NEGATIVE RESULTS CONCERNING FOURIER SERIES ON THE COMPLETE PRODUCT OF \mathcal{S}_{3}

```
R. TOLEDO
Institute of Mathematics and Computer Science
College of Nyíregyháza
P.O. Box 166, Nyíregyháza,
H-4400 Hungary
EMail: toledo@ nyf.hu
```

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:
Abstract:

26 November, 2007
13 October, 2008
S.S. Dragomir

42C10.
Fourier series, Walsh-system, Vilenkin systems, Representative product systems.
The aim of this paper is to continue the studies about convergence in L^{p}-norm of the Fourier series based on representative product systems on the complete product of finite groups. We restrict our attention to bounded groups with unbounded sequence Ψ. The most simple example of this groups is the complete product of \mathcal{S}_{3}. In this case we proved the existence of an $1<p<2$ number for which exists an $f \in L^{p}$ such that its n-th partial sum of Fourier series S_{n} do not converge to the function f in L^{p}-norm. In this paper we extend this "negative" result for all $1<p<\infty$ and $p \neq 2$ numbers.

Negative Results Concerning Fourier Series
R. Toledo
vol. 9, iss. 4, art. 99, 2008

Title Page
Contents

44

4
Page 1 of 16
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-575b

Contents

1 Representative Product Systems 4
2 The Sequence of Functions $\Psi_{k}(p) \quad 7$
3 Negative Results 1313 Fourier Series
R. Toledo
vol. 9, iss. 4, art. 99, 2008

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 2 of 16	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Introduction

In Section 1 we introduce basic concepts in the study of representative product systems and Fourier analysis. We also introduce the system with which we work on the complete product of \mathcal{S}_{3}, i.e. the symmetric group on 3 elements (see [2]). Section 2 extends the definition of the sequence Ψ for all $p \geq 1$. Finally, we use the results of Section 2 to study the convergence in the L^{p}-norm $(p \geq 1)$ of the Fourier series on bounded groups with unbounded sequence Ψ, supposing all the same finite groups appearing in the product of G have the same system φ at all of their occurrences. These results appear in Section 3 and they complete the statement proved by G. Gát and the author of this paper in [2] for the complete product of \mathcal{S}_{3}. There have been similar results proved with respect to Walsh-like systems in [4] and [5].

Throughout this work denote by $\mathbb{N}, \mathbb{P}, \mathbb{C}$ the set of nonnegative, positive integers and complex numbers, respectively. The notation which we have used in this paper is similar to [3].

Negative Results Concerning Fourier Series
R. Toledo
vol. 9, iss. 4, art. 99, 2008

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 3 of 16	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics

1. Representative Product Systems

Let $m:=\left(m_{k}, k \in \mathbb{N}\right)$ be a sequence of positive integers such that $m_{k} \geq 2$ and G_{k} a finite group with order $m_{k},(k \in \mathbb{N})$. Suppose that each group has discrete topology and normalized Haar measure μ_{k}. Let G be the compact group formed by the complete direct product of G_{k} with the product of the topologies, operations and measures (μ). Thus each $x \in G$ consists of sequences $x:=\left(x_{0}, x_{1}, \ldots\right)$, where $x_{k} \in G_{k},(k \in \mathbb{N})$. We call this sequence the expansion of x. The compact totally disconnected group G is called a bounded group if the sequence m is bounded.

If $M_{0}:=1$ and $M_{k+1}:=m_{k} M_{k}, k \in \mathbb{N}$, then every $n \in \mathbb{N}$ can be uniquely expressed as $n=\sum_{k=0}^{\infty} n_{k} M_{k}, 0 \leq n_{k}<m_{k}, n_{k} \in \mathbb{N}$. This allows us to say that the sequence $\left(n_{0}, n_{1}, \ldots\right)$ is the expansion of n with respect to m.

