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1. Introduction

This paper studies inequalities for positive real valued3-log-convex (and3-log-
concave) functions. As has become customary (see for instance [23] and [31]),
we refer to a functionf as3-log-convex on the interval(a, b) if f is positive and
3-times differentiable on(a, b) and [ln(f(t))]′′′ ≥ 0 for t ∈ (a, b) (f is referred to
as3-log-concave if instead[ln(f(t))]′′′ ≤ 0). In particular, suppose thatg is a posi-
tive differentiable function defined on the interval(a, b), and leth be the logarithmic
derivative ofg, i.e.

(1.1) h(x) =
g′(x)

g(x)

for x ∈ (a, b).
We will prove the following.

Theorem 1.1.Suppose that fora < x < b, g(x) > 0, h = g′/g is twice differentiable
andh′′(x) > 0. SetR(x) = g(a + b− x)/g(x). Then

(1.2) R(b−)e2h(a+b
2 )(b−x) ≤ R(x) ≤ R(a+)e2h(a+b

2 )(a−x)

and

(1.3) R(a+)e(h(a+)+h(b−))(a−x) ≤ R(x) ≤ R(b−)e(h(a+)+h(b−))(b−x).

for a < x < b, where it is assumed that all four of the one-sided limits,h(a+),
R(a+), h(b−) andR(b−) exist and are finite.

In addition, if insteadg(x) > 0 andh′′(x) < 0 for a < x < b then the inequalities
in (1.2) and (1.3) are reversed.

To see where one might apply Theorem1.1, consider the functiong defined via
g(x) = Γ(A + x), whereA > 0 andΓ is the well-known Euler’s gamma function.
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We haveg′(x)/g(x) = Ψ(A + x), whereΨ is the digamma function (cf. [2, 3]). It is
well-known (see for instance [9]) that Ψ is concave on(0,∞). Hence Theorem1.1
is applicable. In Section3, below, we will prove the following.

Theorem 1.2.Suppose that0 < s < 2 andv > 0, then

(1.4)
(
v +

s

2

)
e−Ψ(v+ s+1

2 )s ≤ Γ(v + 1)

Γ(v + s)
≤ 1

v + s
2

e2Ψ(v+ s+1
2 )(1− s

2)

and

1

v + s
2

e

(
2Ψ(v+ s

2)+ 1
v+ s

2

)
(1− s

2) ≤ Γ(v + 1)

Γ(v + s)
(1.5)

≤
(
v +

s

2

)
e
−

(
2Ψ(v+ s

2)+ 1
v+ s

2

)
s
2 .

Note that the inequalities in (1.4) and (1.5) hold in the range0 < s < 2 which is
somewhat uncustomary for results of this type for the ratioΓ(v+1)

Γ(v+s)
which tend to hold

for 0 < s < 1 (although reversed inequalities hold for1 < s < 2) (see [10, 13]).
Some comparisons are provided in Section3.

We remark that recently many functions have been shown to be logarithmically
completely monotone (see for instance [4, 7, 8, 19, 20, 24, 25, 27]). Such functions
have, in particular, convex (or concave) logarithmic derivatives and hence Theorem
1.1 is applicable in these cases.

The remainder of the paper proceeds as follows. In Section2, we provide a
simple proof of Theorem1.1. Section3 is devoted to applications including a proof
of Theorem1.2and an inequality for generalized means.
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2. Proof of Theorem1.1

In this short section we provide a proof of Theorem1.1.

Proof of Theorem1.1. First, supposeh′′(x) > 0 for x ∈ (a, b), and forW ∈ R,
definefW via

fW (x) = R(x)eWx.

Then, we have

log(fW (x)) = log(g(a + b− x))− log(g(x)) + Wx

and

(2.1)
d

dx
log(fW (x)) = W − (h(x) + h(a + b− x)) = W − V (x),

whereV (x) = h(x) + h(a + b− x).
Now, for x ∈

(
a, a+b

2

)
, x < a + b − x and hence sinceh′′(x) > 0, h′(x) <

h′(a + b− x) and thus

(2.2) V ′(x) = h′(x)− h′(a + b− x) < 0.

