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ABSTRACT. The aim of this paper is to continue the studies about convergence inLp-norm
of the Fourier series based on representative product systems on the complete product of finite
groups. We restrict our attention to bounded groups with unbounded sequenceΨ. The most
simple example of this groups is the complete product ofS3. In this case we proved the existence
of an1 < p < 2 number for which exists anf ∈ Lp such that its n-th partial sum of Fourier
seriesSn do not converge to the functionf in Lp-norm. In this paper we extend this ”negative”
result for all1 < p < ∞ andp 6= 2 numbers.
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In Section 1 we introduce basic concepts in the study of representative product systems and
Fourier analysis. We also introduce the system with which we work on the complete product
of S3, i.e. the symmetric group on 3 elements (see [2]). Section 2 extends the definition of the
sequenceΨ for all p ≥ 1. Finally, we use the results of Section 2 to study the convergence
in theLp-norm (p ≥ 1) of the Fourier series on bounded groups with unbounded sequenceΨ,
supposing all the same finite groups appearing in the product ofG have the same systemϕ at all
of their occurrences. These results appear in Section 3 and they complete the statement proved
by G. Gát and the author of this paper in [2] for the complete product ofS3. There have been
similar results proved with respect to Walsh-like systems in [4] and [5].

Throughout this work denote byN, P, C the set of nonnegative, positive integers and complex
numbers, respectively. The notation which we have used in this paper is similar to [3].

1. REPRESENTATIVE PRODUCT SYSTEMS

Letm := (mk, k ∈ N) be a sequence of positive integers such thatmk ≥ 2 andGk a finite
group with ordermk, (k ∈ N). Suppose that each group has discrete topology and normalized
Haar measureµk. Let G be the compact group formed by the complete direct product ofGk

with the product of the topologies, operations and measures(µ). Thus eachx ∈ G consists of
sequencesx := (x0, x1, . . .), wherexk ∈ Gk, (k ∈ N). We call this sequence theexpansionof
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x. The compact totally disconnected groupG is called abounded groupif the sequencem is
bounded.

If M0 := 1 andMk+1 := mkMk, k ∈ N, then everyn ∈ N can be uniquely expressed as
n =

∑∞
k=0 nkMk, 0 ≤ nk < mk, nk ∈ N. This allows us to say that the sequence(n0, n1, . . . )

is the expansion ofn with respect tom.
Denote byΣk the dual object of the finite groupGk (k ∈ N). Thus eachσ ∈ Σk is a

set of continuous irreducible unitary representations ofGk which are equivalent to some fixed
representationU (σ). Letdσ be the dimension of its representation space and let{ζ1, ζ2, . . . , ζdσ}
be a fixed but arbitrary orthonormal basis in the representation space. The functions

u
(σ)
i,j (x) := 〈U (σ)

x ζi, ζj〉 (i, j ∈ {1, . . . , dσ}, x ∈ Gk)

are called the coordinate functions forU (σ) and the basis{ζ1, ζ2, . . . , ζdσ}. In this manner for
eachσ ∈ Σk we obtaind2

σ number of coordinate functions, in totalmk number of functions for
the whole dual object ofGk. TheL2-norm of these functions is1/

√
dσ.

Let {ϕs
k : 0 ≤ s < mk} be the set of allnormalized coordinate functionsof the groupGk and

suppose thatϕ0
k ≡ 1. Thus for every0 ≤ s < mk there exists aσ ∈ Σk, i, j ∈ {1, . . . , dσ} such

that
ϕs

k(x) =
√
dσu

(σ)
i,j (x) (x ∈ Gk).

Let ψ be the product system ofϕs
k, namely

ψn(x) :=
∞∏

k=0

ϕnk
k (xk) (x ∈ G),

wheren is of the formn =
∑∞

k=0 nkMk andx = (x0, x1, . . .). Thus we say thatψ is the
representative product systemof ϕ. The Weyl-Peter’s theorem (see [3]) ensures that the system
ψ is orthonormal and complete onL2(G).

The functionsψn (n ∈ N) are not necessarily uniformly bounded, so define

Ψk := max
n<Mk

‖ψn‖1‖ψn‖∞ (k ∈ N).

It seems that the boundedness of the sequenceΨ plays an important role in the norm conver-
gence of Fourier series.

For an integrable complex functionf defined inG we define the Fourier coefficients and
partial sums by

f̂k :=

∫
Gm

fψk dµ (k ∈ N), Snf :=
n−1∑
k=0

f̂kψk (n ∈ P).