Denote by Σ_{k} the dual object of the finite group $G_{k}(k \in \mathbb{N})$. Thus each $\sigma \in \Sigma_{k}$ is a set of continuous irreducible unitary representations of G_{k} which are equivalent to some fixed representation $U^{(\sigma)}$. Let d_{σ} be the dimension of its representation space and let $\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{d_{\sigma}}\right\}$ be a fixed but arbitrary orthonormal basis in the representation space. The functions

$$
u_{i, j}^{(\sigma)}(x):=\left\langle U_{x}^{(\sigma)} \zeta_{i}, \zeta_{j}\right\rangle \quad\left(i, j \in\left\{1, \ldots, d_{\sigma}\right\}, x \in G_{k}\right)
$$

are called the coordinate functions for $U^{(\sigma)}$ and the basis $\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{d_{\sigma}}\right\}$. In this manner for each $\sigma \in \Sigma_{k}$ we obtain d_{σ}^{2} number of coordinate functions, in total m_{k} number of functions for the whole dual object of G_{k}. The L^{2}-norm of these functions is $1 / \sqrt{d_{\sigma}}$.

Let $\left\{\varphi_{k}^{s}: 0 \leq s<m_{k}\right\}$ be the set of all normalized coordinate functions of the group G_{k} and suppose that $\varphi_{k}^{0} \equiv 1$. Thus for every $0 \leq s<m_{k}$ there exists a $\sigma \in \Sigma_{k}, i, j \in\left\{1, \ldots, d_{\sigma}\right\}$ such that

$$
\varphi_{k}^{s}(x)=\sqrt{d_{\sigma}} u_{i, j}^{(\sigma)}(x) \quad\left(x \in G_{k}\right) .
$$

Negative Results Concerning Fourier Series
R. Toledo
vol. 9, iss. 4, art. 99, 2008

Title Page

Contents

Page 4 of 16
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Let ψ be the product system of φ_{k}^{s}, namely

$$
\psi_{n}(x):=\prod_{k=0}^{\infty} \varphi_{k}^{n_{k}}\left(x_{k}\right) \quad(x \in G),
$$

where n is of the form $n=\sum_{k=0}^{\infty} n_{k} M_{k}$ and $x=\left(x_{0}, x_{1}, \ldots\right)$. Thus we say that ψ is the representative product system of φ. The Weyl-Peter's theorem (see [3]) ensures that the system ψ is orthonormal and complete on $L^{2}(G)$.

The functions $\psi_{n}(n \in \mathbb{N})$ are not necessarily uniformly bounded, so define

$$
\Psi_{k}:=\max _{n<M_{k}}\left\|\psi_{n}\right\|_{1}\left\|\psi_{n}\right\|_{\infty} \quad(k \in \mathbb{N})
$$

It seems that the boundedness of the sequence Ψ plays an important role in the norm convergence of Fourier series.

For an integrable complex function f defined in G we define the Fourier coefficients and partial sums by

$$
\widehat{f_{k}}:=\int_{G_{m}} f \bar{\psi}_{k} d \mu \quad(k \in \mathbb{N}), \quad S_{n} f:=\sum_{k=0}^{n-1} \widehat{f_{k}} \psi_{k} \quad(n \in \mathbb{P})
$$

According to the theorem of Banach-Steinhauss, $S_{n} f \rightarrow f$ as $n \rightarrow \infty$ in the L^{p} norm for $f \in L^{p}(G)$ if and only if there exists a $C_{p}>0$ such that

$$
\left\|S_{n} f\right\|_{p} \leq C_{p}\|f\|_{p} \quad\left(f \in L^{p}(G)\right)
$$

Thus, we say that the operator S_{n} is of type (p, p). Since the system ψ forms an orthonormal base in the Hilbert space $L^{2}(G)$, it is obvious that S_{n} is of type $(2,2)$.

The representative product systems are the generalization of the well known Walsh-Paley and Vilenkin systems. Indeed, we obtain the Walsh-Paley system if

Negative Results Concerning Fourier Series
R. Toledo
vol. 9, iss. 4, art. 99, 2008

Title Page
Contents

Page 5 of 16
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
$m_{k}=2$ and $G_{k}:=\mathcal{Z}_{2}$, the cyclic group of order 2 for all $k \in \mathbb{N}$. Moreover, we obtain the Vilenkin systems if the sequence m is an arbitrary sequence of integers greater than 1 and $G_{k}:=\mathcal{Z}_{m_{k}}$, the cyclic group of order m_{k} for all $k \in \mathbb{N}$.

