NEGATIVE RESULTS CONCERNING FOURIER SERIES ON THE COMPLETE PRODUCT OF S_3

R. TOLEDO

Institute of Mathematics and Computer Science College of Nyíregyháza P.O. Box 166, Nyíregyháza, H-4400 Hungary EMail: toledo@nyf.hu

Received:	26 November, 2007
Accepted:	13 October, 2008
Communicated by:	S.S. Dragomir
2000 AMS Sub. Class.:	42C10.
Key words:	Fourier series, Walsh-system, Vilenkin systems, Representative product systems.
Abstract:	The aim of this paper is to continue the studies about convergence in L^p -norm of the Fourier series based on representative product systems on the complete product of finite groups. We restrict our attention to bounded groups with unbounded sequence Ψ . The most simple example of this groups is the complete product of S_3 . In this case we proved the existence of an $1 number for which exists an f \in L^p such that its n-th partial sum of Fourier series S_n do not converge to the function f in L^p-norm. In this paper we extend this "negative" result for all 1 and p \neq 2 numbers.$

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

1	Representative Product Systems	4
2	The Sequence of Functions $\Psi_k(p)$	7
3	Negative Results	13

journal of inequalities in pure and applied mathematics

Introduction

In Section 1 we introduce basic concepts in the study of representative product systems and Fourier analysis. We also introduce the system with which we work on the complete product of S_3 , i.e. the symmetric group on 3 elements (see [2]). Section 2 extends the definition of the sequence Ψ for all $p \ge 1$. Finally, we use the results of Section 2 to study the convergence in the L^p -norm ($p \ge 1$) of the Fourier series on bounded groups with unbounded sequence Ψ , supposing all the same finite groups appearing in the product of G have the same system φ at all of their occurrences. These results appear in Section 3 and they complete the statement proved by G. Gát and the author of this paper in [2] for the complete product of S_3 . There have been similar results proved with respect to Walsh-like systems in [4] and [5].

Throughout this work denote by \mathbb{N} , \mathbb{P} , \mathbb{C} the set of nonnegative, positive integers and complex numbers, respectively. The notation which we have used in this paper is similar to [3].

1. Representative Product Systems

Let $m := (m_k, k \in \mathbb{N})$ be a sequence of positive integers such that $m_k \ge 2$ and G_k a finite group with order m_k , $(k \in \mathbb{N})$. Suppose that each group has discrete topology and normalized Haar measure μ_k . Let G be the compact group formed by the complete direct product of G_k with the product of the topologies, operations and measures (μ) . Thus each $x \in G$ consists of sequences $x := (x_0, x_1, \ldots)$, where $x_k \in G_k$, $(k \in \mathbb{N})$. We call this sequence the *expansion* of x. The compact totally disconnected group G is called a *bounded group* if the sequence m is bounded.

If $M_0 := 1$ and $M_{k+1} := m_k M_k$, $k \in \mathbb{N}$, then every $n \in \mathbb{N}$ can be uniquely expressed as $n = \sum_{k=0}^{\infty} n_k M_k$, $0 \le n_k < m_k$, $n_k \in \mathbb{N}$. This allows us to say that the sequence (n_0, n_1, \ldots) is the expansion of n with respect to m.

Denote by Σ_k the dual object of the finite group G_k $(k \in \mathbb{N})$. Thus each $\sigma \in \Sigma_k$ is a set of continuous irreducible unitary representations of G_k which are equivalent to some fixed representation $U^{(\sigma)}$. Let d_{σ} be the dimension of its representation space and let $\{\zeta_1, \zeta_2, \ldots, \zeta_{d_{\sigma}}\}$ be a fixed but arbitrary orthonormal basis in the representation space. The functions

$$u_{i,j}^{(\sigma)}(x) := \langle U_x^{(\sigma)}\zeta_i, \zeta_j \rangle \qquad (i, j \in \{1, \dots, d_\sigma\}, x \in G_k)$$

are called the coordinate functions for $U^{(\sigma)}$ and the basis $\{\zeta_1, \zeta_2, \ldots, \zeta_{d_{\sigma}}\}$. In this manner for each $\sigma \in \Sigma_k$ we obtain d_{σ}^2 number of coordinate functions, in total m_k number of functions for the whole dual object of G_k . The L^2 -norm of these functions is $1/\sqrt{d_{\sigma}}$.