According to the theorem of Banach-Steinhauss,Snf → f asn → ∞ in theLp norm for
f ∈ Lp(G) if and only if there exists aCp > 0 such that

‖Snf‖p ≤ Cp‖f‖p (f ∈ Lp(G)).

Thus, we say that the operatorSn is of type(p, p). Since the systemψ forms an orthonormal
base in the Hilbert spaceL2(G), it is obvious thatSn is of type(2, 2).

The representative product systems are the generalization of the well known Walsh-Paley
and Vilenkin systems. Indeed, we obtain the Walsh-Paley system ifmk = 2 andGk := Z2, the
cyclic group of order 2 for allk ∈ N. Moreover, we obtain the Vilenkin systems if the sequence
m is an arbitrary sequence of integers greater than 1 andGk := Zmk

, the cyclic group of order
mk for all k ∈ N.

Let mk = 6 for all k ∈ N andS3 be thesymmetric groupon 3 elements. LetGk := S3 for
all k ∈ N. S3 has two characters and a 2-dimensional representation. Using a calculation of the
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matrices corresponding to the 2-dimensional representation we construct the functionsϕs
k. In

the notation the indexk is omitted because all of the groupsGk are the same.

e (12) (13) (23) (123) (132) ‖ϕs‖1 ‖ϕs‖∞
ϕ0 1 1 1 1 1 1 1 1

ϕ1 1 −1 −1 −1 1 1 1 1

ϕ2
√
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√

2
√

2
2

√
2

2
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√

2
2
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√

2
2

2
√

2
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2
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√
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√

2
2
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√
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√
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√
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√
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√
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√
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√
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2
−
√

6
2

√
6

2

√
6

3

√
6

2

Notice that the functionsϕs
k can take the value 0, and the product system ofϕ is not uniformly

bounded. These facts encumber the study of these systems. On the other hand,max
0≤s<6

‖ϕs‖1‖ϕs‖∞

= 4
3
, thusΨk =

(
4
3

)k →∞ if k →∞. More examples of representative product systems have
appeared in [2] and [7].

2. THE SEQUENCE OF FUNCTIONS Ψk(p)

We extend the definition of the sequenceΨ for all p ≥ 1 as follows:

Ψk(p) := max
n<Mk

‖ψn‖p‖ψn‖q

(
p ≥ 1,

1

p
+

1

q
= 1, k ∈ N

)
(if p = 1 thenq = ∞). Notice thatΨk = Ψk(1) for all k ∈ N. Clearly, the functionsΨk(p) can
be written in the form

Ψk(p) =
k−1∏
i=0

max
s<mi

‖ϕs
i‖p‖ϕs

i‖q

=:
k−1∏
i=0

Υi(p)

(
p ≥ 1,

1

p
+

1

q
= 1, k ∈ N

)
.

Therefore, we study the product‖f‖p‖f‖q for normalized functions on finite groups. In this
regard we use the Hölder inequality (see [3, p. 137]). First, we prove the following lemma.

Lemma 2.1. LetG be a finite group with discrete topology and normalized Haar measureµ,
and letf be a normalized complex valued function onG (‖f‖2 = 1). Thus,

(1) if ‖f‖1‖f‖∞ = 1, then‖f‖p‖f‖q = 1 for all p ≥ 1 and 1
p

+ 1
q

= 1.

(2) if ‖f‖1‖f‖∞ > 1, then‖f‖p‖f‖q > 1 for all p ≥ 1, p 6= 2 and 1
p

+ 1
q

= 1.

Proof.

(1) The conditions imply the equality∫
G

|f | dµ · ‖f‖∞ = 1 =

∫
G

|f |2 dµ.

Let f0 := f
‖f‖∞ . Then

(2.1) |f0(x)| ≤ 1 (x ∈ G)
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and

(2.2)
∫

G

|f0| dµ =

∫
G

|f0|2 dµ.

Thus by (2.1) we obtain|f0(x)| − |f0(x)|2 ≥ 0 (x ∈ G) and by (2.2) we have∫
G

|f0| − |f0|2 dµ = 0.