Similarly, for x ∈
(

a+b
2

, b
)
, x > a + b− x and hence

(2.3) V ′(x) = h′(x)− h′(a + b− x) > 0.

Combining (2.2) and (2.3) gives that forx ∈ (a, b),

V

(
a + b

2

)
≤ V (x) ≤ V (a+) = V (b−).

Employing (2.1) we then have thatfW is nondecreasing on(a, b) for W = V (a+)
and nonincreasing on(a, b) for W = V

(
a+b
2

)
. The inequalities in (1.2) and (1.3)

then follow. The caseh′′(x) < 0 follows similarly, and the result is proven.
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3. Applications

3.1. Inequalities of Gautschi-Kershaw type

Inequalities for the ratioΓ(v + 1)/Γ(v + s) have been studied extensively by many
authors; for results and useful references, see [1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 25,
27, 30, 32].

To see how Theorem1.2follows from Theorem1.1, set(a, b) = (0, 1) andg(x) =
Γ(A + x). Then, note thath(x) = Ψ(A + x), h(1/2) = Ψ

(
A + 1

2

)
,

h(0+) + h(1−) = Ψ(A) + Ψ(A + 1) = 2Ψ(A) +
1

A
,

R(1−) = lim
x→1−

Γ(A + 1− x)

Γ(A + x)
=

1

A
,

and

R(0+) = lim
x→0+

Γ(A + 1− x)

Γ(A + x)
= A.

Employing (1.2) and (1.3), sinceh′′(x) < 0, we have

(3.1) Ae−2Ψ(A+1/2)x ≤ Γ(A + 1− x)

Γ(A + x)
≤ 1

A
e2Ψ(A+1/2)(1−x)

and

(3.2)
1

A
e(2Ψ(A)+ 1

A
)(1−x) ≤ Γ(A + 1− x)

Γ(A + x)
≤ Ae−2(Ψ(A)+ 1

A)x

for 0 < x < 1. Theorem1.2 then follows upon substitutingA = v + s/2 and
x = s/2.
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From Kershaw [14], we have that for0 < s < 1,

(3.3) e(1−s)Ψ(v+
√

s) ≤ Γ(v + 1)

Γ(v + s)
≤ e(1−s)Ψ(v+ s+1

2 )

and

(3.4)
(
v +

s

2

)1−s

≤ Γ(v + 1)

Γ(v + s)
≤

(
v − 1

2
+

√
s +

1

4

)1−s

.

In [10, 13], it was proven that the inequalities in (3.3) and (3.4) are reversed for
1 < s < 2.

Computations suggest that the upper bound in (1.5) is an improvement on both
upper bounds in (3.3) and (3.4) for small s and that the lower bound in (1.5) is
an improvement on the lower bounds implied by (3.3) and (3.4) for s near2. Let
L1, U1, L2, U2 denote the lower and upper bounds in (3.3) and (3.4), respectively and
L∗

1, U
∗
1 , L∗

2, U
∗
2 denote the lower and upper bounds in (1.4) and (1.5), respectively.

Comparison data is given in Table1 for v = 1 ands ∈ {1/4, 7/4}. We have in
particular that for(v, s) = (1, 1/4)

L∗
2 < L1 < L∗

1 < L2 <
Γ(v + 1)

Γ(v + s)
< U∗

2 < U1 < U2 < U∗
1 ,

while for (v, s) = (1, 7/4)

L∗
1 < U2 < U1 < L∗

2 <
Γ(v + 1)

Γ(v + s)
< L2 < U∗

1 < L1 < U∗
2 .

