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Abstract

Let ϕ (y1, y2) = yl
2P (y1, y2) where P is a polynomial function of degree l such

that P (1, 0) 6= 0. Let µδ be the Borel measure on R3 defined by µδ (E) =∫
Vδ

χE (x, ϕ (x)) dx where

Vδ =
{
x = (x1, x2) ∈ R2 : |x1| ≤ 1, and |x1| ≤ δ |x2|

}
and let Tµδ

be the convolution operator with the measure µδ. In this paper we
explicitely describe the type set

Eµδ
:=

{(
1
p
,
1
q

)
∈ [0, 1]× [0, 1] : ‖Tµδ

‖p,q < ∞
}

,

for δ small enough.
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1. Introduction
Let ϕ : R2 → R be a homogeneous polynomial function of degreem ≥ 2 and
let D = {y ∈ R2 : |y| ≤ 1} . Let µ be the Borel measure onR3 given by

(1.1) µ (E) =

∫
D

χE (y, ϕ (y)) dy

and letTµ be the operator defined, forf ∈ S (R3) , by Tµf = µ ∗ f. Let Eµ

be the set of the pairs
(

1
p
, 1

q

)
∈ [0, 1] × [0, 1] such that there exists a positive

constantc satisfying‖Tf‖q ≤ c ‖f‖p for all f ∈ S (R3) , where theLp spaces

are taken with respect to the Lebesgue measure onR3. For
(

1
p
, 1

q

)
∈ Eµ, T

can be extended to a bounded operator, still denoted byT, from Lp (R3) into
Lq (R3) .

Let ϕ = ϕe1
1 ...ϕen

n be a decomposition ofϕ in irreducible factors withϕi - ϕj

for i 6= j. In [3] we could give a complete description of the setEµ under the
assumption thatei 6= m

2
for eachϕi of degree1. If det ϕ′′ (y) is not identically

zero and if it vanishes somewhere onR2 − {0}, the set of the pointsy where
det ϕ′′ (y) vanishes is a finite union of linesL1, ..., Lk through the origin. So,
after a possibly linear change of variables, we localized the problem to thex
axes and we studied the type set corresponding to measuresµδ defined by

µδ (E) =

∫
Vδ

χE (y, ϕ (y)) dy,

whereVδ = D ∩ {(y1, y2) ∈ R2 : |y2| ≤ δ |y1|} andδ is small enough such that
det ϕ′′ (y) only vanishes, onVδ, along thex axes. The only case left was the one

http://jipam.vu.edu.au/
mailto:urciuolo@mate.uncor.edu
http://jipam.vu.edu.au/


Convolution Operators with
Homogeneous Singular

Measures on R3 of Polynomial
Type. The Remainder Case

Marta Urciuolo

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 4 of 15

J. Ineq. Pure and Appl. Math. 7(3) Art. 89, 2006

http://jipam.vu.edu.au

corresponding to functionsϕ of the formϕ (y1, y2) = yl
2P (y1, y2) with l = m

2
,

P being a homogeneous polynomial function of degreel such thatP (1, 0) 6= 0.
In this paper we characterizeEµδ

in this remainder case.
Lp improving properties of convolution operators with singular measures

supported on hypersurfaces inRn have been widely studied in [2], [5], [6]. In
particular, in [5], the type set was studied under our actual hypothesis, but the
endpoint problem was left open there. Our proof of the main result involves a
biparametric family of dilations and will be based on a suitable adaptation of
arguments due to M. Christ, developed in [1], where the author studied the type
set associated to the two dimensional measure supported on the parabola.

Also, oscillatory integral estimates are involved. A very careful study of this
kind of estimate can be found in [4] where the authors study the boundedness
of maximal operators associated to mixed homogeneous hypersurfaces.

