KY FAN'S INEQUALITY VIA CONVEXITY

JAMAL ROOIN

Department of Mathematics
Institute for Advanced Studies in Basic Sciences
Zanjan, Iran
EMail: rooin@iasbs.ac.ir

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:

Abstract:

20 October, 2007
11 December, 2007
P.S. Bullen

26D15.

Convexity, Ky Fan’s Inequality.
In this note, using the strict convexity and concavity of the function $f(x)=\frac{1}{1+e^{x}}$ on $[0, \infty)$ and $(-\infty, 0]$ respectively, we prove Ky Fan's inequality by separating the left and right hands of it by $\frac{1}{G_{n}+G_{n}^{\prime}}$.

Ky Fan's Inequality via Convexity
 Jamal Rooin

```
vol. 9, iss. 1, art. 23, }200
```

Title Page

Contents

44

Page 1 of 4
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Let x_{1}, \ldots, x_{n} in $(0,1 / 2]$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}>0$ with $\sum_{i=1}^{n} \lambda_{i}=1$. We denote by A_{n} and G_{n}, the arithmetic and geometric means of x_{1}, \ldots, x_{n} respectively, i.e.

$$
\begin{equation*}
A_{n}=\sum_{i=1}^{n} \lambda_{i} x_{i}, \quad G_{n}=\prod_{i=1}^{n} x_{i}^{\lambda_{i}} \tag{1}
\end{equation*}
$$

and also by A_{n}^{\prime} and G_{n}^{\prime}, the arithmetic and geometric means of $1-x_{1}, \ldots, 1-x_{n}$ respectively, i.e.

$$
\begin{equation*}
A_{n}^{\prime}=\sum_{i=1}^{n} \lambda_{i}\left(1-x_{i}\right), \quad \quad G_{n}^{\prime}=\prod_{i=1}^{n}\left(1-x_{i}\right)^{\lambda_{i}} \tag{2}
\end{equation*}
$$

In 1961 the following remarkable inequality, due to Ky Fan, was published for the first time in the well-known book Inequalities by Beckenbach and Bellman [2, p. 5]: If $x_{i} \in(0,1 / 2]$, then

$$
\begin{equation*}
\frac{A_{n}^{\prime}}{G_{n}^{\prime}} \leq \frac{A_{n}}{G_{n}} \tag{3}
\end{equation*}
$$

with equality holding if and only if $x_{1}=\cdots=x_{n}$.
Inequality (1) has evoked the interest of several mathematicians and in numerous articles new proofs, extensions, refinements and various related results have been published; see the survey paper [1]. Also, for some recent results, see [6] - [10].

In this note, using the strict convexity and concavity of the function $f(x)=\frac{1}{1+e^{x}}$ on $[0, \infty)$ and $(-\infty, 0]$ respectively, we prove Ky Fan's inequality (3) by separating the left and right hand sides of (3) by $\frac{1}{G_{n}+G_{n}^{\prime}}$:

$$
\begin{equation*}
\frac{A_{n}^{\prime}}{G_{n}^{\prime}} \leq \frac{1}{G_{n}+G_{n}^{\prime}} \leq \frac{A_{n}}{G_{n}} \tag{4}
\end{equation*}
$$

Ky Fan's Inequality via
Convexity
Jamal Rooin
vol. 9, iss. 1, art. 23, 2008

Title Page
Contents

Page 2 of 4
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

Moreover, we show equality holds in each inequality in (4), if and only $x_{1}=\cdots=$ x_{n}.

It is noted that, since for $a, b, c, d>0$ the inequality $\frac{a}{b} \leq \frac{c}{d}$ implies $\frac{a}{b} \leq \frac{a+c}{b+d} \leq \frac{c}{d}$, considering $A_{n}+A_{n}^{\prime}=1$, the inequalities (3) and (4) are equivalent.

Indeed, since $f^{\prime \prime}(x)=\frac{e^{x}\left(e^{x}-1\right)}{\left(1+e^{x}\right)^{3}}$, the function f has the foregoing convexity properties. Now, using Jensen's inequality

$$
f\left(\sum_{i=1}^{n} \lambda_{i} y_{i}\right) \leq \sum_{i=1}^{n} \lambda_{i} f\left(y_{i}\right)
$$

for $y_{i}=\ln \frac{1-x_{i}}{x_{i}} \geq 0(1 \leq i \leq n)$, we get the right hand of (4) with equality holding if and only if $\ln \frac{1-x_{1}}{x_{1}}=\cdots=\ln \frac{1-x_{n}}{x_{n}}$, or equivalently $x_{1}=\cdots=x_{n}$. The left hand of (4) is handled by using Jensen's inequality for the convex function $-f$ on $(-\infty, 0]$ with $y_{i}=\ln \frac{x_{i}}{1-x_{i}} \leq 0(1 \leq i \leq n)$.

It might be noted that it suffices to prove either of the two inequalities in (4) as $\frac{a}{b} \leq \frac{c}{d}$ is equivalent to both $\frac{a}{b} \leq \frac{a+c}{b+d}$ and $\frac{a+c}{b+d} \leq \frac{c}{d}$.

It was pointed out by a referee that the use of the function f, or rather its inverse $g(x)=\ln ((1-x) / x)$, to prove Ky Fan's inequality can be found in the literature; see [4], [3, pp. 31, 154], [5].
J

Ky Fan's Inequality via
Convexity
Jamal Rooin
vol. 9, iss. 1, art. 23, 2008

Title Page
Contents

Page 3 of 4
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] H. ALZER, The inequality of Ky Fan and related results, Acta Appl. Math., 38 (1995), 305-354.
[2] E.F. BECKENBACH AND R. BELLMAN, Inequalities, Springer-Verlag, Berlin, 1961.
[3] P. BILER AND A. WITKOWSKI, Problems in Mathematical Analysis, Marcel Dekker, Inc., 1990.
[4] K.K. CHONG, On Ky Fan's inequality and some related inequalities between means, Southeast Asian Bull. Math., 29 (1998), 363-372.
[5] A.McD. MERCER, A short proof of Ky Fan's arithmetic- geometric inequality, J. Math. Anal. Appl., 204 (1996), 940-942.
[6] J. ROOIN, An approach to Ky Fan type inequalities from binomial expansion, (accepted).
[7] J. ROOIN, Ky Fan's inequality with binomial expansion, Elemente Der Mathematik, 60 (2005), 171-173.
[8] J. ROOIN, On Ky Fan's inequality and its additive analogues, Math. Inequal. \& Applics., 6 (2003), 595-604.
[9] J. ROOIN, Some new proofs of Ky Fan's inequality, International Journal of Applied Mathematics 20 (2007), 285-291.
[10] J. ROOIN AND A.R. MEDGHALCHI, New proofs for Ky Fan's inequality and two of its variants, International Journal of Applied Mathematics, 10 (2002), 51-57.

Ky Fan's Inequality via

 ConvexityJamal Rooin
vol. 9, iss. $\mathbf{1}$, art. 23, 2008

Title Page
Contents

Page 4 of 4
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

