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Abstract

Let p, q > 0 satisfy 1
p + 1

q = 1. We prove that for any positive invertible operators
a and b in σ-finite type III factors acting on Hilbert spaces, there is a unitary u,
depending on a and b such that

u∗|ab|u ≤ 1
p
ap +

1
q
bq.

2000 Mathematics Subject Classification: Primary 47A63; Secondary 46L05.
Key words: Operator inequality, Young’s inequality, Spectral dominance, Type III fac-

tor.

I wish to thank Professor Douglas Farenick for useful discussions and helpful com-
ments regarding the results herein. This work is supported by the Isfahn University
of Technology, IRAN.

Contents
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Spectral Dominance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Young’s Inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
References

http://jipam.vu.edu.au/
mailto:manjgani@cc.iut.ac.ir
http://jipam.vu.edu.au/
http://www.ams.org/msc/


Spectral Dominance and
Young’s Inequality in Type III

Factors

S. Mahmoud Manjegani

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 3 of 19

J. Ineq. Pure and Appl. Math. 7(3) Art. 82, 2006

http://jipam.vu.edu.au

1. Introduction
Young’s inequality asserts that ifp andq are positive real numbers for which
p−1 + q−1 = 1, then|λµ| ≤ p−1|λ|p + q−1|µ|q, for all complex numbersλ and
µ, and the equality holds if and only if|µ|q = |λ|p.

R. Bhatia and F. Kittaneh [3] established a matrix version of the Young in-
equality for the special casep = q = 2. T. Ando [2] proved that for any pairA
andB of n × n complex matrices there is a unitary matrixU , depending onA
andB such that

(1.1) U∗|AB|U ≤ 1

p
|A|P +

1

q
|B|q.

Ando’s methods were adapted recently to the case of compact operators act-
ing on infinite-dimensional separable Hilbert spaces by Erlijman, Farenick, and
Zeng [4]. In this paper by using the concept ofspectral dominance in
type III factors, we prove a version of Young’s inequality for positive operators
in a type III factorN .

If H is ann-dimensional Hilbert space and ifa andb are positive operators
acting onH, thena is said to be spectrally dominated byb if

(1.2) αj ≤ βj, for every1 ≤ j ≤ n,

whereα1 ≥ · · · ≥ αn ≥ 0 and β1 ≥ · · · ≥ βn ≥ 0 are the eigenvalues
of a andb, respectively, in nonincreasing order and with repeats according to
geometric multiplicities. It is a simple consequence of the Spectral Theorem
and the Min-Max Variational Principle that inequalities (1.2) are equivalent to a
single operator inequality:

(1.3) a ≤ u∗bu , for some unitary operatoru : H → H ,
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whereh ≤ k, for Hermitian operatorsh andk, denotes〈hξ, ξ〉 ≤ 〈kξ, ξ〉 for all
ξ ∈ H. One would like to investigate inequalities (1.2) and (1.3) for operators
acting on infinite-dimensional Hilbert spaces. Of course, as many operators on
infinite-dimensional space fail to have eigenvalues, inequality (1.2) requires a
somewhat more general formulation. This can be achieved through the use of
spectral projections.

LetB(H) denote the algebra of all bounded linear operators acting on a com-
plex Hilbert spaceH, and suppose thatN ⊆ B(H) is a von Neumann algebra.
The cone of positive operators inN and the projection lattice inN are denoted
by N+ andP(N) respectively. The notatione ∼ f , for e, f ∈ P(N), shall in-
dicate the Murray–von Neumann equivalence ofe andf : e = v∗v andf = vv∗

for somev ∈ N . The notationf - e denotes that there is a projectione1 ∈ N
with e1 ≤ e andf ∼ e1; that is,f is subequivalent toe.

Recall that a nonzero projectione ∈ N is infinite if there exists a nonzero
projectionf ∈ N such thate ∼ f ≤ e andf 6= e. In a factor of type III, all
nonzero projections are infinite; in aσ-finite factor, all infinite projections are
equivalent. Thus, in aσ-finite type III factorN , any two nonzero projections
in N are equivalent. (Examples, constructions, and properties of factors [von
Neumann algebras with1-dimensional center] are described in detail in [5], as
are the assertions above concerning the equivalence of nonzero projections in
σ-finite type III factors.)