In the first case, the best of the four upper bounds is given byU∗
2 (the right hand

side of (1.5)) while in the second case the best lower bound is given byL∗
2 (the left

hand side of (1.5)).
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Table 1: Numerical comparisons

(v, s) (1, 1/4) (1, 7/4)
Γ(v + 1)/Γ(v + s) 1.103262651 0.6217515729

L1 1.027745410 0.6317370766
L2 1.092356486 0.6240926184
U1 1.116801087 0.6188110780
U2 1.151620182 0.6144792307
L∗

1 1.084327768 0.6118384856
L∗

2 0.980328638 0.6204985722
U∗

1 1.150246913 0.6258631306
U∗

2 1.109373110 0.6498406288

Recently, there have been some improvements obtained on the inequalities in
(3.3). In particular, results in [21] and [29] (see also [22, 30, 32]) give that for
0 < s < 1,

(3.5) e(1−s)Ψ(L(v+1,v+s)) ≤ Γ(v + 1)

Γ(v + s)
≤ e(1−s)Ψ(I(v+1,v+s)),

whereL(a, b) = (b − a)/(ln b − ln a) andI(a, b) = e−1(bb/aa)1/(b−a) are the log-
arithmic and exponential means, respectively. Again consideringv = 1, it can
be noted that for smalls > 0, the lower bound in (1.4), L∗

1, is an improvement
on that in (3.5) and the upper bound in (1.5), U∗

2 , is an improvement on that in
(3.5). In fact, denoting the lower and upper bounds in (3.5) by L3 and U3, re-
spectively, we haveΓ(2)/Γ(1) = 1 and lims→0+ L∗

2 = 1 = lims→0+ U∗
1 , while

lims→0 L3 < 1 < lims→0+ U3. It is interesting to note that for(v, s) = (1, 1/4),
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Table 2: Numerical comparisons

(v, s) (1, 0.02) (0, 0.10)
Γ(v + 1)/Γ(v + s) 1.011281653 1.051137006

L1 0.6986450960 0.8729765884
L2 1.009799023 1.044889510
U1 1.045903237 1.076807140
U2 1.019219191 1.082081647
L∗

1 1.009075328 1.041402026
L∗

2 0.8690926716 0.9139917416
U∗

1 1.084075243 1.113415941
U∗

2 1.011330762 1.052276188
L3 0.9941107436 1.038103958
U3 1.020141278 1.057551215

computations similar to those above display thatU3 provides a modest improvement
onU∗

2 (U3 = 1.106505726), but for(v, s) = (1, s) with s near zero we have

Γ(2)

Γ(1 + s)
< U∗

2 < U2 < U3 < U1 < U∗
1 .

As noted in [21, 29], U3 is a refinement ofU1 andL3 is a refinement ofL1.
Values for(v, s) = (1, 0.02) and(v, s) = (1, 0.10) are given in Table2.
Many functions related to theΓ function have recently been shown to be logarith-

mically completely monotone. As mentioned earlier, strong bounds may be attained
in these cases as well, via Theorem1.1.
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4. Inequalities for Functions of the Form (vx − ux)/x

In [17, 34, 33], functions of the form

(4.1) f(x) = fu,v(x) =

∫ v

u

sx−1ds =
vx − ux

x

for v > u > 0 andx 6= 0 were studied. Among other results, it was shown in
[33] that f is completely monotonic on(−∞, +∞) for 0 < u < v < 1. As of
the time of submission, we are unaware of any proof thatf possesses a concave
logarithmic derivative, forv > u > 0 and0 < x < 1, hence we will prove that here
and apply Theorem1.1 in order to obtain some new inequalities for the ratios of the
form f(γ − x)/f(x). 1

In [33] It was shown that

f(x + γ)

f(x)
≥
(

u + v

2

)γ

for γ ≥ 1, x ≥ 0 and0 < u < v, and

f(x + γ)

f(x)
≥ (uv)γ/2.

Here we will prove the following via Theorem1.1.

