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KY FAN’S INEQUALITY VIA CONVEXITY
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ABSTRACT. In this note, using the strict convexity and concavity of the functionf(x) = 1
1+ex

on [0,∞) and(−∞, 0] respectively, we prove Ky Fan’s inequality by separating the left and right
hands of it by 1

Gn+G′
n

.
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Let x1, . . . , xn in (0, 1/2] andλ1, λ2, . . . , λn > 0 with
∑n

i=1 λi = 1. We denote byAn and
Gn, the arithmetic and geometric means ofx1, . . . , xn respectively, i.e.

(1) An =
n∑

i=1

λixi, Gn =
n∏

i=1

xλi
i ,

and also byA′
n andG′

n, the arithmetic and geometric means of1− x1, . . . , 1− xn respectively,
i.e.

(2) A′
n =

n∑
i=1

λi(1− xi), G′
n =

n∏
i=1

(1− xi)
λi .

In 1961 the following remarkable inequality, due to Ky Fan, was published for the first time in
the well-known bookInequalitiesby Beckenbach and Bellman [2, p. 5]:
If xi ∈ (0, 1/2], then

(3)
A′

n

G′
n

≤ An

Gn

,

with equality holding if and only ifx1 = · · · = xn.
Inequality (1) has evoked the interest of several mathematicians and in numerous articles new

proofs, extensions, refinements and various related results have been published; see the survey
paper [1]. Also, for some recent results, see [6] – [10].
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In this note, using the strict convexity and concavity of the functionf(x) = 1
1+ex on [0,∞)

and(−∞, 0] respectively, we prove Ky Fan’s inequality (3) by separating the left and right hand
sides of (3) by 1

Gn+G′
n
:

(4)
A′

n

G′
n

≤ 1

Gn + G′
n

≤ An

Gn

.

Moreover, we show equality holds in each inequality in (4), if and onlyx1 = · · · = xn.
It is noted that, since fora, b, c, d > 0 the inequalitya

b
≤ c

d
implies a

b
≤ a+c

b+d
≤ c

d
, considering

An + A′
n = 1, the inequalities (3) and (4) are equivalent.

Indeed, sincef ′′(x) = ex(ex−1)
(1+ex)3

, the functionf has the foregoing convexity properties. Now,
using Jensen’s inequality

f

(
n∑

i=1

λiyi

)
≤

n∑
i=1

λif(yi),

for yi = ln 1−xi

xi
≥ 0 (1 ≤ i ≤ n), we get the right hand of (4) with equality holding if and

only if ln 1−x1

x1
= · · · = ln 1−xn

xn
, or equivalentlyx1 = · · · = xn. The left hand of (4) is handled

by using Jensen’s inequality for the convex function−f on (−∞, 0] with yi = ln xi

1−xi
≤ 0

(1 ≤ i ≤ n).
It might be noted that it suffices to prove either of the two inequalities in (4) asa

b
≤ c

d
is

equivalent to botha
b
≤ a+c

b+d
and a+c

b+d
≤ c

d
.

It was pointed out by a referee that the use of the functionf , or rather its inverseg(x) =
ln
(
(1 − x)/x

)
, to prove Ky Fan’s inequality can be found in the literature; see [4], [3, pp. 31,

154], [5].
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