The spectral resolution of the identity of a Hermitian operatorh ∈ N is
denoted here byph. Thus, the spectral representation ofh is

h =

∫
R

s dph(s).
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In [1], Akemann, Anderson, and Pedersen studied operator inequalities in
various von Neumann algebras. In so doing they introduced the following no-
tion of spectral preorder called “spectral dominance." Ifh, k ∈ N are Hermi-
tian, then we say thatk spectrally dominates h, which is denoted by
the notation

h -sp k,

if, for every t ∈ R,

ph [t ,∞) - pk [t ,∞) and pk (−∞ , t] - ph (−∞ , t] .

h andk are said to be equivalent in the spectral dominance sense if,h -sp k
andk -sp h.

If N is a type In factor—say,N = B(H), whereH is n-dimensional—then,
for any positive operatorsa, b ∈ N ,

(1.4) a -sp b if and only if αj ≤ βj , for every 1 ≤ j ≤ n ,

whereα1 ≥ · · · ≥ αn ≥ 0 andβ1 ≥ · · · ≥ βn ≥ 0 are the eigenvalues (with
multiplicities) of a andb in nonincreasing order. The first main result of the
present paper is Theorem1.1 below, which shows that in type III factors the
conditiona -sp b is equivalent to an operator inequality in the form of (1.3),
thereby giving a direct analogue of (1.4).

Theorem 1.1. If N is aσ-finite type III factor and ifa, b ∈ N+, thena -sp b if
and only if there is a unitaryu ∈ N such thata ≤ u b u∗.

The second main result established herein is the following version of Young’s
inequality, which extends Ando’s result (Equation (1.1)) to positive operators in
type III factors.
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Theorem 1.2. If a andb are positive operators in type III factorN such thatb
is invertible, then there is a unitaryu, depending ona andb such that

u|ab|u∗ ≤ 1

p
ap +

1

q
bq,

for anyp, q ∈ (1,∞) that satisfy1
p

+ 1
q

= 1.
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2. Spectral Dominance
The pupose of this section is to record some basic properties of spectral dom-
inance in arbitrary von Neumann algebras and to then prove Theorem1.1 for
σ-finite type III factors. Some of the results in this section have been already
proved or outlined in [1]. However, the presentation here simplifies or provides
additional details to several of the original arguments.

Unless it is stated otherwise,N is assumed to be an arbitrary von Neumann
algebra acting on a Hilbert spaceH.

Lemma 2.1. If 0 6= h ∈ N is Hermitian,η ∈ H is a unit vector, andt ∈ R,
then:

1. ph [t , ∞) η = 0 implies that〈h η , η〉 < t;

2. ph (−∞ , t] η = 0 implies that〈h η , η〉 > t;

3. ph [t , ∞) η = η implies that〈h η , η〉 ≥ t;

4. ph (−∞ , t] η = η implies that〈h η , η〉 ≤ t.

Proof. This is a standard application of the spectral theorem.

Lemma 2.2. If h, k ∈ N are hermitian andh ≤ k, thenh -sp k.

Proof. Fix t ∈ R. We first prove thatpk(−∞, t] - ph(−∞, t]. Note that the
condition h ≤ k implies thatpk(−∞, t] ∧ ph(t,∞) = 0, for if ξ is a unit
vector inpk(−∞, t](H)∩ ph(t,∞)(H), then we would have that〈kξ, ξ〉 ≤ t <
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〈hξ, ξ〉, which contradictsh ≤ k. Kaplansky’s formula [5, Theorem 6.1.7] and
pk(−∞, t] ∧ ph(t,∞) = 0 combine to yield

pk(−∞, t] = pk(−∞, t] −
(
pk(−∞, t] ∧ ph(t,∞)

)
∼

(
pk(−∞, t] ∨ ph(t,∞)

)
− ph(t,∞)

≤ 1− ph(t,∞)

= ph(−∞, t] .

Usingph[t,∞) ∧ pk(−∞, t) = 0, one concludes thatph[t,∞) - pk[t,∞) by a
proof similar to the one above.

Theorem 2.3. Assume thata, b, u ∈ N , with a andb positive andu unitary. If
a ≤ ubu∗, thena -sp b.

Proof. By Lemma2.2, a ≤ ubu∗ implies thata - ubu∗. However, because
u ∈ N is unitary, we havepb(Ω) ∼ pubu∗(Ω), for every Borel setΩ. Hence,
a -sp b.

The converse of Theorem2.3 will be shown to hold in Theorem2.7 under
the assumption thatN is aσ-finite factor of type III. To arrive at the proof, we
follow [1] and define, for Hermitiansh andk, the following real numbers:

α+ = max {λ : λ ∈ σ (h)} , α− = min {λ : λ ∈ σ (h)} ,
β+ = max {ν : ν ∈ σ (k)} , β− = min {ν : ν ∈ σ (k)} .