Throughout this paperc will denote a positive constant, not the same at each
occurrence.
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2. The Main Result
We assumeϕ (y1, y2) = yl

2P (y1, y2) , wherel = m
2

andP is a homogeneous
polynomial function of degreel such thatP (1, 0) 6= 0. We takeδ1 > 0 such
that, fory ∈ Vδ1 such thaty2 6= 0, det ϕ′′ (y) 6= 0. Moreover, sinceP (1, 0) 6=
0 we can assume thatP (y) 6= 0 andP1 (y) 6= 0 for all y ∈ Vδ1. Now, if

maxVδ1
|P2 (y1, y2)| 6= 0, we chooseδ < min

(
l minVδ1

|P (y1,y2)|
2 maxVδ1

|P2(y1,y2)| , δ1

)
. In the

other case we takeδ = δ1.

The main result we prove is the following.

Theorem 2.1. Let ϕ (y1, y2) = yl
2P (y1, y2) wherel = m

2
andP is a homoge-

neous polynomial function of degreel such thatP (1, 0) 6= 0 andy2 - P (y1, y2) .
Let Vδ be defined as above and letEVδ

be the corresponding type set. Then
EVδ

is the closed polygonal region with vertices(0, 0) , (1, 1) ,
(

2l+1
2l+2

, 2l−1
2l+2

)
and(

3
2l+2

, 1
2l+2

)
.

Standard arguments (see, for example Lemma 2 and Lemma 3 in [3]) imply
the following result.

Lemma 2.2. If
(

1
p
, 1

q

)
∈ Eµδ

then 1
q
≤ 1

p
, 1

q
≥ 3

p
− 2 and 1

q
≥ 1

p
− 1

l+1
.

So, since‖Tµδ
‖

1,1
< ∞, by duality arguments it only remains to prove that

(2.1) ‖Tµδ
‖

2l+2
2l+1

, 2l+2
2l−1

< ∞.

We setQ0 =
[

1
4
, 2

]
×

[
δ
64

, δ
8

]
. We take a truncation functionθ ∈ C∞(R2),

θ (y1, y2) ≥ 0, supp θ ⊂ Q0 andθ (y1, y2) = 1 on
[

1
2
, 1

]
×

[
δ
32

, δ
16

]
. We define,
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for ε, γ > 0, the biparametric family of dilations onR2 andR3 given by(ε, γ) ◦
(y1, y2) = (εy1, γy2) and(ε, γ) ◦ (y1, y2, y3) =

(
εy1, γy2, ε

lγly3

)
repectively.

Also, for j, k ≥ 0, we setQj,k =
(
2−j, 2−k

)
◦Q0.

Forf ∈ S (R3) , we define

(2.2) Tj,kf (x1, x2, x3)

=

∫
f (x1 − y1, x2 − y2, x3 − ϕ (y1, y2)) θ

(
2jy1, 2

ky2

)
dy1dy2

so forf ≥ 0,

(2.3) Tµ δ
8

f ≤ c
∑

0≤j≤k

Tj,kf.

To study
∑

0≤j≤k

Tj,kf, we will adapt the argument developed by M. Christ (see

[1]) to the setting of biparametric dilations. First of all, we prove the following

Proposition 2.3.There exists a positive constantc > 0 such that for0 ≤ j ≤ k,

‖Tj,k‖ 2l+2
2l+1

, 2l+2
2l−1

≤ c.

Proof.

Tj,kf (x1, x2, x3)

=

∫
f (x1 − y1, x2 − y2, x3 − ϕ (y1, y2)) θ

(
2jy1, 2

ky2

)
dy1dy2

= 2−(j+k)

∫
f

(
x1 − 2−jy1, x2 − 2−ky2, x3 − ϕ

(
2−jy1, 2

−ky2

))
θ (y1, y2) dy1dy2

= 2−(j+k)T (j−k)fj,k

(
2jx1, 2

kx2, 2
(j+k)lx3

)
,
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where we denote

T (j)f (x1, x2, x3) =

∫
f

(
x1 − y1, x2 − y2, x3 − yl

2P
(
y1, 2

jy2

))
θ (y1, y2) dy1dy2

and
fj,k (x1, x2, x3) = f

((
2−j, 2−k

)
◦ (x1, x2, x3)

)
.

So

(2.4) ‖Tj,kf (x1, x2, x3)‖q = 2(j+k)( 1+l
p
− 1+l

q
−1) ∥∥T (j−k)

∥∥
p,q
‖f‖p .