Let $\{\varphi_k^s : 0 \le s < m_k\}$ be the set of all *normalized coordinate functions* of the group G_k and suppose that $\varphi_k^0 \equiv 1$. Thus for every $0 \le s < m_k$ there exists a $\sigma \in \Sigma_k, i, j \in \{1, \ldots, d_\sigma\}$ such that

$$\varphi_k^s(x) = \sqrt{d_\sigma} u_{i,j}^{(\sigma)}(x) \qquad (x \in G_k)$$

mathematics issn: 1443-5756 Let ψ be the product system of φ_k^s , namely

$$\psi_n(x) := \prod_{k=0}^{\infty} \varphi_k^{n_k}(x_k) \qquad (x \in G),$$

where n is of the form $n = \sum_{k=0}^{\infty} n_k M_k$ and $x = (x_0, x_1, ...)$. Thus we say that ψ is the *representative product system* of φ . The Weyl-Peter's theorem (see [3]) ensures that the system ψ is orthonormal and complete on $L^2(G)$.

The functions ψ_n $(n \in \mathbb{N})$ are not necessarily uniformly bounded, so define

$$\Psi_k := \max_{n < M_k} \|\psi_n\|_1 \|\psi_n\|_\infty \qquad (k \in \mathbb{N}).$$

It seems that the boundedness of the sequence Ψ plays an important role in the norm convergence of Fourier series.

For an integrable complex function f defined in G we define the Fourier coefficients and partial sums by

$$\widehat{f}_k := \int_{G_m} f \overline{\psi}_k \, d\mu \quad (k \in \mathbb{N}), \qquad S_n f := \sum_{k=0}^{n-1} \widehat{f}_k \psi_k \quad (n \in \mathbb{P}).$$

According to the theorem of Banach-Steinhauss, $S_n f \to f$ as $n \to \infty$ in the L^p norm for $f \in L^p(G)$ if and only if there exists a $C_p > 0$ such that

 $||S_n f||_p \le C_p ||f||_p \quad (f \in L^p(G)).$

Thus, we say that the operator S_n is of type (p, p). Since the system ψ forms an orthonormal base in the Hilbert space $L^2(G)$, it is obvious that S_n is of type (2, 2).

The representative product systems are the generalization of the well known Walsh-Paley and Vilenkin systems. Indeed, we obtain the Walsh-Paley system if

Negative Results Concerning Fourier Series				
	R. Toledo			
vol. 9, iss. 4, art. 99, 2008				
	Title Page			
	Contents			
	44	••		
	◀	►		
	Page 5 of 16			
	Go Back			
	Full Screen			
	Close			
journal of inequalities				

in pure and applied mathematics

© 2007 Victoria University. All rights reserved.

 $m_k = 2$ and $G_k := \mathbb{Z}_2$, the cyclic group of order 2 for all $k \in \mathbb{N}$. Moreover, we obtain the Vilenkin systems if the sequence m is an arbitrary sequence of integers greater than 1 and $G_k := \mathbb{Z}_{m_k}$, the cyclic group of order m_k for all $k \in \mathbb{N}$.

Let $m_k = 6$ for all $k \in \mathbb{N}$ and S_3 be the symmetric group on 3 elements. Let $G_k := S_3$ for all $k \in \mathbb{N}$. S_3 has two characters and a 2-dimensional representation. Using a calculation of the matrices corresponding to the 2-dimensional representation we construct the functions φ_k^s . In the notation the index k is omitted because all of the groups G_k are the same.

	e	(12)	(13)	(23)	(123)	(132)	$\ \varphi^s\ _1$	$\ \varphi^s\ _{\infty}$
φ^0	1	1	1	1	1	1	1	1
φ^1	1	-1	-1	T	1	1	1	1
φ^2	$\sqrt{2}$	$-\sqrt{2}$	$\frac{\sqrt{2}}{2}$		$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	$\frac{2\sqrt{2}}{3}$	$\sqrt{2}$
$arphi^3$	$\sqrt{2}$	$\sqrt{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	$\frac{2\sqrt{2}}{3}$	$\sqrt{2}$
φ^4	0	0	$-\frac{\sqrt{6}}{2}$	2	$\frac{\sqrt{6}}{2}$	$-\frac{\sqrt{6}}{2}$	$\frac{\sqrt{6}}{3}$	$\frac{\sqrt{6}}{2}$
φ^5	0	0	$-\frac{\sqrt{6}}{2}$	$\frac{\sqrt{6}}{2}$	$-\frac{\sqrt{6}}{2}$	$\frac{\sqrt{6}}{2}$	$\frac{\sqrt{6}}{3}$	$\frac{\sqrt{6}}{2}$

