Journal of Inequalities in Pure and Applied Mathematics

CONVOLUTION OPERATORS WITH HOMOGENEOUS SINGULAR MEASURES ON \mathbb{R}^{3} OF POLYNOMIAL TYPE. THE REMAINDER CASE.

MARTA URCIUOLO
Famaf-Ciem, Universidad Nacional de Córdoba-Conicet. Medina Allende s/n Ciudad Universitaria 5000, Córdoba, Argentina. urciuolo@mate.uncor.edu

Received 22 December, 2005; accepted 23 September, 2006
Communicated by A. Fiorenza

Abstract

Let $\varphi\left(y_{1}, y_{2}\right)=y_{2}^{l} P\left(y_{1}, y_{2}\right)$ where P is a polynomial function of degree l such that $P(1,0) \neq 0$. Let μ_{δ} be the Borel measure on \mathbb{R}^{3} defined by $\mu_{\delta}(E)=\int_{V_{\delta}} \chi_{E}(x, \varphi(x)) d x$

 where$$
V_{\delta}=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\left|x_{1}\right| \leq 1, \text { and }\left|x_{1}\right| \leq \delta\left|x_{2}\right|\right\}
$$

and let $T_{\mu_{\delta}}$ be the convolution operator with the measure μ_{δ}. In this paper we explicitely describe the type set

$$
E_{\mu_{\delta}}:=\left\{\left(\frac{1}{p}, \frac{1}{q}\right) \in[0,1] \times[0,1]:\left\|T_{\mu_{\delta}}\right\|_{p, q}<\infty\right\}
$$

for δ small enough.

Key words and phrases: Convolution operators, Singular measures.
2000 Mathematics Subject Classification. 42B20, 26B10.

1. INTRODUCTION

Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a homogeneous polynomial function of degree $m \geq 2$ and let $D=$ $\left\{y \in \mathbb{R}^{2}:|y| \leq 1\right\}$. Let μ be the Borel measure on \mathbb{R}^{3} given by

$$
\begin{equation*}
\mu(E)=\int_{D} \chi_{E}(y, \varphi(y)) d y \tag{1.1}
\end{equation*}
$$

and let T_{μ} be the operator defined, for $f \in S\left(\mathbb{R}^{3}\right)$, by $T_{\mu} f=\mu * f$. Let E_{μ} be the set of the pairs $\left(\frac{1}{p}, \frac{1}{q}\right) \in[0,1] \times[0,1]$ such that there exists a positive constant c satisfying $\|T f\|_{q} \leq c\|f\|_{p}$ for all $f \in S\left(\mathbb{R}^{3}\right)$, where the L^{p} spaces are taken with respect to the Lebesgue measure on \mathbb{R}^{3}.

[^0]For $\left(\frac{1}{p}, \frac{1}{q}\right) \in E_{\mu}, T$ can be extended to a bounded operator, still denoted by T, from $L^{p}\left(\mathbb{R}^{3}\right)$ into $L^{q}\left(\mathbb{R}^{3}\right)$.

Let $\varphi=\varphi_{1}^{e_{1}} \ldots \varphi_{n}^{e_{n}}$ be a decomposition of φ in irreducible factors with $\varphi_{i} \nmid \varphi_{j}$ for $i \neq j$. In [3] we could give a complete description of the set E_{μ} under the assumption that $e_{i} \neq \frac{m}{2}$ for each φ_{i} of degree 1 . If $\operatorname{det} \varphi^{\prime \prime}(y)$ is not identically zero and if it vanishes somewhere on $\mathbb{R}^{2}-\{0\}$, the set of the points y where $\operatorname{det} \varphi^{\prime \prime}(y)$ vanishes is a finite union of lines L_{1}, \ldots, L_{k} through the origin. So, after a possibly linear change of variables, we localized the problem to the x axes and we studied the type set corresponding to measures μ_{δ} defined by

$$
\mu_{\delta}(E)=\int_{V_{\delta}} \chi_{E}(y, \varphi(y)) d y
$$

where $V_{\delta}=D \cap\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}:\left|y_{2}\right| \leq \delta\left|y_{1}\right|\right\}$ and δ is small enough such that $\operatorname{det} \varphi^{\prime \prime}(y)$ only vanishes, on V_{δ}, along the x axes. The only case left was the one corresponding to functions φ of the form $\varphi\left(y_{1}, y_{2}\right)=y_{2}^{l} P\left(y_{1}, y_{2}\right)$ with $l=\frac{m}{2}, P$ being a homogeneous polynomial function of degree l such that $P(1,0) \neq 0$.