Lemma 2.4. If h, k ∈ N are Hermitian andh -sp k, then

1. α+ ≤ β+ andph ({β+}) - pk ({β+}), and
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2. β− ≤ α− andpk ({α−}) - ph ({α−}).

Proof. To prove statement (1), we prove first thatα+ ≤ β+. Assume, contrary
to what we wish to prove, thatβ+ < α+. Becauseh -sp k,

ph [t , ∞) - pk [t , ∞) , ∀ t ∈ R .

In particular,ph [α+ , ∞) - pk [α+ , ∞). The assumptionβ+ < α+ implies
thatpk [α+ , ∞) = 0, and so, also,

ph [α+ , ∞) = 0 .

By a similar argument,ph [r , ∞) = 0, for eachr ∈ (β+ , α+). Hence,α+ is
an isolated point of the spectrum ofh and, therefore,α+ is an eigenvalue ofh.
Thus,

ph [α+ , ∞) 6= 0 ,

which is a contradiction. Therefore, it must be true thatα+ ≤ β+.
To prove thatph ({β+}) - pk ({β+}), we consider two cases. In the first

case, suppose thatα+ < β+. Then

ph ({β+}) = 0 ,

which leads, trivially, toph ({β+}) - pk ({β+}). In the second case, assume
thatα+ = β+. Then

ph ({β+}) = ph [α+ , ∞) - pk [α+ , ∞) = pk ({β+}) ,

which completes the proof of statement (1).
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The proof of statement (2) follows the arguments in the proof of (1), except
that we usepk (−∞ , t] - ph (−∞ , t] in place ofph [t ,∞) - pk [t ,∞). The
details are, therefore, omitted.

If N is aσ-finite type III factor, then Lemma2.4has the following converse.

Lemma 2.5. LetN be aσ-finite factor of type III. If Hermitian operatorsh, k ∈
N satisfy

1. α+ ≤ β+ andph ({β+}) - pk ({β+}), and

2. β− ≤ α− andpk ({α−}) - ph ({α−}),

thenh -sp k.

Proof. We need to show that, for eacht ∈ R,

ph [t ,∞) - pk [t ,∞) and pk (−∞ , t] - ph (−∞ , t] .

Fix t ∈ R. BecauseN is aσ-finite type III factor, the projectionsph [t ,∞) and
pk [t ,∞) will be equivalent if they are both zero or if they are both nonzero.
Thus, we shall show that ifpk[t0 ,∞) = 0, thenph[t0 ,∞) = 0. To this end,
if pk [t ,∞) = 0, thent ≥ β+ ≥ α+. If, on the one hand, it is the case that
t > α+, thenph [t ,∞) = 0 and we have the result. If, on the other hand,
t = α+, thent = α+ = β+ and

ph [t ,∞) = ph [α+ ,∞) = ph ({α+})
= ph ({β+}) - pk ({β+})
= pk [β+ ,∞) = pk [t ,∞) .

A similar argument proves thatpk (−∞ , t] - ph (−∞ , t].
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A Hermitian operatorh in a von Neumann algebraN is said to be adiagonal
operatorif

h =
∑

n

αn en and 1 =
∑

n

en,

where{αn} is a sequence of real numbers (not necessarily distinct) and{en} ⊂
P(N) is a sequence of mutually orthogonal nonzero projections inN .

The following interesting and useful theorem is due to Akemann, Anderson,
and Pedersen.

Theorem 2.6 ([1]). Let N be aσ-finite type III factor, and suppose that Her-
mitian operatorsh, k ∈ N are diagonal operators. Ifh -sp k, then there is a
unitaryu ∈ N such thath ≤ uku∗.

The proof of the characterisation of spectral dominance by an operator in-
equality (Theorem1.1) is completed by the following result. The method of
proof again borrows ideas from [1].

Theorem 2.7. If N is a σ-finite type III factor, anda, b ∈ N+ satisfya -sp b,
then there is a unitaryu ∈ N such thata ≤ u b u∗ .

Proof. It is enough to prove that there are diagonal operatorsh, k ∈ N such that
a ≤ h, k ≤ b, andh -sp k—because, by Theorem2.6, there is a unitaryu ∈ N
such thath ≤ uku∗, which yieldsa ≤ ubu∗.