Notice that the functions φ_k^s can take the value 0, and the product system of φ is not uniformly bounded. These facts encumber the study of these systems. On the other hand, $\max_{0 \le s < 6} \|\varphi^s\|_1 \|\varphi^s\|_{\infty} = \frac{4}{3}$, thus $\Psi_k = \left(\frac{4}{3}\right)^k \to \infty$ if $k \to \infty$. More examples of representative product systems have appeared in [2] and [7].

journal of inequalities in pure and applied mathematics

2. The Sequence of Functions $\Psi_k(p)$

We extend the definition of the sequence Ψ for all $p \ge 1$ as follows:

$$\Psi_k(p) := \max_{n < M_k} \|\psi_n\|_p \|\psi_n\|_q \qquad \left(p \ge 1, \ \frac{1}{p} + \frac{1}{q} = 1, \ k \in \mathbb{N}\right)$$

(if p = 1 then $q = \infty$). Notice that $\Psi_k = \Psi_k(1)$ for all $k \in \mathbb{N}$. Clearly, the functions $\Psi_k(p)$ can be written in the form

$$\Psi_{k}(p) = \prod_{i=0}^{k-1} \max_{s < m_{i}} \|\varphi_{i}^{s}\|_{p} \|\varphi_{i}^{s}\|_{q}$$
$$=: \prod_{i=0}^{k-1} \Upsilon_{i}(p) \quad \left(p \ge 1, \ \frac{1}{p} + \frac{1}{q} = 1, \ k \in \mathbb{N}\right)$$

Therefore, we study the product $||f||_p ||f||_q$ for normalized functions on finite groups. In this regard we use the Hölder inequality (see [3, p. 137]). First, we prove the following lemma.

Lemma 2.1. Let G be a finite group with discrete topology and normalized Haar measure μ , and let f be a normalized complex valued function on G ($||f||_2 = 1$). Thus,

- 1. if $||f||_1 ||f||_{\infty} = 1$, then $||f||_p ||f||_q = 1$ for all $p \ge 1$ and $\frac{1}{p} + \frac{1}{q} = 1$.
- 2. if $||f||_1 ||f||_\infty > 1$, then $||f||_p ||f||_q > 1$ for all $p \ge 1$, $p \ne 2$ and $\frac{1}{p} + \frac{1}{q} = 1$.

journal of inequalities in pure and applied mathematics

Proof.

1. The conditions imply the equality

$$\int_{G} |f| \, d\mu \cdot \|f\|_{\infty} = 1 = \int_{G} |f|^2 \, d\mu$$

Let
$$f_0 := \frac{f}{\|f\|_{\infty}}$$
. Then
(2.1) $|f_0(x)| \le 1 \quad (x \in G)$

and

(2.2)
$$\int_{G} |f_0| \, d\mu = \int_{G} |f_0|^2 \, d\mu$$

Thus by (2.1) we obtain $|f_0(x)| - |f_0(x)|^2 \ge 0$ ($x \in G$) and by (2.2) we have

$$\int_{G} |f_0| - |f_0|^2 \ d\mu = 0.$$

Hence $|f_0(x)| = |f_0(x)|^2$ for all $x \in G$. Thus, we have $|f_0(x)| = 1$ or $|f_0(x)| = 0$ for all $x \in G$, therefore $|f(x)| = ||f||_{\infty}$ or |f(x)| = 0 for all $x \in G$. For this reason we obtain an equality in the Hölder inequality for all $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$ and the equality

$$1 = \int_{G} |f|^2 \, d\mu = \|f\|_p \|f\|_q$$

holds.