In this paper we characterize $E_{\mu_{\delta}}$ in this remainder case.
L^{p} improving properties of convolution operators with singular measures supported on hypersurfaces in \mathbb{R}^{n} have been widely studied in [2], [5], [6]. In particular, in [5], the type set was studied under our actual hypothesis, but the endpoint problem was left open there. Our proof of the main result involves a biparametric family of dilations and will be based on a suitable adaptation of arguments due to M. Christ, developed in [1], where the author studied the type set associated to the two dimensional measure supported on the parabola.

Also, oscillatory integral estimates are involved. A very careful study of this kind of estimate can be found in [4] where the authors study the boundedness of maximal operators associated to mixed homogeneous hypersurfaces.

Throughout this paper c will denote a positive constant, not the same at each occurrence.

2. The Main Result

We assume $\varphi\left(y_{1}, y_{2}\right)=y_{2}^{l} P\left(y_{1}, y_{2}\right)$, where $l=\frac{m}{2}$ and P is a homogeneous polynomial function of degree l such that $P(1,0) \neq 0$. We take $\delta_{1}>0$ such that, for $y \in V_{\delta_{1}}$ such that $y_{2} \neq$ 0 , $\operatorname{det} \varphi^{\prime \prime}(y) \neq 0$. Moreover, since $P(1,0) \neq 0$ we can assume that $P(y) \neq 0$ and $P_{1}(y) \neq 0$ for all $y \in V_{\delta_{1}}$. Now, if $\max _{V_{\delta_{1}}}\left|P_{2}\left(y_{1}, y_{2}\right)\right| \neq 0$, we choose $\delta<\min \left(\frac{l \min _{V_{\delta_{1}}}\left|P\left(y_{1}, y_{2}\right)\right|}{2 \max _{V_{\delta_{1}}}\left|P_{2}\left(y_{1}, y_{2}\right)\right|}, \delta_{1}\right)$. In the other case we take $\delta=\delta_{1}$.

The main result we prove is the following.
Theorem 2.1. Let $\varphi\left(y_{1}, y_{2}\right)=y_{2}^{l} P\left(y_{1}, y_{2}\right)$ where $l=\frac{m}{2}$ and P is a homogeneous polynomial function of degree l such that $P(1,0) \neq 0$ and $y_{2} \nmid P\left(y_{1}, y_{2}\right)$. Let V_{δ} be defined as above and let $E_{V_{\delta}}$ be the corresponding type set. Then $E_{V_{\delta}}$ is the closed polygonal region with vertices $(0,0),(1,1),\left(\frac{2 l+1}{2 l+2}, \frac{2 l-1}{2 l+2}\right)$ and $\left(\frac{3}{2 l+2}, \frac{1}{2 l+2}\right)$.

Standard arguments (see, for example Lemma 2 and Lemma 3 in [3]) imply the following result.
Lemma 2.2. If $\left(\frac{1}{p}, \frac{1}{q}\right) \in E_{\mu_{\delta}}$ then $\frac{1}{q} \leq \frac{1}{p}, \frac{1}{q} \geq \frac{3}{p}-2$ and $\frac{1}{q} \geq \frac{1}{p}-\frac{1}{l+1}$.
So, since $\left\|T_{\mu_{\delta}}\right\|_{1,1}<\infty$, by duality arguments it only remains to prove that

$$
\begin{equation*}
\left\|T_{\mu_{\delta}}\right\|_{\frac{2 l+2}{2 l+1, \frac{2 l+2}{2 l-1}}}<\infty \tag{2.1}
\end{equation*}
$$

