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Abstract

Let A be the class of functions f(z) = z+ )7, a,2" ..., analytic in the open
unit disc E. A certain integral operator is used to define some subclasses of A
and their inclusion properties are studied.
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Let A4 denote the class of functions
(1.1) flz) =2+ Z a,z",
n=2

which are analytic in the open digk = {z : |z| < 1}. Let the functionsf; be
defined fori = 1, 2, by

(1.2) fiz) =24 ani2"

The modified Hadamard product (convolution)fefand f; is defined here by

(fixfa)(z) =2+ Z Uy 10p 22"

Let P(5) be the class of functions(z) analytic in the unit disd? satisfying
the properties(0) = 1 and

(1.3) /0 "

wherez = re®, k> 2and0 < 8 < 1, see Jl]. For 3 = 0, we obtain the
classP, defined by Pinchukt]. The caset = 2,5 = 0 gives us the clas®
of functions with positive real part, and = 2, P»(3) = P(p) is the class of
functions with positive real part greater than

Reh(lz)_—_ﬁﬁ’d@ < kn,
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Also we can write forh € Py ()

1 /27r 1+ (1—28)ze ™
0

(1.4) hz) = dp(t),

2 1 —ze

wherey(t) is a function with bounded variation 90, 27| such that

2 2
(1.5) /0 du(t) =2 and /O |[du(t)| < k.
From (L.4) and (L.5), we can write, forh € Py(5),
(L6)  h(z)= (§ T %) hi(2) - (§ - %) ha2), hu,ha € P(B).

We have the following classes:

Rk(a):{f:fe/l and Z}f(/i;)epk(a), 2 € B, O§a<1}.

We note thatR,(«) = S*(«) is the class of starlike functions of order

(2f'(2)'

Vk(a):{f:fE.A and ———*> € Py(a), z€FE, O§a<1}.

f'(z)
Note thatl;(a) = C(«) is the class of convex functions of order
Tk(ﬁ, Oé) = {f : f - .A,g < RQ(O{)

2f'(2)

and )

€ P(B), z€E, Oga,ﬁ<1}.
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We note thafl;(0, 0) is the clasgs of close-to-convex univalent functions.

Ty (6, a) = {f:feA,gEVQ(a) and

(/')

7(2) € b(B), zekE, 0§a,ﬁ<1}_

In particular, the clas$; (5, «) = C*(5, o) was considered by Noor]and for
T3(0,0) = C* is the class of quasi-convex univalent functions which was first

introduced and studied ir].
It can be easily seen from the above definitions that

(1.7) f(z) € Vila) <= zf'(z) € Ri(a)
and
(1.8) f(z) €T} (B,0) <= zf(2) € Ti(B, ).
We consider the following integral operatbf : A — A, for A > —1; u > 0;
feA,
IH _ oM I 1 £\ d
Ve =ars | et (1-2)
B TA+p+1) = TA+n "
(1.9) a2t L(A+1) ;FA+u+n n=
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wherel" denotes the Gamma function. Fromh9), we can obtain the well-
known generalized Bernadi operator as follows:

YAl

=z+ anz -,

Lz ="t / 7 f (1) dt

w>—1; fe A

n=2
We now define the following subclassesfy using the integral operator
LA,

Definition 1.1. Let f € A. Thenf € Ry(\, i, o) ifandonlyif LY f € Ry («),
forz e E.

Definition 1.2. Let f € A. Thenf € Vi (A, u, «) if and only if
forz € E.

LNf € Vi(a),

Definition 1.3. Let f € A. Thenf € Tp(\, i, 3,«) ifand only if LYf €
Tk(ﬁ,a), forz e E.
Definition 1.4. Let f € A. Thenf € Ty(\, p, 5, «) if and only if L{f €

Tr (B, ), forz € E.
We shall need the following result.

Lemma 1.1 ([1]). Letu = uy + iuy andv = vy + ivy and letd be a complex-
valued function satisfying the conditions:

(i) ®(u,v) is continuous in a domai® c C?,
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(i) (1,0) € Dand®(1,0) > 0.
(i) Re®(iug, v1) < 0, whenevefiuy,vi) € D andv; < —1(1 + uj).

If h(z) =1+ °_, cnz™is afunction analytic inE’ such that h(z), zh'(z)) €
D andRe ®(h(z),zh(z)) > 0for z € E, thenReh(z) > 0in E.
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Theorem 2.1.Letf € A, A > —1,u > 0andX + p > 0. ThenRy (A, 1, 0) C
Ri(\, p+ 1, ), where

2
2.1 = ith =2(A .
@1 ) B+1)+/FB+26+9 with 5= 20+ )
Proof. Let f € Ri(\, 1, 0) and let
(zL“Hf(z))/ E o1 E 1

wherep(0) = 1 andp(z) is analytic inE. From (L.9), it can easily be seen that

2.2) (LY F(2) = A+ DIEF(2) — A+ ) LT f(2).