Negative Results Concerning Fourier Series R. Toledo vol. 9, iss. 4, art. 99, 2008 **Title Page** Contents 44 ◀ ► Page 8 of 16 Go Back **Full Screen** Close

journal of inequalities in pure and applied mathematics

2. Suppose there is a 1 such that

$$||f||_p ||f||_q = 1 = \int_G |f|^2 d\mu$$

Then the equality in the Hölder inequality holds. For this reason there are nonnegative numbers A and B not both 0 such that

$$A|f(x)|^p = B|f(x)|^q \quad (x \in G)$$

Thus, there is a c > 0 such that |f| = c or |f| = 0 for all $x \in G$ ($c = ||f||_{\infty}$). Then $|f| \cdot ||f||_{\infty} = |f|^2$. Integrating boths part of the last equation we have $||f||_1 ||f||_{\infty} = 1$. We obtain a contradiction.

However, the following lemma states much more.

Lemma 2.2. Let G be a finite group with discrete topology and normalized Haar measure μ , and let f be a complex valued function on G. Thus, the function $\Psi(p) := \|f\|_p \|f\|_q \left(\frac{1}{p} + \frac{1}{q} = 1\right)$ is a monotone decreasing function on the interval [1,2].

Proof. Let $f_0 := \frac{f}{\|f\|_{\infty}}$. Then $\Psi(p) = \|f\|_{\infty}^2 \|f_0\|_p \|f_0\|_q$. Let *m* be the order of the group *G*. We take the elements of *G* in the order, $G = \{g_1, g_2, \ldots, g_m\}$, to obtain the numbers

$$a_i := |f_0(g_i)| \le 1$$
 $(i = 1, ..., m),$

with which we write

$$\Psi(p) = \frac{\|f\|_{\infty}^2}{m} \left(\sum_{i=1}^m a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^m a_i^q\right)^{\frac{1}{q}}.$$

Fourier Series				
R. Toledo				
vol. 9, iss. 4, art. 99, 2008				
		-		
Title Page				
Contents				
•• ••				
•				
Page 9 of 16				
Go Back				
Full Screen				
Close				
ournal of inequalities n pure and applied nathematics .ssn: 1443-5756				

П

Since $q = \frac{p}{p-1}$, we have

$$\frac{\partial q}{\partial p} = -\frac{1}{(p-1)^2} = -\frac{q^2}{p^2}.$$

Therefore,

$$\begin{split} \frac{\partial \Psi}{\partial p} &= \Psi(p) \left[-\frac{1}{p^2} \log \left(\sum_{i=1}^m a_i^p \right) + \frac{1}{p} \frac{\sum_{i=1}^m a_i^p \log a_i}{\sum_{i=1}^m a_i^p} \right] \\ &+ \Psi(p) \left[-\frac{1}{q^2} \log \left(\sum_{i=1}^m a_i^q \right) + \frac{1}{q} \frac{\sum_{i=1}^m a_i^q \log a_i}{\sum_{i=1}^m a_i^q} \right] \left(-\frac{q^2}{p^2} \right). \end{split}$$

The condition 1 ensures that

$$-\frac{1}{q} \cdot \frac{q^2}{p^2} = -\frac{1}{p(p-1)} < -\frac{1}{p},$$

from which we have

$$\begin{split} \frac{1}{\Psi(p)} \frac{\partial \Psi}{\partial p} &\leq \frac{1}{p^2} \left[\log \left(\sum_{i=1}^m a_i^q \right) - \log \left(\sum_{i=1}^m a_i^p \right) \right] \\ &+ \frac{1}{p} \left[\frac{\sum_{i=1}^m a_i^p \log a_i}{\sum_{i=1}^m a_i^p} - \frac{\sum_{i=1}^m a_i^q \log a_i}{\sum_{i=1}^m a_i^q} \right]. \end{split}$$

Both addends in the sum above are not positive. Indeed, the facts $a_i \leq 1$ for all $1 \leq i \leq m$ and p < q imply that $a_i^q \leq a_i^p$ for all $1 \leq i \leq m$, from which it is clear that

(2.3)
$$\log\left(\sum_{i=1}^{m} a_i^q\right) - \log\left(\sum_{i=1}^{m} a_i^p\right) \le 0$$