Hence|f0(x)| = |f0(x)|2 for all x ∈ G. Thus, we have|f0(x)| = 1 or |f0(x)| = 0 for all
x ∈ G, therefore|f(x)| = ‖f‖∞ or |f(x)| = 0 for all x ∈ G. For this reason we obtain
an equality in the Hölder inequality for all1 < p <∞, 1

p
+ 1

q
= 1 and the equality

1 =

∫
G

|f |2 dµ = ‖f‖p‖f‖q

holds.
(2) Suppose there is a1 < p < 2 such that

‖f‖p‖f‖q = 1 =

∫
G

|f |2 dµ.

Then the equality in the Hölder inequality holds. For this reason there are nonnegative
numbersA andB not both 0 such that

A|f(x)|p = B|f(x)|q (x ∈ G).

Thus, there is ac > 0 such that|f | = c or |f | = 0 for all x ∈ G (c = ‖f‖∞). Then
|f | · ‖f‖∞ = |f |2. Integrating boths part of the last equation we have‖f‖1‖f‖∞ = 1.
We obtain a contradiction.

�

However, the following lemma states much more.

Lemma 2.2. LetG be a finite group with discrete topology and normalized Haar measureµ,
and letf be a complex valued function onG. Thus, the functionΨ(p) := ‖f‖p‖f‖q (1

p
+ 1

q
= 1)

is a monotone decreasing function on the interval[1, 2].

Proof. Let f0 := f
‖f‖∞ . ThenΨ(p) = ‖f‖2

∞‖f0‖p‖f0‖q. Letm be the order of the groupG. We
take the elements ofG in the order,G = {g1, g2, . . . , gm}, to obtain the numbers

ai := |f0(gi)| ≤ 1 (i = 1, . . . ,m),

with which we write

Ψ(p) =
‖f‖2

∞
m

(
m∑

i=1

ap
i

) 1
p
(

m∑
i=1

aq
i

) 1
q

.

Sinceq = p
p−1

, we have
∂q

∂p
= − 1

(p− 1)2
= −q

2

p2
.

Therefore,

∂Ψ

∂p
= Ψ(p)

[
− 1

p2
log

(
m∑

i=1

ap
i

)
+

1

p

∑m
i=1 a

p
i log ai∑m

i=1 a
p
i

]

+ Ψ(p)

[
− 1

q2
log

(
m∑

i=1

aq
i

)
+

1

q

∑m
i=1 a

q
i log ai∑m

i=1 a
q
i

](
−q

2

p2

)
.
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The condition1 < p < 2 ensures that

−1

q
· q

2

p2
= − 1

p(p− 1)
< −1

p
,

from which we have

1

Ψ(p)

∂Ψ

∂p
≤ 1

p2

[
log

(
m∑

i=1

aq
i

)
− log

(
m∑

i=1

ap
i

)]
+

1

p

[∑m
i=1 a

p
i log ai∑m

i=1 a
p
i

−
∑m

i=1 a
q
i log ai∑m

i=1 a
q
i

]
.

Both addends in the sum above are not positive. Indeed, the factsai ≤ 1 for all 1 ≤ i ≤ m and
p < q imply thataq

i ≤ ap
i for all 1 ≤ i ≤ m, from which it is clear that

(2.3) log

(
m∑

i=1

aq
i

)
− log

(
m∑

i=1

ap
i

)
≤ 0.

Secondly,

h(x) :=

∑m
i=1 a

x
i log ai∑m

i=1 a
x
i

is a monotone increasing function. Indeed,

h′(x) =

(∑m
i=1 a

x
i log2 ai

)∑m
i=1 a

x
i − (

∑m
i=1 a

x
i log ai)

2

(
∑m

i=1 a
x
i )

2

=

∑m
i,j=1 a

x
i a

x
j (log ai − log aj)

2

(
∑m

i=1 a
x
i )

2 ≥ 0.

Consequently, we have

(2.4)

∑m
i=1 a

p
i log ai∑m

i=1 a
p
i

−
∑m

i=1 a
q
i log ai∑m

i=1 a
q
i

≤ 0.

By (2.3) and (2.4) we obtain∂Ψ
∂p

≤ 0 for all 1 < p < 2, which completes the proof of the
lemma. �

We can apply Lemma 2.1 and Lemma 2.2 to obtain similar properties forΥk(p) andΨk(p)
because these functions are the maximum value and the product of finite functions satisfying
the conditions of the two lemmas. Consequently, we obtain:

Theorem 2.3. LetGk be a coordinate group ofG such that‖ϕs
k‖1 = 1 for all s < mk. Then

Υk(p) ≡ 1. Otherwise, the functionΥk(p) is a strictly monotone decreasing function on the
interval [1, 2].