Now,

det
(
yl

2P
(
y1, 2

j−ky2

))′′
= 2(2−2l)(j−k) det (ϕ)′′

(
y1, 2

j−ky2

)
.

so as in the proof of Lemma 4 in [3] we obtain that there existsc > 0 such that∥∥T (j−k)
∥∥

2l+2
2l+1

, 2l+2
2l−1

≤ c for 0 ≤ j ≤ k, and the proposition follows.

We take0 ≤ j ≤ k, and denote byµj,k andµ(j) the measures associated to
Tj,k andT (j) respectively. Forξ = (ξ1,ξ2, ξ3) ,

µ̂(j−k) (ξ) =

∫
e−i(ξ1y1+ξ2y2+ξ3yl

2P(y1,2j−ky2))θ (y1, y2) dy1dy2.

If for someξ on the unit sphere,Ω(j−k)
ξ (y1, y2) = ξ1y1+ξ2y2+ξ3y

l
2P

(
y1, 2

j−ky2

)
has a critical point belonging to thesupp θ, then

ξ1 + ξ3y
l
2P1

(
y1, 2

j−ky2

)
= 0

http://jipam.vu.edu.au/
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and
ξ2 + ξ3

(
2j−kyl

2P2

(
y1, 2

j−ky2

)
+ lyl−1

2 P
(
y1, 2

j−ky2

))
= 0,

but then, sinceP1 (y) 6= 0 for y ∈ Vδ1 , from the first equation we obtain that
there exist constantsa, b ∈ Z with a < b such2a |ξ3| ≤ |ξ1| ≤ 2b |ξ3| , and,
from the second one and the choice ofδ we obtain constantsc, d ∈ Z2 with
c < d such that2c |ξ3| ≤ |ξ2| ≤ 2d |ξ3|. Soξ belongs to the cone

C0 =
{
ξ ∈ R3 : 2a |ξ3| < |ξ1| < 2b |ξ3| , 2c |ξ3| < |ξ2| < 2d |ξ3|

}
.

Lemma 2.4.SupposeC0 is as above. Then the family of cones
{(

2j, 2k
)
◦ C0

}
j,k∈Z

has finite overlapping (i.e.,#
{
(j, k) ∈ Z2 : C0 ∩

((
2j, 2k

)
◦ C0

)
6= ∅

}
< ∞).

Proof. We supposeξ ∈ C0 and
(
2j, 2k

)
◦ ξ ∈ C0, then

2a |ξ3| < |ξ1| < 2b |ξ3| , 2c |ξ3| < |ξ2| < 2d |ξ3|

and
2(j+k)l+a |ξ3| < 2j |ξ1| < 2(j+k)l+b |ξ3| ,

2(j+k)l+c |ξ3| < 2k |ξ2| < 2(j+k)l+d |ξ3|

so
2j |ξ1| < 2(j+k)l+b |ξ3| < 2(j+k)l+b−a |ξ1|

and
2b |ξ3| > |ξ1| > 2−j2(j+k)l+a |ξ3| ,

so
a− b− kl < j (l − 1) < b− a− kl,

http://jipam.vu.edu.au/
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analogously we obtain

c− d− jl < k (l − 1) < d− c− jl,

thus

(c− d) (l − 1) + (a− b) l

l2 − (l − 1)2 < k <
(d− c) (l − 1) + (b− a) l

l2 − (l − 1)2

and so

a− b

l − 1
− l

(d− c) (l − 1) + (b− a) l(
l2 − (l − 1)2) (l − 1)

< j <
(b− a)

l − 1
+ l

(d− c) (l − 1) + (b− a) l(
l2 − (l − 1)2) (l − 1)

.