Secondly,

$$h(x) := \frac{\sum_{i=1}^{m} a_i^x \log a_i}{\sum_{i=1}^{m} a_i^x}$$

is a monotone increasing function. Indeed,

$$h'(x) = \frac{\left(\sum_{i=1}^{m} a_i^x \log^2 a_i\right) \sum_{i=1}^{m} a_i^x - \left(\sum_{i=1}^{m} a_i^x \log a_i\right)^2}{\left(\sum_{i=1}^{m} a_i^x\right)^2} = \frac{\sum_{i,j=1}^{m} a_i^x a_j^x (\log a_i - \log a_j)^2}{\left(\sum_{i=1}^{m} a_i^x\right)^2} \ge 0.$$

Consequently, we have

(2.4)
$$\frac{\sum_{i=1}^{m} a_i^p \log a_i}{\sum_{i=1}^{m} a_i^p} - \frac{\sum_{i=1}^{m} a_i^q \log a_i}{\sum_{i=1}^{m} a_i^q} \le 0$$

By (2.3) and (2.4) we obtain $\frac{\partial \Psi}{\partial p} \leq 0$ for all 1 , which completes the proof of the lemma.

We can apply Lemma 2.1 and Lemma 2.2 to obtain similar properties for $\Upsilon_k(p)$ and $\Psi_k(p)$ because these functions are the maximum value and the product of finite functions satisfying the conditions of the two lemmas. Consequently, we obtain:

Theorem 2.3. Let G_k be a coordinate group of G such that $\|\varphi_k^s\|_1 = 1$ for all $s < m_k$. Then $\Upsilon_k(p) \equiv 1$. Otherwise, the function $\Upsilon_k(p)$ is a strictly monotone decreasing function on the interval [1, 2].

The function $\Psi_k(p) \equiv 1$ if $\|\varphi_i^s\|_1 = 1$ for all $s < m_i$ and $i \le k$. Otherwise, the function $\Psi_k(p)$ is a strictly monotone decreasing function on the interval [1,2].

Negative Results Concerning Fourier Series R. Toledo vol. 9, iss. 4, art. 99, 2008 **Title Page** Contents 44 Page 11 of 16 Go Back Full Screen Close

journal of inequalities in pure and applied mathematics

It is important to remark that the functions $\Upsilon_k(p)$ and $\Psi_k(p)$ are monotone increasing if p > 2. It follows from the property $\Upsilon_k(p) = \Upsilon_k\left(\frac{p}{p-1}\right)$. In order to illustrate these properties we plot the values of $\Upsilon(p)$ for the group S_3 .

journal of inequalities in pure and applied mathematics

Negative Results 3.

Theorem 3.1. Let p be a fixed number on the interval (1,2) and $\frac{1}{p} + \frac{1}{q} = 1$. If G is a group with unbounded sequence $\Psi_k(p)$, then the operator S_n is not of type (p, p)or (q, q).

Proof. To prove this theorem, choose $i_k < m_k$ the index for which the normalized coordinate function $\varphi_k^{i_k}$ of the finite group G_k satisfies

$$\left\|\varphi_{k}^{i_{k}}\right\|_{p}\left\|\varphi_{k}^{i_{k}}\right\|_{q} = \max_{s < m_{k}}\left\|\varphi_{k}^{s}\right\|_{p}\left\|\varphi_{k}^{s}\right\|_{q}.$$

Define

$$f_k(x) := \varphi_k^{i_k}(x) \left| \varphi_k^{i_k}(x) \right|^{q-2} \quad (x \in G_k).$$

Thus, $|f_k(x)|^p = |\varphi_k^{i_k}(x)|^q$ and $f_k(x)\overline{\varphi}_k^{i_k}(x) = |\varphi_k^{i_k}(x)|^q \in \mathbb{R}^+$ if $\varphi_k^{i_k}(x) \neq 0$. Hence both equalities hold in Hölder's inequality. For this reason

(3.1)
$$\left| \int_{G_k} f_k \overline{\varphi}_k^{i_k} d\mu_k \right| \left\| \varphi_k^{i_k} \right\|_p = \|f_k\|_p \left\| \varphi_k^{i_k} \right\|_q \left\| \varphi_k^{i_k} \right\|_p$$