BecauseN is σ-finite, the point spectraσp(a) andσp(b) of a andb are count-
able. Letσp(b) = {βn : n ∈ Λ}, whereΛ is a countable set. Letfn be a
projection with kernel(b− βn1) and

q =
∑
n∈Λ

fn .
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mailto:manjgani@cc.iut.ac.ir
http://jipam.vu.edu.au/


Spectral Dominance and
Young’s Inequality in Type III

Factors

S. Mahmoud Manjegani

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 12 of 19

J. Ineq. Pure and Appl. Math. 7(3) Art. 82, 2006

http://jipam.vu.edu.au

Then
qb = bq =

∑
n∈Λ

βnfn .

Let b1 = (1− q)b (= b(1− q)). Thus, we may write

b =
∑

n

βn fn + b1 .

By a similar argument fora, we may write

a =
∑

n

αn en + a1 ,

wherea1 andb1 have continuous spectrum.
For any Borel setΩ, we define

pb1(Ω) = (1− q)pb(Ω)(1− q) .

Thuspb1 is a spectral measure on the Borel sets ofσ(b1). For eachn ∈ Λ and
Borel setΩ we have

(2.1) fnp
b1(Ω) = pb1(Ω)fn = 0.

Let β+ andβ− denote the spectral endpoints ofb and choose infinite sequences
{β+

n } and{β−n } such thatβ+
n , β−n ∈ (β−, β+) and

β+
0 =

1

2
(β+ + β−) < β+

1 < β+
2 < · · · < β+

n → β+ ,
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β−0 =
1

2
(β+ + β−) > β−1 > β−2 > · · · > β−n → β− .

Letf+
n denote the spectral projection ofb1 associated with the interval[β+

n , β+
n+1),

n = 0, 1, 2, . . . , andf−n denote the spectral projection associated with[β−n+1, β
−
n ).

Write
k =

∑
n

βnfn +
∑

n

β+
n f+

n +
∑

n

β−n+1f
−
n ,

and observe thatk is a diagonal operator. Moreover, by the choice ofβ+
n and

β−n , ∑
n

β+
n f+

n +
∑

n

β−n+1f
−
n ≤ b1 .

The construction ofk yields

σp(b) ⊆ σp(k) = {βn : n ∈ Λ} ∪ {β+
m : m ∈ Λ1} ∪ {β+

m+1 : m ∈ Λ2}
⊆ convσ(b) ,

whereΛ, Λ1 andΛ2 are countable sets and convσ(b) denotes the convex hull of
the spectrum ofb. Thus,0 ≤ k ≤ b andk has the same spectral endpoints asb.
Furthermore,k has an eigenvalue at a spectral endpoint if and only ifb has an
eigenvalue at that same point.

Arguing similarly fora, let α+ andα− denote the spectral endpoints ofa,
and select sequences{α+

n } and{α−n } such thatα+
n , α−n ∈ (α−, α+) and

α+
0 =

1

2
(α+ + α−) < α+

1 < α+
2 < · · · < α+

n → α+

α−0 =
1

2
(α+ + α−) > α−1 > α−2 > · · · > α−n → α− .
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Denote the spectral projection ofa1 associated with[α+
n , α+

n+1) by e+
n and, sim-

ilarly, e−n for pa1 [α−n+1, α
−
n ). Let

h =
∑

n

αnen +
∑

n

α+
n+1e

+
n +

∑
n

α−n e−n .

Note that
a1 ≤

∑
n

α+
n+1e

+
n +

∑
n

α−n e−n .

Thus,a ≤ h andh has the same spectral endpoints asa; moreover,h has an
eigenvalue at an endpoint if and only ifa has an eigenvalue at that point.

By the hypothesis,a -sp b; thus, by Lemma2.4,

(2.2) β+ ≥ α+ and β− ≤ α− ,

and

(2.3) pa ({β+}) - pb ({β+}) and pb ({α−}) - pa ({α−}) .

Now, we use Lemma2.5 to prove thath -sp k. Because the spectral endpoints
of h areα− andα+, and the spectral endpoints ofk areβ− andβ+, we need
only to show that

ph ({β+}) - pk ({β+}) and pk ({α−}) - ph ({α−}) .

(We already know from (2.2) thatα+ ≤ β+ andα− ≥ β−.)
As we have pointed out in previous proofs, becauseN is a σ-finite type

III factor, to prove thatph({β+}) - pk ({β+}) it is enough to show that if
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pk({β+}) = 0, thenph({β+}) = 0. Thus, assume thatpk({β+}) = 0; then,
β+ is not an eigenvalue ofk and, therefore, it is not eigenvalue ofb. Thus,
pb({β+}) = 0. But pa({β+}) - pb({β+}), by (2.3), and sopa({β+}) = 0.
Hence,ph({β+}) = 0.