Theorem 4.1.Suppose0 < u < v and0 < x < 1. Then

(4.2)
v − u

ln(v)− ln(u)
e
−2x

(√
v ln(v)−

√
u ln(u)

v−u
−2

)

≤ fu,v(1− x)

fu,v(x)
≤ ln(v)− ln(u)

v − u
e
2(1−x)

(√
v ln(v)−

√
u ln(u)

v−u
−2

)

1Following submission of the original manuscript for this paper, F. Qi and B.-N. Guo [28] announced some results which
extend our Lemma4.3, below.
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and

(4.3)
ln(v)− ln(u)

v − u
e(1−x)( (3v−u) ln(v)−(3u−v) ln(u)

2(v−u)
−1)

≤ fu,v(1− x)

fu,v(x)
≤ v − u

ln(v)− ln(u)
e−x( (3v−u) ln(v)−(3u−v) ln(u)

2(v−u)
−1).

Plots comparing the quantities in (4.2) and (4.3), for (u, v) = (0.5, 1) and(u, v) =
(1, 20) are given in Figure4.

We first prove the following two simple lemmas.

Lemma 4.2. Definep via

p(y) = (1− y)

(
1 + y

1− y
e−2y − 1

)
.

Thenp(y) > 0 for y > 0, p(y) < 0 for y < 0, andp(0) = 0.

Proof. We have

p′(y) = 1− (1 + 2y)e−2y, and p′′(y) = 4ye−2y.

The result follows upon noting thatp′(y) ≥ p′(0) = 0, and hence thatp(y) is mono-
tone non-decreasing fory ∈ R; the only root isy = 0.

Lemma 4.3. The functionfu,v defined as in (4.1) has a concave logarithmic deriva-
tive (with respect tox) for 0 < u < v and0 < x < 1.

Proof. First note that by dividing through byvx, it suffices to show the result for
v = 1 andu = t < 1. We then have

(4.4) h(x) =
f ′(x)

f(x)
= − tx ln t

1− tx
− 1

x
,
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Figure 1: Plots ofR(x) = fu,v(1 − x)/fu,v(x) along with the bounds given in Theorem4.1 for
x ∈ (0, 1) and(u, v) = (.5, 1) (Figure (a)) and(u, v) = (1, 20) (Figure (c)). The absolute errors are
plotted in (b) and (d), respectively.
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(4.5) h′(x) = − (ln t)2tx

(1− tx)2
+

1

x2
,

and

h′′(x) =
(ln t)3tx(1 + tx)

(1− tx)3
− 2

x3
.

Note that

∂h′′(x)

∂t
=

(ln t)2tx(3t2x − 3− xt2x ln t− x ln t− 4xtx ln t)

(1− tx)4

=
(ln t)2txq(x)

(1− tx)4
,(4.6)

where
q′(x) = (5t2x − 1− 4xtx ln t− 4tx − 2xt2x ln t) ln t,

and

q′′(x) = 4(ln t)2tx ((2− x ln t)tx − (2 + x ln t))

= 8(ln t)2tx
(

1− x| ln t|
2

)(
1 + x| ln t|

2

1− x| ln t|
2

tx − 1

)
.

Employing Lemma (4.2), with y = x| ln t|/2 gives thatq′(x) is increasing for0 <
x < 1 and henceq′(x) ≥ q′(0) = 0 and finallyq(x) ≥ q(0) = 0.

Returning to (4.6), h′′(x) is monotone increasing with respect tot in (0, 1).
The concavity ofh follows upon noting that for0 < x < 1, lim

t→1
h′′(x) = 0.

We are now in a position to prove Theorem4.1.
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Proof of Theorem4.1. Note that forg = fu,v and(a, b) = (0, 1), in the notation of
Theorem1.1, we have

R(1−) =
ln(v)− ln(u)

v − u
=

1

R(0+)
,

h(0+) =
ln(v) + ln(u)

2
,

h(1−) =
v ln(v)− u ln(u)

v − u
− 1

and

h

(
a + b

2

)
=

√
v ln(v)−

√
u ln(u)

v − u
− 2.

The result then follows immediately upon applying Lemma4.3 and Theorem1.1.

Remark1. The need for bounds of the sort in (4.2) and (4.3) arose recently in the
consideration of the behavior of convolution ratios under local approximation (see
[5]).
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