We set $Q_{0}=\left[\frac{1}{4}, 2\right] \times\left[\frac{\delta}{64}, \frac{\delta}{8}\right]$. We take a truncation function $\theta \in C^{\infty}\left(\mathbb{R}^{2}\right), \theta\left(y_{1}, y_{2}\right) \geq 0$, $\operatorname{supp} \theta \subset Q_{0}$ and $\theta\left(y_{1}, y_{2}\right)=1$ on $\left[\frac{1}{2}, 1\right] \times\left[\frac{\delta}{32}, \frac{\delta}{16}\right]$. We define, for $\varepsilon, \gamma>0$, the biparametric family of dilations on \mathbb{R}^{2} and \mathbb{R}^{3} given by $(\varepsilon, \gamma) \circ\left(y_{1}, y_{2}\right)=\left(\varepsilon y_{1}, \gamma y_{2}\right)$ and $(\varepsilon, \gamma) \circ\left(y_{1}, y_{2}, y_{3}\right)=$ $\left(\varepsilon y_{1}, \gamma y_{2}, \varepsilon^{l} \gamma^{l} y_{3}\right)$ repectively. Also, for $j, k \geq 0$, we set $Q_{j, k}=\left(2^{-j}, 2^{-k}\right) \circ Q_{0}$.
For $f \in S\left(\mathbb{R}^{3}\right)$, we define

$$
\begin{equation*}
T_{j, k} f\left(x_{1}, x_{2}, x_{3}\right)=\int f\left(x_{1}-y_{1}, x_{2}-y_{2}, x_{3}-\varphi\left(y_{1}, y_{2}\right)\right) \theta\left(2^{j} y_{1}, 2^{k} y_{2}\right) d y_{1} d y_{2} \tag{2.2}
\end{equation*}
$$

so for $f \geq 0$,

$$
\begin{equation*}
T_{\mu_{\frac{\delta}{\delta}}} f \leq c \sum_{0 \leq j \leq k} T_{j, k} f \tag{2.3}
\end{equation*}
$$

To study $\sum_{0 \leq j \leq k} T_{j, k} f$, we will adapt the argument developed by M. Christ (see [1]) to the setting of biparametric dilations. First of all, we prove the following
Proposition 2.3. There exists a positive constant $c>0$ such that for $0 \leq j \leq k$,

$$
\left\|T_{j, k}\right\|_{\frac{l l+2}{2 l+1}, \frac{2 l+2}{2 l-1}} \leq c
$$

Proof.

$$
\begin{aligned}
& T_{j, k} f\left(x_{1}, x_{2}, x_{3}\right) \\
& =\int f\left(x_{1}-y_{1}, x_{2}-y_{2}, x_{3}-\varphi\left(y_{1}, y_{2}\right)\right) \theta\left(2^{j} y_{1}, 2^{k} y_{2}\right) d y_{1} d y_{2} \\
& =2^{-(j+k)} \int f\left(x_{1}-2^{-j} y_{1}, x_{2}-2^{-k} y_{2}, x_{3}-\varphi\left(2^{-j} y_{1}, 2^{-k} y_{2}\right)\right) \theta\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \\
& =2^{-(j+k)} T^{(j-k)} f_{j, k}\left(2^{j} x_{1}, 2^{k} x_{2}, 2^{(j+k) l} x_{3}\right)
\end{aligned}
$$

where we denote

$$
T^{(j)} f\left(x_{1}, x_{2}, x_{3}\right)=\int f\left(x_{1}-y_{1}, x_{2}-y_{2}, x_{3}-y_{2}^{l} P\left(y_{1}, 2^{j} y_{2}\right)\right) \theta\left(y_{1}, y_{2}\right) d y_{1} d y_{2}
$$

and

$$
f_{j, k}\left(x_{1}, x_{2}, x_{3}\right)=f\left(\left(2^{-j}, 2^{-k}\right) \circ\left(x_{1}, x_{2}, x_{3}\right)\right) .
$$