Let $m_{k}=6$ for all $k \in \mathbb{N}$ and \mathcal{S}_{3} be the symmetric group on 3 elements. Let $G_{k}:=$ \mathcal{S}_{3} for all $k \in \mathbb{N} . \mathcal{S}_{3}$ has two characters and a 2-dimensional representation. Using a calculation of the matrices corresponding to the 2-dimensional representation we construct the functions φ_{k}^{s}. In the notation the index k is omitted because all of the groups G_{k} are the same.

	e	(12)	(13)	(23)	(123)	(132)	$\left\\|\varphi^{s}\right\\|_{1}$	$\left\\|\varphi^{s}\right\\|_{\infty}$
φ^{0}	1	1	1	1	1	1	1	1
φ^{1}	1	-1	-1	-1	1	1	1	1
φ^{2}	$\sqrt{2}$	$-\sqrt{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	$\frac{2 \sqrt{2}}{3}$	$\sqrt{2}$
φ^{3}	$\sqrt{2}$	$\sqrt{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	$\frac{2 \sqrt{2}}{3}$	$\sqrt{2}$
φ^{4}	0	0	$-\frac{\sqrt{6}}{2}$	$\frac{\sqrt{6}}{2}$	$\frac{\sqrt{6}}{2}$	$-\frac{\sqrt{6}}{2}$	$\frac{\sqrt{6}}{3}$	$\frac{\sqrt{6}}{2}$
φ^{5}	0	0	$-\frac{\sqrt{6}}{2}$	$\frac{\sqrt{6}}{2}$	$-\frac{\sqrt{6}}{2}$	$\frac{\sqrt{6}}{2}$	$\frac{\sqrt{6}}{3}$	$\frac{\sqrt{6}}{2}$

Notice that the functions φ_{k}^{s} can take the value 0 , and the product system of φ is not uniformly bounded. These facts encumber the study of these systems. On the other hand, $\max _{0 \leq s<6}\left\|\varphi^{s}\right\|_{1}\left\|\varphi^{s}\right\|_{\infty}=\frac{4}{3}$, thus $\Psi_{k}=\left(\frac{4}{3}\right)^{k} \rightarrow \infty$ if $k \rightarrow \infty$. More examples of representative product systems have appeared in [2] and [7].

Negative Results Concerning Fourier Series
R. Toledo
vol. 9, iss. 4, art. 99, 2008

Title Page
Contents

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. The Sequence of Functions $\Psi_{k}(p)$

We extend the definition of the sequence Ψ for all $p \geq 1$ as follows:

$$
\Psi_{k}(p):=\max _{n<M_{k}}\left\|\psi_{n}\right\|_{p}\left\|\psi_{n}\right\|_{q} \quad\left(p \geq 1, \frac{1}{p}+\frac{1}{q}=1, k \in \mathbb{N}\right)
$$

(if $p=1$ then $q=\infty$). Notice that $\Psi_{k}=\Psi_{k}(1)$ for all $k \in \mathbb{N}$. Clearly, the functions $\Psi_{k}(p)$ can be written in the form

$$
\begin{aligned}
\Psi_{k}(p) & =\prod_{i=0}^{k-1} \max _{s<m_{i}}\left\|\varphi_{i}^{s}\right\|_{p}\left\|\varphi_{i}^{s}\right\|_{q} \\
& =: \prod_{i=0}^{k-1} \Upsilon_{i}(p) \quad\left(p \geq 1, \frac{1}{p}+\frac{1}{q}=1, k \in \mathbb{N}\right) .
\end{aligned}
$$

Therefore, we study the product $\|f\|_{p}\|f\|_{q}$ for normalized functions on finite groups. In this regard we use the Hölder inequality (see [3, p. 137]). First, we prove the following lemma.