By a similar argument, we can provepk ({α−}) - ph ({α−}).

Corollary 2.8 (Theorem1.1). LetN be aσ-finite type III factor anda, b ∈ N+.
Thena -sp b if and only if there is a unitaryu ∈ N such thata ≤ u b u∗.

Proof. The sufficiency is Theorem2.3and the necessity is Theorem2.7.
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3. Young’s Inequality
In this section we use properties of spectral dominance to prove the second main
result. We begin with two lemmas that are needed in the proof of Theorem3.3.
A compressed form of Young’s inequality was established in [4], based on an
idea originating with Ando [2], and was used to prove Young’s inequality—
relative to the Löwner partial order ofB(H)—for compact operators. Although
the focus of [4] was upon compact operators, the following important lemma
from [4] in fact holds in arbitrary von Neumann algebras.

Lemma 3.1. Assume thatp ∈ (1, 2]. If N is any von Neumann algebra and
a, b ∈ N+, with b invertible, then for anys ∈ R+

0 ,

sfs ≤ fs

(
p−1ap + q−1bq

)
fs and fs ∼ p|ab|( [s,∞) ) ,

wherefs = R[b−1p|ab|( [s,∞) )].

Lemma 3.2. If a and b are positive operators in a von-Neumann algebraN ,
then|ab| and|ba| are equivalent in the spectral dominance sense.

Proof. It is well known that the spectral measures for|x| and|x∗| are equivalent
in the Murry-von Neumann sense, the equivalence being given by the phase part
of the polar decomposition ofx. (If x = w|x| is the polar decomposition ofx,
thenxx∗ = w|x|2w∗, so|x∗|2 = (w|x|w∗)2, and therefore|x∗| = (w|x|w∗).)

In particular, fora, b ≥ 0 the two absolute value parts|ab|, |ba| are equiva-
lent in the spectral dominance sense.
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Theorem 3.3. If a andb are positive invertible operators in type III factorN ,
then there is a unitaryu, depending ona andb such that

u|ab|u∗ ≤ 1

p
ap +

1

q
bq,

for anyp, q ∈ (1,∞) that satisfy1
p

+ 1
q

= 1.

Proof. By Theorem2.7, it is enough to prove that

(3.1) |ab| -sp p−1ap + q−1bq.

We assume, thatp ∈ (1, 2] and thatb ∈ N+ is invertible. The assumption on
p entails no loss of generality because if inequality (3.1) holds for1 < p ≤ 2,
then in cases, wherep > 2 the conjugateq satisfiesq < 2, and so by Lemma
3.2

(3.2) |ab| -sp |ba| -sp p−1ap + q−1bq .

To prove the inequality (3.1) we need to prove that for each real numbert,

p|ab|[t,∞) - pp−1ap+q−1bq

[t,∞)

and
pp−1ap+q−1bq

(−∞, t] - p|ab|(−∞, t].

SinceM is a type III factor, it is sufficient to prove that ifpp−1ap+q−1bq
[t,∞) =

0(p|ab|(−∞, t] = 0), thenp|ab|[t,∞) = 0(pp−1ap+q−1bq
(−∞, t] = 0).
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Suppose there is at0 ∈ R such thatpp−1ap+q−1bq
[t0,∞) = 0 andp|ab|[t0,∞) 6=

0. Then by the Compression Lemma,ft0 6= 0, so there is a unit vectorη ∈ H

such thatft0η = η andpp−1ap+q−1bq
[t0,∞)η = 0. Thus, by Lemma2.1and the

Compression Lemma we have that

t0 = 〈t0ft0η, η〉 ≤ 〈ft0(p
−1ap + q−1bq)ft0η, η〉 = 〈(p−1ap + q−1bq)η, η〉 < t0,

which is a contradiction.
Similarly, if p|ab|(−∞, t0] = 0 andpp−1ap+q−1bq

(−∞, t0] 6= 0 for somet0 ∈
R, thenp|ab|(t0,∞) = 1 andpp−1ap+q−1bq

(t0,∞) 6= 1.
Let η be a unit vector inH such thatpp−1ap+q−1bq

(t0,∞)η = 0 and
p|ab|(t0,∞)η = η. Again we have contradiction by Lemma2.1 and the Com-
pression Lemma (3.1). Thus,

|ab| -sp p−1ap + q−1bq.

By Theorem2.7, there is a unitaryu in M such that

u|ab|u∗ ≤ p−1ap + q−1bq.
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