So

$$
\begin{equation*}
\left\|T_{j, k} f\left(x_{1}, x_{2}, x_{3}\right)\right\|_{q}=2^{(j+k)\left(\frac{1+l}{p}-\frac{1+l}{q}-1\right)}\left\|T^{(j-k)}\right\|_{p, q}\|f\|_{p} \tag{2.4}
\end{equation*}
$$

Now,

$$
\operatorname{det}\left(y_{2}^{l} P\left(y_{1}, 2^{j-k} y_{2}\right)\right)^{\prime \prime}=2^{(2-2 l)(j-k)} \operatorname{det}(\varphi)^{\prime \prime}\left(y_{1}, 2^{j-k} y_{2}\right) .
$$

so as in the proof of Lemma 4 in [3] we obtain that there exists $c>0$ such that $\left\|T^{(j-k)}\right\|_{\frac{2 l+2}{2 l+1}, \frac{2 l+2}{} \frac{2 l-1}{} \leq} \leq$ c for $0 \leq j \leq k$, and the proposition follows.

We take $0 \leq j \leq k$, and denote by $\mu_{j, k}$ and $\mu^{(j)}$ the measures associated to $T_{j, k}$ and $T^{(j)}$ respectively. For $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$,

$$
\widehat{\mu^{(j-k)}}(\xi)=\int e^{-i\left(\xi_{1} y_{1}+\xi_{2} y_{2}+\xi_{3} y_{2}^{l} P\left(y_{1}, 2^{j-k} y_{2}\right)\right)} \theta\left(y_{1}, y_{2}\right) d y_{1} d y_{2}
$$

If for some ξ on the unit sphere, $\Omega_{\xi}^{(j-k)}\left(y_{1}, y_{2}\right)=\xi_{1} y_{1}+\xi_{2} y_{2}+\xi_{3} y_{2}^{l} P\left(y_{1}, 2^{j-k} y_{2}\right)$ has a critical point belonging to the $\operatorname{supp} \theta$, then

$$
\xi_{1}+\xi_{3} y_{2}^{l} P_{1}\left(y_{1}, 2^{j-k} y_{2}\right)=0
$$

and

$$
\xi_{2}+\xi_{3}\left(2^{j-k} y_{2}^{l} P_{2}\left(y_{1}, 2^{j-k} y_{2}\right)+l y_{2}^{l-1} P\left(y_{1}, 2^{j-k} y_{2}\right)\right)=0
$$

but then, since $P_{1}(y) \neq 0$ for $y \in V_{\delta_{1}}$, from the first equation we obtain that there exist constants $a, b \in \mathbb{Z}$ with $a<b$ such $2^{a}\left|\xi_{3}\right| \leq\left|\xi_{1}\right| \leq 2^{b}\left|\xi_{3}\right|$, and, from the second one and the choice of δ we obtain constants $c, d \in \mathbb{Z}^{2}$ with $c<d$ such that $2^{c}\left|\xi_{3}\right| \leq\left|\xi_{2}\right| \leq 2^{d}\left|\xi_{3}\right|$. So ξ belongs to the cone

$$
C_{0}=\left\{\xi \in \mathbb{R}^{3}: 2^{a}\left|\xi_{3}\right|<\left|\xi_{1}\right|<2^{b}\left|\xi_{3}\right|, 2^{c}\left|\xi_{3}\right|<\left|\xi_{2}\right|<2^{d}\left|\xi_{3}\right|\right\}
$$

Lemma 2.4. Suppose C_{0} is as above. Then the family of cones $\left\{\left(2^{j}, 2^{k}\right) \circ C_{0}\right\}_{j, k \in \mathbb{Z}}$ has finite overlapping (i.e., $\left.\#\left\{(j, k) \in \mathbb{Z}^{2}: C_{0} \cap\left(\left(2^{j}, 2^{k}\right) \circ C_{0}\right) \neq \emptyset\right\}<\infty\right)$.
Proof. We suppose $\xi \in C_{0}$ and $\left(2^{j}, 2^{k}\right) \circ \xi \in C_{0}$, then

$$
2^{a}\left|\xi_{3}\right|<\left|\xi_{1}\right|<2^{b}\left|\xi_{3}\right|, \quad 2^{c}\left|\xi_{3}\right|<\left|\xi_{2}\right|<2^{d}\left|\xi_{3}\right|
$$

and

$$
\begin{gathered}
2^{(j+k) l+a}\left|\xi_{3}\right|<2^{j}\left|\xi_{1}\right|<2^{(j+k) l+b}\left|\xi_{3}\right| \\
2^{(j+k) l+c}\left|\xi_{3}\right|<2^{k}\left|\xi_{2}\right|<2^{(j+k) l+d}\left|\xi_{3}\right|
\end{gathered}
$$

