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ABSTRACT. Let A be the class of functiong(z) = z + >~ , a,2™ ..., analytic in the open
unit discE. A certain integral operator is used to define some subclasséanfl their inclusion
properties are studied.
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1. INTRODUCTION

Let .4 denote the class of functions
(1.1) f@) =2+ an2",
n=2

which are analytic in the open disk = {z : |z| < 1}. Let the functionsf; be defined for
i=1,2, by

(1.2) fi(z) =z + Z A i2".
n=2

The modified Hadamard product (convolution)fefand f; is defined here by

(fixfa)(z) =2+ Z Ap,10p 22"
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Let P.(3) be the class of functions(z) analytic in the unit dis&® satisfying the properties
h(0) =1and

(13) / N

wherez = re?, k> 2and0 < 3 < 1, seel[4]. For3 = 0, we obtain the clas#,, defined
by Pinchuk|[5%]. The cask = 2, 3 = 0 gives us the clas® of functions with positive real part,
andk = 2, P,(3) = P(p) is the class of functions with positive real part greater than

Also we can write folh € P,(53)

Re df < km,

’”M_—ﬁ'
1-3

114 (1—2B)ze
(L4) Mo =5 | o),
wherep(t) is a function with bounded variation 40, 27| such that
27 2m
(1.5) / du(t)=2 and / |du(t)] < k.
0 0
From (1.4) and[(1]5), we can write, fore P,(3),
ko1 Eo1
16) b = (5 +5) e = (5= 3) m, ko e PO

We have the following classes:
2f'(2)
Ri(a) = :feA and
= {77 -
We note thatR,(«) = S*(«) is the class of starlike functions of order

Vi(a) = {f feA ang ELG)

€ Py(a), z€E, O§a<1}.

f'(2)

Note thatlz(a) = C'(«) is the class of convex functions of order

To(B,0) = {f . feA g€ Ry(a) and Z;(S)

We note thafl;(0, 0) is the clasds of close-to-convex univalent functions.

T3 (8. 0) = {f J € Agela(a) and (Zg,((;))

In particular, the clas$; (5, «) = C*(5, o) was considered by Noarl[3] and f@§ (0,0) = C*

is the class of quasi-convex univalent functions which was first introduced and studied in [2].
It can be easily seen from the above definitions that

€ P(a), z€E, 0§a<1}.

€ P(6), z€E, 0§a,ﬁ<1}.

€ P(0), z€E, Oga,ﬂ<1}.

(1.7) f(z) € Vila) <= 2f'(2) € Ri(a)
and
(1.8) f(2) e T (B, ) <= zf'(2) € Tu(B, ).

We consider the following integral operattf : A — A, forA > —1; 1 > 0; f € A,

z p—1
i =ard o (1-4) s

z

)\+u+1 = I'(A+n)
1.9 — n
(1.9) e ZFA+u+n n®

n=2
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whereI’ denotes the Gamma function. From (1.9), we can obtain the well-known generalized
Bernadi operator as follows:

Lf(z) =111 / # f () dt

K

u+1
z+ apz", >—1; feA

We now define the following subclassesA)by using the integral operatdr, .
Definition 1.1. Let f € A. Thenf € R, (\, i, ) ifand only if LYf € Ry(«), forz e E.
Definition 1.2. Let f € A. Thenf € Vi (A, u, o) ifand only if LY f € Vi (), forz € E.
Definition 1.3. Let f € A. Thenf € Ty (\, u, 5, «) ifand only if LY f € T).(5, a), for z € E.

Definition 1.4. Let f € A. Thenf € Ty(\, i, 3, «) ifand only if LYf € TG, ), for
ze FE.

We shall need the following result.

Lemma 1.1([1]). Letu = u; + tuy andv = v; + vy and let® be a complex-valued function
satisfying the conditions:
(i) ®(u,v)is continuous in a domai® C C?,
(i) (1,0) € Dand®(1,0) > 0.
(i) Re ®(iug, v1) < 0, whenevefiuy,v1) € D andv; < —3(1 + u3).
If h(z) = 1+ > .°_,cnz™ is a function analytic inE such that(h(z), zh/(z)) € D and
Re®(h(z),zh'(z)) > 0for z € £, thenReh(z) > 0in E.

2. MAIN RESULTS

Theorem2.1.Letf € A\ > —1,u>0and\ + g > 0. ThenRy (A, 1,0) C Rp(\, p+ 1, ),
where

2
2.1 = ith 3 =2(\+ p).
@1 ) (B+1)++/B+26+9 with 5= 200+ )

Proof. Let f € Ry (), 11,0) and let

!/

CLAIR) (Z N %) pu(z) — (Z - %) pa(2),

Ly f(2)
wherep(0) = 1 andp(z) is analytic inE. From (1.9), it can easily be seen that
(22) 2 (157 1(2) = O+ p+ DIAF() = A+ ) I £ (2).