The functionΨk(p) ≡ 1 if ‖ϕs
i‖1 = 1 for all s < mi and i ≤ k. Otherwise, the function

Ψk(p) is a strictly monotone decreasing function on the interval[1, 2].

It is important to remark that the functionsΥk(p) and Ψk(p) are monotone increasing if

p > 2. It follows from the propertyΥk(p) = Υk

(
p

p−1

)
. In order to illustrate these properties

we plot the values ofΥ(p) for the groupS3.

3. NEGATIVE RESULTS

Theorem 3.1.Letp be a fixed number on the interval(1, 2) and 1
p
+ 1

q
= 1. If G is a group with

unbounded sequenceΨk(p), then the operatorSn is not of type(p, p) or (q, q).
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Figure 2.1: Values ofΥ(p) for the groupS3

Proof. To prove this theorem, chooseik < mk the index for which the normalized coordinate
functionϕik

k of the finite groupGk satisfies∥∥ϕik
k

∥∥
p

∥∥ϕik
k

∥∥
q

= max
s<mk

‖ϕs
k‖p ‖ϕ

s
k‖q .

Define
fk(x) := ϕik

k (x)
∣∣ϕik

k (x)
∣∣q−2

(x ∈ Gk).

Thus, |fk(x)|p = |ϕik
k (x)|q andfk(x)ϕ

ik
k (x) = |ϕik

k (x)|q ∈ R+ if ϕik
k (x) 6= 0. Hence both

equalities hold in Hölder’s inequality. For this reason

(3.1)

∣∣∣∣∫
Gk

fkϕ
ik
k dµk

∣∣∣∣ ∥∥ϕik
k

∥∥
p

= ‖fk‖p

∥∥ϕik
k

∥∥
q

∥∥ϕik
k

∥∥
p
.

If k is an arbitrary positive integer andn :=
∑k−1

j=0 ijMj, then defineFk ∈ Lp(G) by

Fk(x) :=
k−1∏
j=0

fj(xj) (x = (x0, x1, . . . ) ∈ G).

Since‖Fk‖p =
∏k−1

j=0 ‖fj‖p, it follows from (3.1) that

‖Sn+1Fk − SnFk‖p =

∣∣∣∣∫
G

Fkψndµ

∣∣∣∣ ‖ψn‖p(3.2)

=
k−1∏
j=0

∣∣∣∣∫
G

fjϕ
s
jdµj

∣∣∣∣ ‖ϕs
j‖p ≥ Ψk(p)‖Fk‖p.

On the other hand, ifSn is of type(p, p), then there exists aCp > 0 such that

‖Sn+1Fk − SnFk‖p ≤ ‖Sn+1Fk‖p + ‖SnFk‖p ≤ 2Cp‖Fk‖p
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for eachk > 0, which contradicts (3.2) because the sequenceΨk(p) is not bounded. For this
reason, the operatorsSn are not uniformly of type(p, p). By a duality argument (see [6]) the
operatorsSn cannot be uniformly of type(q, q). This completes the proof of the theorem.�

By Theorem 3.1 we obtain:

Theorem 3.2.LetG be a bounded group and suppose that all the same finite groups appearing
in the product ofG have the same systemϕ at all of their occurrences. If the sequenceΨ is
unbounded, then the operatorSn is not of type(p, p) for all p 6= 2.

Proof. If the sequenceΨk = Ψk(1) is not bounded, there exists a finite groupF with system
{ϕs : 0 ≤ s < |F |} (|F | is the order of the groupF ) which appears infinitely many times in the
product ofG and

Υ(1) := max
s<|F |

‖ϕs‖1‖ϕs‖∞ > 1.

Hence by Theorem 2.3 we have

Υ(p) := max
s<|F |

‖ϕs‖p‖ϕs‖q > 1

for all p 6= 2. Denote byl(k) the number of times the groupF appears in the firstk coordinates
of G. Thusl(k) →∞ if k →∞ and

Ψk(p) ≥
l(k)∏
i=1

Υ(p) →∞ if k →∞,

for all p 6= 2. Consequently, the groupG satisfies the conditions of Theorem 3.1 for all1 < p <
2. This completes the proof of the theorem. �

Corollary 3.3. If G is the complete product ofS3 with the systemϕ appearing in Section 2,
then the operatorSn is not of type(p, p) for all p 6= 2.
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