We definem0 (ξ) = n (ξ1, ξ3) r (ξ2, ξ3) wheren andr belong toC∞ (R2 − {0}) ,
are homogeneous of degree zero with respect to the isotropic dilations,

supp n ⊂
{
(ξ1, ξ3) : 2a−1 |ξ3| < |ξ1| < 2b+1 |ξ3|

}
n ≥ 0 andn ≡ 1 on

{
(ξ1, ξ3) : 2a |ξ3| < |ξ1| < 2b |ξ3|

}
,

supp r ⊂
{
(ξ2, ξ3) : 2c−1 |ξ3| < |ξ2| < 2d+1 |ξ3|

}
,
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r ≥ 0 andr ≡ 1 on
{
(ξ2, ξ3) : 2c |ξ3| < |ξ2| < 2d |ξ3|

}
, som0 is homogeneous

of degree zero with respect to the isotropic dilations, it belongs toC∞ on each
octant ofR3, m0 ≥ 0, m0 ≡ 1 onC0 and

supp m0 ⊂ C̃0

=
{
ξ ∈ R3 : 2a−1 |ξ3| < |ξ1| < 2b+1 |ξ3| , 2c−1 |ξ3| < |ξ2| < 2d+1 |ξ3|

}
.

For(j, k) ∈ Z2, we definemj,k (ξ) = m0

((
2−j, 2−k

)
◦ ξ

)
andQj,k the operator

with multiplier mj,k. If ξ belongs to an open octant ofR3 thenξ belongs to(
2j, 2k

)
◦ C0 for some(j, k) ∈ Z2 (indeed2−k ∼ |ξ1|

|ξ3| and2−j ∼ |ξ2|
|ξ3| ) and from

the previous lemma, it belongs to a finite number of them (independent ofξ).
So

∑
(j,k)∈Z2

mj,k (ξ) ≤ c. Now it is easy to check that, for1 < p < ∞, there

existsAp > 0 such that forf ∈ L2 ∩ Lp and any choice ofεj,k = ±1,

(2.5)

∥∥∥∥∥∥
∑

(j,k)∈Z2

εj,kQj,kf

∥∥∥∥∥∥
p

≤ Ap ‖f‖p .

Indeed, we now show that

m (ξ) =
∑

(j,k)∈Z2

εj,kmj,k (ξ)

satisfies the hypothesis of the Marcinkiewicz Theorem, as stated in Theorem 6’
in [7].
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We have just observed that

|m (ξ)| ≤
∑

(j,k)∈Z2

mj,k (ξ) ≤ c.

Now we want to estimate
∣∣∣ ∂
∂ξ1

m (ξ)
∣∣∣ . We recall that ∂

∂ξ1
m0 is homogeneous

of degree−1. We pickξ in an open octant. In a small neighborhood ofξ only
finitely many(j, k) ∈ Z2 (independent ofξ) are involved. For each one of them,

∂

∂ξ1

mj,k (ξ) = 2−j ∂

∂ξ1

m0

(
2−jξ1, 2

−kξ2, 2
−(j+k)lξ3

)
≤ c2−j

∣∣2−jξ1, 2
−kξ2, 2

−(j+k)lξ3

∣∣−1 ≤ c2−j
∣∣2−jξ1

∣∣−1
,

so

sup
ξ2,ξ3

∫ 2s+1

2s

∣∣∣∣ ∂

∂ξ1

m (ξ)

∣∣∣∣ dξ1 ≤ c,

and in a similar way (using the homogeneity of the derivatives ofmj,k) we
obtain that for each0 < k ≤ 3,

sup
ξk+1,...,ξ3

∫
ρ

∣∣∣∣ ∂k

∂ξ1...∂ξk

m (ξ)

∣∣∣∣ dξ1 ≤ c,

asρ ranges over dyadic rectangles ofRk and that this inequality holds for every
one of the six pemutations of the variablesξ1, ξ2, ξ3.

We now defineh (ξ) ∈ C∞ (R3) , h ≥ 0, h ≡ 1 on the unit ball ofR3,
hj,k (ξ) = h

((
2−j, 2−k

)
◦ ξ

)
andRj,k the operators with multipliershj,k.
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Lemma 2.5. There exists a constantC > 0, independent ofK, such that∥∥∥∥∥ ∑
0≤j≤k≤K

Tj,kRj,k

∥∥∥∥∥
2l+2
2l+1

, 2l+2
2l−1

≤ C.

