

Ky Fan's Inequality via Convexity

Jamal Rooin

vol. 9, iss. 1, art. 23, 2008

KY FAN'S INEQUALITY VIA CONVEXITY

JAMAL ROOIN

Department of Mathematics Institute for Advanced Studies in Basic Sciences Zanjan, Iran EMail: rooin@iasbs.ac.ir

Received:	20 October, 2007
Accepted:	11 December, 2007
Communicated by:	P.S. Bullen
2000 AMS Sub. Class.:	26D15.
Key words:	Convexity, Ky Fan's Inequality.
Abstract:	In this note, using the strict convexity and concavity of the function $f(x) = \frac{1}{1+e^x}$ on $[0, \infty)$ and $(-\infty, 0]$ respectively, we prove Ky Fan's inequality by separating the left and right hands of it by $\frac{1}{G_n+G'_n}$.

journal of inequalities in pure and applied mathematics

Let x_1, \ldots, x_n in (0, 1/2] and $\lambda_1, \lambda_2, \ldots, \lambda_n > 0$ with $\sum_{i=1}^n \lambda_i = 1$. We denote by A_n and G_n , the arithmetic and geometric means of x_1, \ldots, x_n respectively, i.e.

(1)
$$A_n = \sum_{i=1}^n \lambda_i x_i, \qquad G_n = \prod_{i=1}^n x_i^{\lambda_i},$$

and also by A'_n and G'_n , the arithmetic and geometric means of $1 - x_1, \ldots, 1 - x_n$ respectively, i.e.

(2)
$$A'_n = \sum_{i=1}^n \lambda_i (1-x_i), \qquad G'_n = \prod_{i=1}^n (1-x_i)^{\lambda_i}$$

In 1961 the following remarkable inequality, due to Ky Fan, was published for the first time in the well-known book *Inequalities* by Beckenbach and Bellman [2, p. 5]: *If* $x_i \in (0, 1/2]$, *then*

(3)
$$\frac{A'_n}{G'_n} \le \frac{A_n}{G_n},$$

with equality holding if and only if $x_1 = \cdots = x_n$.

Inequality (1) has evoked the interest of several mathematicians and in numerous articles new proofs, extensions, refinements and various related results have been published; see the survey paper [1]. Also, for some recent results, see [6] – [10].

In this note, using the strict convexity and concavity of the function $f(x) = \frac{1}{1+e^x}$ on $[0,\infty)$ and $(-\infty,0]$ respectively, we prove Ky Fan's inequality (3) by separating the left and right hand sides of (3) by $\frac{1}{G_n+G'_n}$:

(4)
$$\frac{A'_n}{G'_n} \le \frac{1}{G_n + G'_n} \le \frac{A_n}{G_n}.$$

journal of inequalities in pure and applied mathematics

Moreover, we show equality holds in each inequality in (4), if and only $x_1 = \cdots = x_n$.

It is noted that, since for a, b, c, d > 0 the inequality $\frac{a}{b} \leq \frac{c}{d}$ implies $\frac{a}{b} \leq \frac{a+c}{b+d} \leq \frac{c}{d}$, considering $A_n + A'_n = 1$, the inequalities (3) and (4) are equivalent.

Indeed, since $f''(x) = \frac{e^x(e^x-1)}{(1+e^x)^3}$, the function f has the foregoing convexity properties. Now, using Jensen's inequality

$$f\left(\sum_{i=1}^n \lambda_i y_i\right) \le \sum_{i=1}^n \lambda_i f(y_i)$$

for $y_i = \ln \frac{1-x_i}{x_i} \ge 0$ $(1 \le i \le n)$, we get the right hand of (4) with equality holding if and only if $\ln \frac{1-x_1}{x_1} = \cdots = \ln \frac{1-x_n}{x_n}$, or equivalently $x_1 = \cdots = x_n$. The left hand of (4) is handled by using Jensen's inequality for the convex function -f on $(-\infty, 0]$ with $y_i = \ln \frac{x_i}{1-x_i} \le 0$ $(1 \le i \le n)$.

It might be noted that it suffices to prove either of the two inequalities in (4) as $\frac{a}{b} \leq \frac{c}{d}$ is equivalent to both $\frac{a}{b} \leq \frac{a+c}{b+d}$ and $\frac{a+c}{b+d} \leq \frac{c}{d}$.

It was pointed out by a referee that the use of the function f, or rather its inverse $g(x) = \ln((1-x)/x)$, to prove Ky Fan's inequality can be found in the literature; see [4], [3, pp. 31, 154], [5].

journal of inequalities in pure and applied mathematics

References

- [1] H. ALZER, The inequality of Ky Fan and related results, *Acta Appl. Math.*, **38** (1995), 305–354.
- [2] E.F. BECKENBACH AND R. BELLMAN, *Inequalities*, Springer-Verlag, Berlin, 1961.
- [3] P. BILER AND A. WITKOWSKI, *Problems in Mathematical Analysis*, Marcel Dekker, Inc., 1990.
- [4] K.K. CHONG, On Ky Fan's inequality and some related inequalities between means, *Southeast Asian Bull. Math.*, **29** (1998), 363–372.
- [5] A.McD. MERCER, A short proof of Ky Fan's arithmetic- geometric inequality, *J. Math. Anal. Appl.*, **204** (1996), 940–942.
- [6] J. ROOIN, An approach to Ky Fan type inequalities from binomial expansion, (accepted).
- [7] J. ROOIN, Ky Fan's inequality with binomial expansion, *Elemente Der Mathematik*, **60** (2005), 171–173.
- [8] J. ROOIN, On Ky Fan's inequality and its additive analogues, *Math. Inequal.* & *Applics.*, **6** (2003), 595–604.
- [9] J. ROOIN, Some new proofs of Ky Fan's inequality, *International Journal of Applied Mathematics* **20** (2007), 285–291.
- [10] J. ROOIN AND A.R. MEDGHALCHI, New proofs for Ky Fan's inequality and two of its variants, *International Journal of Applied Mathematics*, **10** (2002), 51–57.

Ky Fan's Inequality via Convexity Jamal Rooin vol. 9, iss. 1, art. 23, 2008		
Title	Page	
Contents		
44	>>	
•		
Page 4 of 4		
Go Back		
Full Screen		
Close		

journal of inequalities in pure and applied mathematics