Lemma 2.1. Let G be a finite group with discrete topology and normalized Haar measure μ, and let f be a normalized complex valued function on $G\left(\|f\|_{2}=1\right)$. Thus,

1. if $\|f\|_{1}\|f\|_{\infty}=1$, then $\|f\|_{p}\|f\|_{q}=1$ for all $p \geq 1$ and $\frac{1}{p}+\frac{1}{q}=1$.
2. if $\|f\|_{1}\|f\|_{\infty}>1$, then $\|f\|_{p}\|f\|_{q}>1$ for all $p \geq 1, p \neq 2$ and $\frac{1}{p}+\frac{1}{q}=1$.

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 7 of 16	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof.

1. The conditions imply the equality

$$
\int_{G}|f| d \mu \cdot\|f\|_{\infty}=1=\int_{G}|f|^{2} d \mu .
$$

Let $f_{0}:=\frac{f}{\|f\|_{\infty}}$. Then

$$
\begin{equation*}
\left|f_{0}(x)\right| \leq 1 \quad(x \in G) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{G}\left|f_{0}\right| d \mu=\int_{G}\left|f_{0}\right|^{2} d \mu . \tag{2.2}
\end{equation*}
$$

Thus by (2.1) we obtain $\left|f_{0}(x)\right|-\left|f_{0}(x)\right|^{2} \geq 0(x \in G)$ and by (2.2) we have

$$
\int_{G}\left|f_{0}\right|-\left|f_{0}\right|^{2} d \mu=0
$$

Hence $\left|f_{0}(x)\right|=\left|f_{0}(x)\right|^{2}$ for all $x \in G$. Thus, we have $\left|f_{0}(x)\right|=1$ or $\left|f_{0}(x)\right|=$ 0 for all $x \in G$, therefore $|f(x)|=\|f\|_{\infty}$ or $|f(x)|=0$ for all $x \in G$. For this reason we obtain an equality in the Hölder inequality for all $1<p<\infty$, $\frac{1}{p}+\frac{1}{q}=1$ and the equality

$$
1=\int_{G}|f|^{2} d \mu=\|f\|_{p}\|f\|_{q}
$$

holds.

Negative Results Concerning Fourier Series
R. Toledo
vol. 9, iss. 4, art. 99, 2008
J
\qquad

Title Page
Contents

Page 8 of 16
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
2. Suppose there is a $1<p<2$ such that

$$
\|f\|_{p}\|f\|_{q}=1=\int_{G}|f|^{2} d \mu
$$

Then the equality in the Hölder inequality holds. For this reason there are nonnegative numbers A and B not both 0 such that

$$
A|f(x)|^{p}=B|f(x)|^{q} \quad(x \in G)
$$

Thus, there is a $c>0$ such that $|f|=c$ or $|f|=0$ for all $x \in G\left(c=\|f\|_{\infty}\right)$. Then $|f| \cdot\|f\|_{\infty}=|f|^{2}$. Integrating boths part of the last equation we have $\|f\|_{1}\|f\|_{\infty}=1$. We obtain a contradiction.

However, the following lemma states much more.
Lemma 2.2. Let G be a finite group with discrete topology and normalized Haar measure μ, and let f be a complex valued function on G. Thus, the function $\Psi(p):=$ $\|f\|_{p}\|f\|_{q}\left(\frac{1}{p}+\frac{1}{q}=1\right)$ is a monotone decreasing function on the interval $[1,2]$.

Proof. Let $f_{0}:=\frac{f}{\|f\|_{\infty}}$. Then $\Psi(p)=\|f\|_{\infty}^{2}\left\|f_{0}\right\|_{p}\left\|f_{0}\right\|_{q}$. Let m be the order of the group G. We take the elements of G in the order, $G=\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}$, to obtain the numbers

$$
a_{i}:=\left|f_{0}\left(g_{i}\right)\right| \leq 1 \quad(i=1, \ldots, m)
$$

with which we write

$$
\Psi(p)=\frac{\|f\|_{\infty}^{2}}{m}\left(\sum_{i=1}^{m} a_{i}^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{m} a_{i}^{q}\right)^{\frac{1}{q}}
$$

Negative Results Concerning
Fourier Series
R. Toledo
vol. 9, iss. 4, art. 99, 2008