If k is an arbitrary positive integer and $n := \sum_{j=0}^{k-1} i_j M_j$, then define $F_k \in L^p(G)$ by

$$F_k(x) := \prod_{j=0}^{k-1} f_j(x_j) \qquad (x = (x_0, x_1, \dots) \in G).$$

Since $||F_k||_p = \prod_{i=0}^{k-1} ||f_i||_p$, it follows from (3.1) that

(3.2)
$$\|S_{n+1}F_k - S_nF_k\|_p = \left|\int_G F_k\overline{\psi}_n d\mu\right| \|\psi_n\|_p$$

jΟ

in m

$$=\prod_{j=0}^{k-1} \left| \int_G f_j \overline{\varphi}_j^s d\mu_j \right| \|\varphi_j^s\|_p \ge \Psi_k(p) \|F_k\|_p.$$

On the other hand, if S_n is of type (p, p), then there exists a $C_p > 0$ such that

$$||S_{n+1}F_k - S_nF_k||_p \le ||S_{n+1}F_k||_p + ||S_nF_k||_p \le 2C_p||F_k||_p$$

for each k > 0, which contradicts (3.2) because the sequence $\Psi_k(p)$ is not bounded. For this reason, the operators S_n are not uniformly of type (p, p). By a duality argument (see [6]) the operators S_n cannot be uniformly of type (q, q). This completes the proof of the theorem.

By Theorem 3.1 we obtain:

Theorem 3.2. Let G be a bounded group and suppose that all the same finite groups appearing in the product of G have the same system φ at all of their occurrences. If the sequence Ψ is unbounded, then the operator S_n is not of type (p, p) for all $p \neq 2$.

Proof. If the sequence $\Psi_k = \Psi_k(1)$ is not bounded, there exists a finite group F with system $\{\varphi^s : 0 \le s < |F|\}$ (|F| is the order of the group F) which appears infinitely many times in the product of G and

$$\Upsilon(1) := \max_{s < |F|} \|\varphi^s\|_1 \|\varphi^s\|_\infty > 1.$$

Hence by Theorem 2.3 we have

$$\Upsilon(p) := \max_{s < |F|} \|\varphi^s\|_p \|\varphi^s\|_q > 1$$

for all $p \neq 2$. Denote by l(k) the number of times the group F appears in the first k

coordinates of G. Thus $l(k) \to \infty$ if $k \to \infty$ and

$$\Psi_k(p) \ge \prod_{i=1}^{l(k)} \Upsilon(p) \to \infty \qquad \text{if } k \to \infty,$$

for all $p \neq 2$. Consequently, the group G satisfies the conditions of Theorem 3.1 for all 1 . This completes the proof of the theorem.

Corollary 3.3. If G is the complete product of S_3 with the system φ appearing in Section 2, then the operator S_n is not of type (p, p) for all $p \neq 2$.

References

- [1] G. BENKE, Trigonometric approximation theory in compact totally disconnected groups, *Pacific J. of Math.*, **77**(1) (1978), 23–32.
- [2] G. GÁT AND R. TOLEDO, L^p-norm convergence of series in compact totally disconected groups, Anal. Math., 22 (1996), 13–24.
- [3] E. HEWITT AND K. ROSS *Abstract Harmonic Analysis I*, Springer-Verlag, Heidelberg, 1963.
- [4] F. SCHIPP, On Walsh function with respect to weights, *Math. Balkanica*, **16** (2002), 169–173.
- [5] P. SIMON, On the divergence of Fourier series with respect to weighted Walsh systems, *East Journal on Approximations*, **9**(1) (2003), 21–30.
- [6] R. TOLEDO, On Hardy-norm of operators with property Δ, Acta Math. Hungar., **80**(3) (1998), 157–168.
- [7] R. TOLEDO, Representation of product systems on the interval [0, 1], *Acta Acad. Paed. Nyíregyháza*, **19**(1) (2003), 43–50.

Negative Results Concerning Fourier Series					
R. Toledo					
vol. 9, iss. 4, art. 99, 2008					
	Title Page				
	Contents				
44		••			
	•				
	Page 16 of 16				
	Go Back				
	Full Screen				
	Close				
journal of inequalities in pure and applied					

in pure and applied mathematics