SO

$$
2^{j}\left|\xi_{1}\right|<2^{(j+k) l+b}\left|\xi_{3}\right|<2^{(j+k) l+b-a}\left|\xi_{1}\right|
$$

and

$$
2^{b}\left|\xi_{3}\right|>\left|\xi_{1}\right|>2^{-j} 2^{(j+k) l+a}\left|\xi_{3}\right|
$$

so

$$
a-b-k l<j(l-1)<b-a-k l
$$

analogously we obtain

$$
c-d-j l<k(l-1)<d-c-j l
$$

thus

$$
\frac{(c-d)(l-1)+(a-b) l}{l^{2}-(l-1)^{2}}<k<\frac{(d-c)(l-1)+(b-a) l}{l^{2}-(l-1)^{2}}
$$

and so

$$
\frac{a-b}{l-1}-l \frac{(d-c)(l-1)+(b-a) l}{\left(l^{2}-(l-1)^{2}\right)(l-1)}<j<\frac{(b-a)}{l-1}+l \frac{(d-c)(l-1)+(b-a) l}{\left(l^{2}-(l-1)^{2}\right)(l-1)}
$$

We define $m_{0}(\xi)=n\left(\xi_{1}, \xi_{3}\right) r\left(\xi_{2}, \xi_{3}\right)$ where n and r belong to $C^{\infty}\left(R^{2}-\{0\}\right)$, are homogeneous of degree zero with respect to the isotropic dilations,

$$
\operatorname{supp} n \subset\left\{\left(\xi_{1}, \xi_{3}\right): 2^{a-1}\left|\xi_{3}\right|<\left|\xi_{1}\right|<2^{b+1}\left|\xi_{3}\right|\right\}
$$

$n \geq 0$ and $n \equiv 1$ on $\left\{\left(\xi_{1}, \xi_{3}\right): 2^{a}\left|\xi_{3}\right|<\left|\xi_{1}\right|<2^{b}\left|\xi_{3}\right|\right\}$,

$$
\operatorname{supp} r \subset\left\{\left(\xi_{2}, \xi_{3}\right): 2^{c-1}\left|\xi_{3}\right|<\left|\xi_{2}\right|<2^{d+1}\left|\xi_{3}\right|\right\}
$$

$r \geq 0$ and $r \equiv 1$ on $\left\{\left(\xi_{2}, \xi_{3}\right): 2^{c}\left|\xi_{3}\right|<\left|\xi_{2}\right|<2^{d}\left|\xi_{3}\right|\right\}$, so m_{0} is homogeneous of degree zero with respect to the isotropic dilations, it belongs to C^{∞} on each octant of $\mathbb{R}^{3}, m_{0} \geq 0, m_{0} \equiv 1$ on C_{0} and

$$
\operatorname{supp} m_{0} \subset \widetilde{C_{0}}=\left\{\xi \in \mathbb{R}^{3}: 2^{a-1}\left|\xi_{3}\right|<\left|\xi_{1}\right|<2^{b+1}\left|\xi_{3}\right|, 2^{c-1}\left|\xi_{3}\right|<\left|\xi_{2}\right|<2^{d+1}\left|\xi_{3}\right|\right\}
$$