Some computation and use pf (2.2) yields
2 (LAf(2) { 2p/(2) }
= P E.
LAf(2) p(2)+p(2)+k+u € 2E
Let

B A+ u z N 1 z
S\ M tp+1) 12 Ap+1)(1—2)%
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Then
p(2) * @y u(2)

R G o w(z)

p(z) + A+ p
= (5+3) b onia - (5 3) o) » easa)

“(i02) o sgtim] - () ko gtis]

and this implies that
2p;(2)
i ——— | € P, €F.
(rer i) <P

We want to show that;(z) € P(«a), wherea is given by[(2.1) and this will show thate P, («)
forz € E. Let

pi(z) =1 —a)h(2)+a, i=1,2.

(1 — a)zhi(2)
{(1—a)hi(z)+a+ (1—a)hz~(z)—|—a+)\+p,} e P
We form the functionall (u, v) by choosing: = h;(z), v = zh!. Thus
(1—a)
1-—a)u+ (a+A+p)

The first two conditions of Lemma 1.1 are clearly satisfied. We verify the condition (iii) as
follows.

Then

U(u,v) = (1 —a)u+a+

(1 —a)(a+ A+ pu

Re U (iuy, vy) = o + Ny
P Wy N ey

(””2) . we obtain

By puttingv; <
Re ¥ (iug, vy)
1(1—a)(a+ X+ p)(1+uj)
S 2 (at A+ (1 - )l
20+ A+ p)? +2a(1 — a)%uy — (1 —a)(a+ X+ p) — (1 —a) (o + X+ p)u
2[(a+ A4 p)* + (1 = a)?u3]

A+ Buj
2C 7
where
A=2a(a+ A+ p)?—(1—a)(a+\+p),
B=2a(1-a)*>—(1—a)(a+\+p),
C=(a+A+p)?+(1—a)u>0.

We note thaRe ¥ (iuq,v;) < 0ifand only if, A < 0andB < 0. From A < 0, we obtaina as
given by [2.1) and3 < 0 gives us) < a < 1, and this completes the proof. O

Theorem 2.2.For A > —1,u > 0and(A+ p) >0, Vi(\, 1,0) C Vi(\, 4+ 1, ), wherea
is given by[(Z2.11).
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Proof. Let f € Vi(, 1, 0). ThenLZ f € Vi(0) = Vi and, by [(A.Fe(LY) € R,(0) = Ryi. This
mplies LN(zfYe R, = zf € Ri(\,1,0) C Re(A\,p+1,a).
Consequently € Vi (A, i+ 1, ), wherea is given by [2.1). O
Theorem 2.3.LetA > —1, u > 0and(\ + u) > 0. Then

Ti(\, 1, 8,0) C Th(A\, p+ 1,7, @),
wherea is given by[(2.]1) and < (3 is defined in the proof.

Proof. Let f € Ty(\, 1, 0). Then there exists g € Ry(\, i, 0) such that{ z(fg)/} € Pu(B),
forre B, 0 <3< 1. Let
2L f(2)

2T g2) =(1—=7pz) +v

— (§+3) =@ - (5 - 3) (@ =mta) 41

wherep(0) = 1, andp(z) is analytic inE.
Making use of[(2.R) and Theorgm P.1 with= 2, we have

(L) N s B (1 —7)zp/(2)
ey (P -s) —{a-we + s i D en
andqg € P, where

2 (L4 g(2))
LY g(z)
Using (1.6), we form the functiondl(u, v) by takingu = uy +ius = p;(2), v = v +ivy = 2P}

in (2.3) as
(I =9

It can be easily seen that the functidf, v) defined by[(2.}4) satisfies the conditions (i) and (ii)
of Lemmd 1.1L.. To verify the condition (jii), we proceed, witfx) = ¢; + igs, as follows:

‘ (1 —=7)u
Re [®(iuz, v1)] = (v = 0) +Re{(1 —a)(q1 +ig) +a+ A+u}

(1 =71 —=a)vigi + (1 = y)(a+ A+ p)v

(1—-a)g(z)+a= z € E.

DR (1= a)g +a+ A+ u” + (1 — )23
1191 —a)d+up)q + (1 —y)(a+ A+ )1 +uj)
S B (e e e Ea

<0, for ~v<pg<l1.

Therefore, applying Lemmia 1.b; € P, i = 1,2 and consequently € P, and thusf €
Tk(/\,,u—f—]_,’}/,Oé). U

Using the same technique and relation(1.8) with Thegrein 2.3, we have the following.

Theorem 2.4.For A > —1, > 0, A+ pu > 0, T (A, 1, 5,0) C Tr(A\, o+ 1,7, ), wherey
ando are as given in Theorem 2.3.

Remark 2.5. For different choices of, A\ andu, we obtain several interesting special cases of
the results proved in this paper.
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