Title Page

Contents

Page 9 of 16
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Since $q=\frac{p}{p-1}$, we have

$$
\frac{\partial q}{\partial p}=-\frac{1}{(p-1)^{2}}=-\frac{q^{2}}{p^{2}}
$$

Therefore,

$$
\begin{aligned}
\frac{\partial \Psi}{\partial p}=\Psi(p)\left[-\frac{1}{p^{2}}\right. & \left.\log \left(\sum_{i=1}^{m} a_{i}^{p}\right)+\frac{1}{p} \frac{\sum_{i=1}^{m} a_{i}^{p} \log a_{i}}{\sum_{i=1}^{m} a_{i}^{p}}\right] \\
& +\Psi(p)\left[-\frac{1}{q^{2}} \log \left(\sum_{i=1}^{m} a_{i}^{q}\right)+\frac{1}{q} \frac{\sum_{i=1}^{m} a_{i}^{q} \log a_{i}}{\sum_{i=1}^{m} a_{i}^{q}}\right]\left(-\frac{q^{2}}{p^{2}}\right) .
\end{aligned}
$$

The condition $1<p<2$ ensures that

$$
-\frac{1}{q} \cdot \frac{q^{2}}{p^{2}}=-\frac{1}{p(p-1)}<-\frac{1}{p}
$$

from which we have

$$
\begin{aligned}
\frac{1}{\Psi(p)} \frac{\partial \Psi}{\partial p} \leq \frac{1}{p^{2}}\left[\log \left(\sum_{i=1}^{m} a_{i}^{q}\right)-\log \right. & \left.\left(\sum_{i=1}^{m} a_{i}^{p}\right)\right] \\
& +\frac{1}{p}\left[\frac{\sum_{i=1}^{m} a_{i}^{p} \log a_{i}}{\sum_{i=1}^{m} a_{i}^{p}}-\frac{\sum_{i=1}^{m} a_{i}^{q} \log a_{i}}{\sum_{i=1}^{m} a_{i}^{q}}\right]
\end{aligned}
$$

Page 10 of 16

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Secondly,

$$
h(x):=\frac{\sum_{i=1}^{m} a_{i}^{x} \log a_{i}}{\sum_{i=1}^{m} a_{i}^{x}}
$$

is a monotone increasing function. Indeed,

$$
\begin{aligned}
h^{\prime}(x) & =\frac{\left(\sum_{i=1}^{m} a_{i}^{x} \log ^{2} a_{i}\right) \sum_{i=1}^{m} a_{i}^{x}-\left(\sum_{i=1}^{m} a_{i}^{x} \log a_{i}\right)^{2}}{\left(\sum_{i=1}^{m} a_{i}^{x}\right)^{2}} \\
& =\frac{\sum_{i, j=1}^{m} a_{i}^{x} a_{j}^{x}\left(\log a_{i}-\log a_{j}\right)^{2}}{\left(\sum_{i=1}^{m} a_{i}^{x}\right)^{2}} \geq 0 .
\end{aligned}
$$

Consequently, we have

$$
\begin{equation*}
\frac{\sum_{i=1}^{m} a_{i}^{p} \log a_{i}}{\sum_{i=1}^{m} a_{i}^{p}}-\frac{\sum_{i=1}^{m} a_{i}^{q} \log a_{i}}{\sum_{i=1}^{m} a_{i}^{q}} \leq 0 . \tag{2.4}
\end{equation*}
$$

By (2.3) and (2.4) we obtain $\frac{\partial \Psi}{\partial p} \leq 0$ for all $1<p<2$, which completes the proof of the lemma.

We can apply Lemma 2.1 and Lemma 2.2 to obtain similar properties for $\Upsilon_{k}(p)$ and $\Psi_{k}(p)$ because these functions are the maximum value and the product of finite functions satisfying the conditions of the two lemmas. Consequently, we obtain:
Theorem 2.3. Let G_{k} be a coordinate group of G such that $\left\|\varphi_{k}^{s}\right\|_{1}=1$ for all $s<m_{k}$. Then $\Upsilon_{k}(p) \equiv 1$. Otherwise, the function $\Upsilon_{k}(p)$ is a strictly monotone decreasing function on the interval [1,2].