For $(j, k) \in \mathbb{Z}^{2}$, we define $m_{j, k}(\xi)=m_{0}\left(\left(2^{-j}, 2^{-k}\right) \circ \xi\right)$ and $\mathfrak{Q}_{j, k}$ the operator with multiplier $m_{j, k}$. If ξ belongs to an open octant of \mathbb{R}^{3} then ξ belongs to $\left(2^{j}, 2^{k}\right) \circ C_{0}$ for some $(j, k) \in \mathbb{Z}^{2}$ (indeed $2^{-k} \sim \frac{\left|\xi_{1}\right|}{\left|\xi_{3}\right|}$ and $2^{-j} \sim \frac{\left|\xi_{2}\right|}{\left|\xi_{3}\right|}$) and from the previous lemma, it belongs to a finite number of
them (independent of ξ). So $\sum_{(j, k) \in \mathbb{Z}^{2}} m_{j, k}(\xi) \leq c$. Now it is easy to check that, for $1<p<\infty$, there exists $A_{p}>0$ such that for $f \in L^{2} \cap L^{p}$ and any choice of $\varepsilon_{j, k}= \pm 1$,

$$
\begin{equation*}
\left\|\sum_{(j, k) \in \mathbb{Z}^{2}} \varepsilon_{j, k} \mathfrak{Q}_{j, k} f\right\|_{p} \leq A_{p}\|f\|_{p} \tag{2.5}
\end{equation*}
$$

Indeed, we now show that

$$
m(\xi)=\sum_{(j, k) \in \mathbb{Z}^{2}} \varepsilon_{j, k} m_{j, k}(\xi)
$$

satisfies the hypothesis of the Marcinkiewicz Theorem, as stated in Theorem 6' in [7].
We have just observed that

$$
|m(\xi)| \leq \sum_{(j, k) \in \mathbb{Z}^{2}} m_{j, k}(\xi) \leq c
$$

Now we want to estimate $\left|\frac{\partial}{\partial \xi_{1}} m(\xi)\right|$. We recall that $\frac{\partial}{\partial \xi_{1}} m_{0}$ is homogeneous of degree -1 . We pick ξ in an open octant. In a small neighborhood of ξ only finitely many $(j, k) \in \mathbb{Z}^{2}$ (independent of ξ) are involved. For each one of them,

$$
\begin{aligned}
\frac{\partial}{\partial \xi_{1}} m_{j, k}(\xi) & =2^{-j} \frac{\partial}{\partial \xi_{1}} m_{0}\left(2^{-j} \xi_{1}, 2^{-k} \xi_{2}, 2^{-(j+k) l} \xi_{3}\right) \\
& \leq c 2^{-j}\left|2^{-j} \xi_{1}, 2^{-k} \xi_{2}, 2^{-(j+k) l} \xi_{3}\right|^{-1} \leq c 2^{-j}\left|2^{-j} \xi_{1}\right|^{-1}
\end{aligned}
$$

so

$$
\sup _{\xi_{2}, \xi_{3}} \int_{2^{s}}^{2^{s+1}}\left|\frac{\partial}{\partial \xi_{1}} m(\xi)\right| d \xi_{1} \leq c
$$

and in a similar way (using the homogeneity of the derivatives of $m_{j, k}$) we obtain that for each $0<k \leq 3$,

$$
\sup _{\xi_{k+1}, \ldots, \xi_{3}} \int_{\rho}\left|\frac{\partial^{k}}{\partial \xi_{1} \ldots \partial \xi_{k}} m(\xi)\right| d \xi_{1} \leq c
$$

as ρ ranges over dyadic rectangles of \mathbb{R}^{k} and that this inequality holds for every one of the six pemutations of the variables $\xi_{1}, \xi_{2}, \xi_{3}$.

We now define $h(\xi) \in C^{\infty}\left(\mathbb{R}^{3}\right), h \geq 0, h \equiv 1$ on the unit ball of $\mathbb{R}^{3}, h_{j, k}(\xi)=h\left(\left(2^{-j}, 2^{-k}\right) \circ \xi\right)$ and $R_{j, k}$ the operators with multipliers $h_{j, k}$.
Lemma 2.5. There exists a constant $C>0$, independent of K, such that

$$
\left\|\sum_{0 \leq j \leq k \leq K} T_{j, k} R_{j, k}\right\|_{\frac{2 l+2}{2 l+1}, \frac{2 l+2}{2 l-1}} \leq C
$$

