so that

G
(
c

2(p−q)
p

)
+

2(p− q)

p

∫ α(t)

0

f(s)

(
1 +

∫ s

0

g(τ)dτ

)
ds

+
2(p− q)

p

∫ β(t)

0

h (s)ds ∈ Dom
(
G−1

)
, for all 0 ≤ t ≤ T.

Proof. The conditions thatα, β ∈ C1 (R+, R+) are nondecreasing withα(t) ≤ t, β(t) ≤ t
imply thatα(0) = 0 andβ(0) = 0.

Let us first assume thatc > 0. Denoting the right-hand side of (2.15) byz(t), we knowz(t)

is nondecreasing,z(0) = c2 andu(t) ≤ [z(t)]
1
p . Consequently we have

u(α(t)) ≤ [z(α(t))]
1
p ≤ [z(t)]

1
p and u(β(t)) ≤ [z(β(t))]

1
p ≤ [z(t)]

1
p .

Sincew is nondecreasing, we obtain

z′(t) = 2f(α(t))uq(α(t))

(
w(u(α(t))) +

∫ α(t)

0

g(τ)w(u(τ))dτ

)
α′(t)

+ 2h (β (t)) uq (β (t)) w (u (β (t))) β′(t)

≤ 2 [z(t)]
q
p [f (α (t))

(
w (u (α (t))) +

∫ α(t)

0

g (τ) w (u (τ)) dτ

)
α′ (t)

+ h (β (t)) w (u (β (t))) β′(t)].
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Hence

z′ (t)

[z(t)]
q
p

≤ 2f (α (t))

(
w (u (α (t))) +

∫ α(t)

0

g (τ) w (u (τ))dτ

)
α′ (t)

+ 2h (β (t)) w (u (β (t))) β′ (t) .

Integrating both sides on[0, t], we get

p

p− q
[z(t)]

p−q
p ≤ p

p− q
[z(0)]

p−q
p

+ 2

∫ α(t)

0

f(s)

(
w(u(s)) +

∫ s

0

g(τ)w(u(τ))dτ

)
ds + 2

∫ β(t)

0

h (s)w (u (s)) ds,

which can be rewritten as

(2.17) [z(t)]
p−q

p ≤ c
2(p−q)

p +
2(p− q)

p

∫ α(t)

0

f(s)

(
w(u(s)) +

∫ s

0

g(τ)w(u(τ))dτ

)
ds

+
2(p− q)

p

∫ β(t)

0

h (s)w (u (s)) ds.

Denoting the right-hand side of (2.17) bym (t), we know[z (t)]
p−q

p ≤ m (t) and

m′(t) =
2(p− q)

p
f(α(t))

(
w(u(α(t))) +

∫ α(t)

0

g(τ)w(u(τ))dτ

)
α′(t)

+
2 (p− q)

p
h (β (t)) w (u (β (t))) β′ (t)

≤ 2(p− q)

p
f(α(t))

(
w
(
z

1
p (α (t))

)
+

∫ α(t)

0

g(τ)w
(
z

1
p (τ)

)
dτ

)
α′(t)

+
2 (p− q)

p
h (β (t)) w

(
z

1
p (β (t))

)
β′ (t)

≤ w
(
z

1
p (t)

) 2(p− q)

p

[
f(α(t))

(
1 +

∫ α(t)

0

g(τ)dτ

)
α′(t) + h (β (t)) β′ (t)

]

≤ w
(
m

1
p−q (t)

) 2(p− q)

p

[
f(α(t))

(
1 +

∫ α(t)

0

g(τ)dτ

)
α′(t) + h (β (t)) β′ (t)

]
.

The above relation gives

m′ (t)

w
(
m

1
p−q (t)

) ≤ 2(p− q)

p

[
f(α(t))

(
1 +

∫ α(t)

0

g(τ)dτ

)
α′(t) + h (β (t)) β′ (t)

]
.

Integrating both sides on[0, t] and using definition (2.4) we get

G (m (t)) ≤ G (m (0)) +
2 (p− q)

p

[∫ α(t)

0

f (s)

(
1 +

∫ s

0

g (τ) dτ

)
ds +

∫ β(t)

0

h (s) ds

]

≤ G
(
c

2(p−q)
p

)
+

2 (p− q)

p

[∫ α(t)

0

f (s)

(
1 +

∫ s

0

g (τ) dτ

)
ds +

∫ β(t)

0

h (s) ds

]
.