The function $\Psi_{k}(p) \equiv 1$ if $\left\|\varphi_{i}^{s}\right\|_{1}=1$ for all $s<m_{i}$ and $i \leq k$. Otherwise, the function $\Psi_{k}(p)$ is a strictly monotone decreasing function on the interval [1,2].

Negative Results Concerning Fourier Series
R. Toledo
vol. 9, iss. 4, art. 99, 2008

Title Page
Contents

Page 11 of 16

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

It is important to remark that the functions $\Upsilon_{k}(p)$ and $\Psi_{k}(p)$ are monotone increasing if $p>2$. It follows from the property $\Upsilon_{k}(p)=\Upsilon_{k}\left(\frac{p}{p-1}\right)$. In order to illustrate these properties we plot the values of $\Upsilon(p)$ for the group \mathcal{S}_{3}.

Figure 1: Values of $\Upsilon(p)$ for the group \mathcal{S}_{3}

Negative Results Concerning Fourier Series
R. Toledo
vol. 9, iss. 4, art. 99, 2008

Title Page
Contents

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Negative Results

Theorem 3.1. Let p be a fixed number on the interval $(1,2)$ and $\frac{1}{p}+\frac{1}{q}=1$. If G is a group with unbounded sequence $\Psi_{k}(p)$, then the operator S_{n} is not of type (p, p) or (q, q).

Proof. To prove this theorem, choose $i_{k}<m_{k}$ the index for which the normalized coordinate function $\varphi_{k}^{i_{k}}$ of the finite group G_{k} satisfies

$$
\left\|\varphi_{k}^{i_{k}}\right\|_{p}\left\|\varphi_{k}^{i_{k}}\right\|_{q}=\max _{s<m_{k}}\left\|\varphi_{k}^{s}\right\|_{p}\left\|\varphi_{k}^{s}\right\|_{q} .
$$

Define

$$
f_{k}(x):=\varphi_{k}^{i_{k}}(x)\left|\varphi_{k}^{i_{k}}(x)\right|^{q-2} \quad\left(x \in G_{k}\right)
$$

Thus, $\left|f_{k}(x)\right|^{p}=\left|\varphi_{k}^{i_{k}}(x)\right|^{q}$ and $f_{k}(x) \bar{\varphi}_{k}^{i_{k}}(x)=\left|\varphi_{k}^{i_{k}}(x)\right|^{q} \in \mathbb{R}^{+}$if $\varphi_{k}^{i_{k}}(x) \neq 0$. Hence both equalities hold in Hölder's inequality. For this reason

$$
\begin{equation*}
\left|\int_{G_{k}} f_{k} \bar{\varphi}_{k}^{i_{k}} d \mu_{k}\right|\left\|\varphi_{k}^{i_{k}}\right\|_{p}=\left\|f_{k}\right\|_{p}\left\|\varphi_{k}^{i_{k}}\right\|_{q}\left\|\varphi_{k}^{i_{k}}\right\|_{p} \tag{3.1}
\end{equation*}
$$

If k is an arbitrary positive integer and $n:=\sum_{j=0}^{k-1} i_{j} M_{j}$, then define $F_{k} \in L^{p}(G)$ by

$$
F_{k}(x):=\prod_{j=0}^{k-1} f_{j}\left(x_{j}\right) \quad\left(x=\left(x_{0}, x_{1}, \ldots\right) \in G\right)
$$

Since $\left\|F_{k}\right\|_{p}=\prod_{j=0}^{k-1}\left\|f_{j}\right\|_{p}$, it follows from (3.1) that

$$
\begin{equation*}
\left\|S_{n+1} F_{k}-S_{n} F_{k}\right\|_{p}=\left|\int_{G} F_{k} \bar{\psi}_{n} d \mu\right|\left\|\psi_{n}\right\|_{p} \tag{3.2}
\end{equation*}
$$

Negative Results Concerning Fourier Series
R. Toledo
vol. 9, iss. 4, art. 99, 2008