Proof. Let $K_{j, k}$ be the kernel of $T_{j, k} R_{j, k}$. A computation shows that,

$$
K_{j, k}(x)=2^{(j+k) l}\left(\mu^{(j-k)} * h^{\wedge \vee}\right)\left(\left(2^{j}, 2^{k}\right) \circ x\right)
$$

Thus

$$
\sum_{0 \leq j \leq k \leq K}\left|K_{j, k}(\xi)\right| \leq \sum_{0 \leq j \leq k} 2^{(j+k) l}\left|G^{(j, k)}\left(\left(2^{j}, 2^{k}\right) \circ \xi\right)\right|
$$

with $G^{(j, k)}$ defined by $\left(G^{(j, k)}\right)^{\wedge}=\left(\mu^{(j-k)}\right)^{\wedge} h$. Since $j-k \leq 0$, as in Lemma 7 in [3] we obtain that $\left(G^{(j, k)}\right)^{\wedge} \in S\left(\mathbb{R}^{3}\right)$ with each seminorm bounded on j, k, it follows that the same holds for $G^{(j, k)}$. Now

$$
\sum_{0 \leq j \leq k} 2^{(j+k) l}\left|G^{(j, k)}\left(\left(2^{j}, 2^{k}\right) \circ \xi\right)\right| \leq \sum_{j, k, h \geq 0} 2^{j a+k a+h a}\left|G^{(j, k, h)}\left(2^{j} \xi_{1}, 2^{k} \xi_{2}, 2^{h} \xi_{3}\right)\right|
$$

with $a=\frac{l}{l+1}, G^{(j, k, h)}=G^{(j, k)}$ for $h=l(j+k)$ and $G^{(j, k, h)}=0$ otherwise. It is well known that from the uniform boundedness properties of $G^{(j, k, h)}$ it follows that

$$
\sum_{j, k, h \geq 0} 2^{j a+k a+h a}\left|G^{(j, k, h)}\left(2^{j} \xi_{1}, 2^{k} \xi_{2}, 2^{h} \xi_{3}\right)\right| \leq \frac{c}{\left|\xi_{1}\right|^{a}\left|\xi_{2}\right|^{a}\left|\xi_{3}\right|^{a}}
$$

so

$$
\sum_{0 \leq j \leq k \leq K}\left|K_{j, k}(\xi)\right| \leq \frac{c}{\left|\xi_{1}\right|^{\frac{l}{l+1}}\left|\xi_{2}\right|^{\frac{l}{l+1}}\left|\xi_{3}\right|^{\frac{l}{l+1}}},
$$

so $\sum_{0 \leq j \leq k \leq K} T_{j, k} R_{j, k}$ convolves $L^{p}\left(\mathbb{R}^{3}\right)$ into $L^{q}\left(\mathbb{R}^{3}\right)$ for $\frac{1}{q}=\frac{1}{p}-\frac{1}{l+1}$ with bounds independent of K.

Lemma 2.6. There exists a constant $C>0$, independent of K, such that

$$
\left\|\sum_{1 \leq j \leq k \leq K} T_{j, k}\left(I-P_{j, k}\right)\left(I-\mathfrak{Q}_{j, k}\right)\right\|_{\frac{2 l+2}{2 l+1,2 l+2}}^{2 l-1} \leq C
$$

Proof. The kernel $H_{j, k}$ of

$$
\sum_{1 \leq j \leq k \leq K} T_{j, k}\left(I-P_{j, k}\right)\left(I-\mathfrak{Q}_{j, k}\right)
$$

satisfies

$$
\sum_{1 \leq j \leq k \leq K}\left|H_{j, k}(\xi)\right| \leq \sum_{0 \leq j \leq k} 2^{(j+k) l}\left|g^{(j, k)}\left(\left(2^{j}, 2^{k}\right) \circ \xi\right)\right|
$$

with $g^{(j, k)}$ defined by $\left(g^{(j, k)}\right)^{\wedge}=\left(\mu^{(j-k)}\right)^{\wedge}(1-h)\left(1-m_{0}\right)$.
Observe that, from Lemma 7 in [3], we have $\left(\mu^{(j-k)}\right)^{\wedge}(1-h)\left(1-m_{0}\right) \in S\left(\mathbb{R}^{3}\right)$ with each seminorm bounded on j, k. From this fact the proof follows as in the previous lemma.