Some computation and use @f?) yields

2 (LNf(2) { 2p(2)
— e = I p(2)
p(z

———— > € P, cF.
L f(2) )+A+u} b s

Let

B A+ u z . 1 z
S\ A tpt+l) 12 Ap+1) (1—2)%
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Then

p(2) % @y u(2)

= p(z >+ZT()\)+M
— (§+3) @ w5 - ) o) eale)
() o] - () o 5]

and this implies that

)
<pz( )+pi(

e P, e F.
z)+A+u) :

We want to show thap;(z) € P(«a), wherea is given by @.1) and this will
show thaty € P, («) for z € E. Let

pi(z) =1 —a)hi(z) +a, i=1,2.

Then

{(1 —a)hi(2) + a+ (1~ @)zhilz) }e P

(1—a)hi(z)+a+ X+ p

We form the functionail’ (v, v) by choosingu = h;(z), v = zh]. Thus
(1—a)v

1—a)u+(a+A+u)

U(u,v) = (1 —a)u+a+
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The first two conditions of Lemma.1 are clearly satisfied. We verify the con-

dition (iii) as follows.

(1 —a)(a+ A+ pu

Re U (iuy, v,) = y
eVl o) = o W+ (1= )

2
By puttingv; < —**2) we obtain

Re U (iug, vy)
L= a)(a+ A+ p)(1 + u)

2 (a+ A+ )2+ (1-a)u,

_ 20(a A+ p)* +20(1— 0)’uy — (1—a)(a+A+p) — (1—a)a+ A+ p)u3
- 2(a + A+ p)? + (1 — a)?uj]

A+ Buj
20

where

A=2a(a+ A+ p)> — (1 —a)(a+ X+ pu),
B =2a(1 —a)> = (1—a)(a+\+pu),
C=(a+A+p)?+(1—a)u >0.

We note thaRe W (iug,v;) < 0ifand only if, A <0andB < 0. FromA <0,

we obtainn as given by 2.1) andB < 0 gives u9) < « < 1, and this completes
the proof. O
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Theorem 2.2.For A > —1,u > 0and(A+ p) >0, Vi(A 1, 0) C Vi(A, u+
1, @), wherea is given by 2.1).

Proof. Let f € Vi(A\, 1,0). ThenLy f € V,(0) = Vj, and, by (.7) z(LY) €
Ry(0) = Ry. This implies

L';(Zf/) ER, = Zf/ S Rk()\,pb, 0) C Rk()\, w+1, a).
Consequently € Vi(A, u+ 1, «), wherea is given by @.1). O
Theorem 2.3.Let\A > —1, u > 0and(\ + u) > 0. Then

Tk:(Av 2 ﬁa 0) C Tk<)\a M+ 17 s Oé),
whereq is given by 2.1) and~ < ( is defined in the proof.

Proof. Let f € T, (A, i, 0). Then there existg € R (A, 11, 0) such that{z(f,—gg)/}
€ P.(0),forze £, 0 <3< 1. Let

AL (7))

g () = (1—=7)p(2) +v

- (5+3) ta-m@ - (- Da-me +)

wherep(0) = 1, andp(z) is analytic inE.
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Making use of 2.2) and Theoren2.1with £ = 2, we have

2(Ihf(2)
LRg(z) 6)

—{a-m+0-0+ g

(2.3) (

(1 —7)zp'(2)
—@ﬂ@+a+A+u}eﬂ’

andq € P, where

2 (L¥Tg(2))

ze k.
Ly g(2)

(I1—a)g(z)+a=
Using (L.6), we form the functiona®(u, v) by takingu = u;+ius = p;(2), v =
vy + fve = zp) in (2.3) as

1=y
(1—a)gz) +a+A+pu

(2.4) O(u,v) = (1 =7)u+(y—-F) +

It can be easily seen that the functi®fu, v) defined by 2.4) satisfies the con-
ditions (i) and (ii) of Lemmal.1 To verify the condition (iii), we proceed, with
q(2) = q1 + igq, as follows:

Re [®(iug, v1)]
(1 —=9y)u }

:(V_ﬁ)+Re{(1—a)(q1+iq2)+a+)\+u
(1= =a)vig + (1 =)@+ A+ p)v
[(1—a)g +a+ A+ + (1 —a)2g

=(v—-08)+
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(v—B) - 1(1=7)1 =) +ud)g + (1 =) (a+ A +p)(1 +uj)
! 2 (I—a)g+a+ A+ pu2+ (1— )@
0, for ~<p<l1.

IN

IN

Therefore, applying Lemmal, p; € P, i = 1,2 and consequently € P, and
thusf € Tp(\, n+ 1,7, ). ]

Using the same technique and relatiarg with Theorem2.3, we have the
following.

Theorem 2.4.For A > —1, u > 0, A+ p > 0, TF(\, i1, 5,0) C TF(A p +
1,7, a), wherey and« are as given in Theore 3.

Remark 1. For different choices of, A\ and i, we obtain several interesting
special cases of the results proved in this paper.
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