Title Page
Contents

Page 13 of 16
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
=\prod_{j=0}^{k-1}\left|\int_{G} f_{j} \bar{\varphi}_{j}^{s} d \mu_{j}\right|\left\|\varphi_{j}^{s}\right\|_{p} \geq \Psi_{k}(p)\left\|F_{k}\right\|_{p}
$$

On the other hand, if S_{n} is of type (p, p), then there exists a $C_{p}>0$ such that

$$
\left\|S_{n+1} F_{k}-S_{n} F_{k}\right\|_{p} \leq\left\|S_{n+1} F_{k}\right\|_{p}+\left\|S_{n} F_{k}\right\|_{p} \leq 2 C_{p}\left\|F_{k}\right\|_{p}
$$

for each $k>0$, which contradicts (3.2) because the sequence $\Psi_{k}(p)$ is not bounded. For this reason, the operators S_{n} are not uniformly of type (p, p). By a duality argument (see [6]) the operators S_{n} cannot be uniformly of type (q, q). This completes the proof of the theorem.

By Theorem 3.1 we obtain:

Theorem 3.2. Let G be a bounded group and suppose that all the same finite groups appearing in the product of G have the same system φ at all of their occurrences. If the sequence Ψ is unbounded, then the operator S_{n} is not of type (p, p) for all $p \neq 2$.

Proof. If the sequence $\Psi_{k}=\Psi_{k}(1)$ is not bounded, there exists a finite group F with system $\left\{\varphi^{s}: 0 \leq s<|F|\right\}(|F|$ is the order of the group $F)$ which appears infinitely many times in the product of G and

$$
\Upsilon(1):=\max _{s<|F|}\left\|\varphi^{s}\right\|_{1}\left\|\varphi^{s}\right\|_{\infty}>1
$$

Hence by Theorem 2.3 we have

$$
\Upsilon(p):=\max _{s<|F|}\left\|\varphi^{s}\right\|_{p}\left\|\varphi^{s}\right\|_{q}>1
$$

for all $p \neq 2$. Denote by $l(k)$ the number of times the group F appears in the first k

Negative Results Concerning
Fourier Series
R. Toledo
vol. 9, iss. 4, art. 99, 2008

Title Page
Contents

Page 14 of 16
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
coordinates of G. Thus $l(k) \rightarrow \infty$ if $k \rightarrow \infty$ and

$$
\Psi_{k}(p) \geq \prod_{i=1}^{l(k)} \Upsilon(p) \rightarrow \infty \quad \text { if } k \rightarrow \infty
$$

for all $p \neq 2$. Consequently, the group G satisfies the conditions of Theorem 3.1 for all $1<p<2$. This completes the proof of the theorem.

Corollary 3.3. If G is the complete product of \mathcal{S}_{3} with the system φ appearing in Section 2, then the operator S_{n} is not of type (p, p) for all $p \neq 2$.

Negative Results Concerning Fourier Series
R. Toledo
vol. 9, iss. 4, art. 99, 2008

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 15 of 16	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] G. BENKE, Trigonometric approximation theory in compact totally disconnected groups, Pacific J. of Math., 77(1) (1978), 23-32.
[2] G. GÁT AND R. TOLEDO, L^{p}-norm convergence of series in compact totally disconected groups, Anal. Math., 22 (1996), 13-24.
[3] E. HEWITT AND K. ROSS Abstract Harmonic Analysis I, Springer-Verlag, Heidelberg, 1963.
[4] F. SCHIPP, On Walsh function with respect to weights, Math. Balkanica, 16 (2002), 169-173.
[5] P. SIMON, On the divergence of Fourier series with respect to weighted Walsh systems, East Journal on Approximations, 9(1) (2003), 21-30.
[6] R. TOLEDO, On Hardy-norm of operators with property Δ, Acta Math. Hungar., 80(3) (1998), 157-168.
[7] R. TOLEDO, Representation of product systems on the interval [0, 1], Acta Acad. Paed. Nyíregyháza, 19(1) (2003), 43-50.

Negative Results Concerning Fourier Series
R. Toledo
vol. 9, iss. 4, art. 99, 2008

Title Page
Contents

Page 16 of 16
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