Proof of the theorem. We have just observed that it is enough to prove (2.1). Since we can suppose $f \geq 0$, by (2.3), we need only check that there exists $C>0$, independent of K such that

$$
\left\|\sum_{0 \leq j \leq k \leq K} T_{j, k}\right\|_{\substack{\frac{2 l+2}{2 l+1}, \frac{2 l+2}{2 l-1}}} \leq C
$$

where $T_{j, k}$ are defined by $\sqrt{2.2}$. For a constant $c_{0}>0$, we define $\mathfrak{Q}_{j, k}^{\prime}=\sum_{|i-j| \leq c_{0}} \mathfrak{Q}_{i, k}$. So $\mathfrak{Q}_{j, k}^{\prime}$ have the same properties as $\mathfrak{Q}_{j, k}$ and $\mathfrak{Q}_{j, k}^{\prime} \circ \mathfrak{Q}_{j, k}=\mathfrak{Q}_{j, k}$ thus we have that $\left\langle 2.5\right.$) holds for $\mathfrak{Q}_{j, k}^{\prime}$. Then, for $1<p<\infty$ and

$$
F=\left\{f_{j, k}\right\}_{j, k \geq 0} \in L^{p}\left(l^{2}\right), \quad\left\|\sum_{j, k \geq 0} \mathfrak{Q}_{j, k}^{\prime} f_{j, k}\right\|_{p} \leq c_{p}\|F\|_{L^{p}\left(l^{2}\right)}
$$

We decompose

$$
\begin{aligned}
\sum_{0 \leq j \leq k \leq K} T_{j, k} f=\sum_{0 \leq j \leq k \leq K} T_{j, k}\left(I-P_{j, k}\right)\left(I-\mathfrak{Q}_{j, k}^{\prime}\right) f+ & \sum_{0 \leq j \leq k \leq K} T_{j, k} P_{j, k} f \\
& +\sum_{0 \leq j \leq k \leq K} T_{j, k} \mathfrak{Q}_{j, k}^{\prime}\left(I-P_{j, k}\right) f .
\end{aligned}
$$

Now, proceeding as in [1], the theorem follows from Proposition 2.3, Lemmas 2.5] and 2.6 and the remarks in [8, p. 85] concerning the multiparameter maximal function.

References

[1] M. CHRIST, Endpoint bounds for singular fractional integral operators, UCLA, preprint, (1988).
[2] E. FERREYRA, T. GODOY and M. URCIUOLO, Endpoint bounds for convolution operators with singular measures, Coll. Math., 76(1) (1998), 35-47.
[3] E. FERREYRA, T. GODOY and M. URCIUOLO, The type set for homogeneous singular measures on R^{3} of polynomial type, to appear in Coll. Math.
[4] I. IKROMOV, M. KEMPE AND D. MÜLLER, Damped oscillatory integrals and boundedness of maximal operators associated to mixed homogeneous hypersurfaces, Duke Math. J., 126(3) (2005), 471-490.
[5] A. IOSEVICH and E. SAWYER, Sharp $L^{p}-L^{q}$ estimates for a class of averaging operators, Annales de l'institut Fourier, 46(5) (1996), 1359-1384.
[6] F. RICCI and E.M. STEIN, Harmonic analysis on nilpotent groups and singular integrals. III. Fractional integration along manifolds, J. Funct. Anal., 86 (1989), 360-389.
[7] E.M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press (1970).
[8] E.M. STEIN, Harmonic Analysis. Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press (1993).

[^0]: ISSN (electronic): 1443-5756
 (c) 2006 Victoria University. All rights reserved.

 Partially supported by Conicet, Agencia Córdoba Ciencia, Agencia Nacional de Promoción Científica y Tecnológica y Secyt-UNC.
 The author is deeply indebted to Prof. F. Ricci for his useful suggestions.
 374-05