Using the relationu(t) ≤ [z(t)]
1
p ≤ [m(t)]

1
p−q , we get the desired inequality (2.16).
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If c = 0, the result can be proved by repeating the above procedure withε > 0 instead ofc
and subsequently lettingε → 0. This completes the proof. �

Remark 4. Theorem 2 of Lipovan in [9] is a special case of Theorem 2.5 above, under the
assumptions thatp = 2, q = 1, g(t) ≡ 0 andβ(t) ≡ t.

3. APPLICATION

Example 3.1.Consider the delay integral equation

(3.1) x5(t) = x2
0 + 2

∫ α(t)

0

[
x3(s)M

(
s, x(s),

∫ s

0

N(s, τ, w(|x(τ)|))dτ

)
+ h(s)x3(s)

]
ds.

Assume that

(3.2) |M(s, t, v)| ≤ f(s) |v| , |N(s, t, v)| ≤ g(t) |v| ,

wheref, g, h, α andw are as defined in Theorem 2.1. From (3.1) and (3.2) we obtain

|x(t)|5 ≤ x2
0 + 2

∫ α(t)

0

[
|x(s)|3 f(s)

∫ s

0

g(τ)w(|x(τ)|)dτ + h(s) |x(s)|3
]
ds.

Applying Theorem 2.1 to the last relation, we get an explicit bound on an unknown function

(3.3) |x(t)| ≤

{
G−1

[
G(ξ(t)) +

4

5

∫ α(t)

0

f(s)

∫ s

0

g(τ)dτds

]} 1
2

,

where

ξ(t) =

∣∣∣∣ 5

√
x4

0

∣∣∣∣+ 4

5

∫ α(t)

0

h(s)ds.

In particular, ifω(t) ≡ t holds in (3.1), from (2.4) we derive

(3.4) G(t) =

∫ t

0

1

ω
(
s

1
p−q

)ds =

∫ t

0

1

s
1

p−q

ds =

∫ t

0

s−
1
2 ds = 2

√
t

and

(3.5) G−1 (t) =
1

4
t2.

Substituting (3.4) and (3.5) into inequality (3.3), we get

|x (t)| ≤
√

ξ(t) +
2

5

∫ α(t)

0

f (s)

∫ s

0

g (τ)dτ.

Example 3.2.Consider the following equation

(3.6) x8(t) = x2
0 + 2

∫ α(t)

0

[
x4(s)

(
M(s, x(s), w(|x(s)|))

+

∫ s

0

N(s, τ, w(|x(τ)|))dτ

)]
ds + 2

∫ α(t)

0

[
h(s)x4(s)

]
ds.

Assume that

(3.7) |M(s, t, v)| ≤ f(s) |v| , |N(s, t, v)| ≤ f(s)g(t) |v| ,
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wheref, g, h, α andw are as defined in Theorem 2.4. From (3.6) and (3.7) we obtain

|x(t)|8 ≤ x2
0 + 2

∫ α(t)

0

[
|x(s)|4 f(s)

(
w(|x(s)|)

+

∫ s

0

g(τ)w(|x(τ)|)dτ

)
+ h(s) |x(s)|4

]
ds.

By Theorem 2.4 we get an explicit bound on an unknown function

(3.8) |x(t)| ≤

{
G−1

[
G (ξ(t)) +

∫ α(t)

0

f(s)

(
1 +

∫ s

0

g(τ)dτ

)
ds

]} 1
4

,

where

ξ(t) = |x0|+
∫ α(t)

0

h(s)ds.

In particular, ifω (t) ≡ t3 holds in (3.6), from (2.4) we obtain

(3.9) G(t) =

∫ t

0

1

ω
(
s

1
p−q

)ds =

∫ t

0

1

s
3

p−q

ds =

∫ t

0

s−
3
4 ds = 4t

1
4

and

(3.10) G−1 (t) =
1

256
t4.

Substituting (3.9) and (3.10) into (3.8) we get

|x(t)| ≤ [ξ (t)]
1
4 +

1

4

∫ α(t)

0

f (s)

(
1 +

∫ s

0

g (τ) dτ

)
ds.
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