Proof. Let Kj,k be the kernel ofTj,kRj,k. A computation shows that,

Kj,k (x) = 2(j+k)l
(
µ(j−k) ∗ hˆ∨

) ((
2j, 2k

)
◦ x

)
.

Thus ∑
0≤j≤k≤K

|Kj,k (ξ)| ≤
∑

0≤j≤k

2(j+k)l
∣∣G(j,k)

((
2j, 2k

)
◦ ξ

)∣∣
with G(j,k) defined by

(
G(j,k)

)∧
=

(
µ(j−k)

)∧
h. Sincej−k ≤ 0, as in Lemma 7

in [3] we obtain that
(
G(j,k)

)∧ ∈ S (R3) with each seminorm bounded onj, k,

it follows that the same holds forG(j,k). Now∑
0≤j≤k

2(j+k)l
∣∣G(j,k)

((
2j, 2k

)
◦ ξ

)∣∣
≤

∑
j,k,h≥0

2ja+ka+ha
∣∣G(j,k,h)

(
2jξ1, 2

kξ2, 2
hξ3

)∣∣
with a = l

l+1
, G(j,k,h) = G(j,k) for h = l (j + k) andG(j,k,h) = 0 otherwise. It is

well known that from the uniform boundedness properties ofG(j,k,h) it follows
that ∑

j,k,h≥0

2ja+ka+ha
∣∣G(j,k,h)

(
2jξ1, 2

kξ2, 2
hξ3

)∣∣ ≤ c

|ξ1|a |ξ2|a |ξ3|a
,
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so ∑
0≤j≤k≤K

|Kj,k (ξ)| ≤ c

|ξ1|
l

l+1 |ξ2|
l

l+1 |ξ3|
l

l+1

,

so
∑

0≤j≤k≤K

Tj,kRj,k convolvesLp (R3) intoLq (R3) for 1
q

= 1
p
− 1

l+1
with bounds

independent ofK.

Lemma 2.6. There exists a constantC > 0, independent ofK, such that∥∥∥∥∥ ∑
1≤j≤k≤K

Tj,k (I − Pj,k) (I −Qj,k)

∥∥∥∥∥
2l+2
2l+1

, 2l+2
2l−1

≤ C.

Proof. The kernelHj,k of∑
1≤j≤k≤K

Tj,k (I − Pj,k) (I −Qj,k)

satisfies ∑
1≤j≤k≤K

|Hj,k (ξ)| ≤
∑

0≤j≤k

2(j+k)l
∣∣g(j,k)

((
2j, 2k

)
◦ ξ

)∣∣
with g(j,k) defined by

(
g(j,k)

)∧
=

(
µ(j−k)

)∧
(1− h) (1−m0) .

Observe that, from Lemma 7 in [3], we have
(
µ(j−k)

)∧
(1− h) (1−m0) ∈

S(R3) with each seminorm bounded onj, k. From this fact the proof follows as
in the previous lemma.
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Proof of the theorem.We have just observed that it is enough to prove (2.1).
Since we can supposef ≥ 0, by (2.3), we need only check that there exists
C > 0, independent ofK such that∥∥∥∥∥ ∑

0≤j≤k≤K

Tj,k

∥∥∥∥∥
2l+2
2l+1

, 2l+2
2l−1

≤ C,

whereTj,k are defined by (2.2). For a constantc0 > 0, we defineQ′
j,k =∑

|i−j|≤c0

Qi,k. SoQ′
j,k have the same properties asQj,k andQ′

j,k ◦ Qj,k = Qj,k

thus we have that (2.5) holds forQ′
j,k. Then, for1 < p < ∞ and

F = {fj,k}j,k≥0 ∈ Lp
(
l2

)
,

∥∥∥∥∥∑
j,k≥0

Q′
j,kfj,k

∥∥∥∥∥
p

≤ cp ‖F‖Lp(l2) .

We decompose∑
0≤j≤k≤K

Tj,kf

=
∑

0≤j≤k≤K

Tj,k (I − Pj,k)
(
I −Q′

j,k

)
f +

∑
0≤j≤k≤K

Tj,kPj,kf

+
∑

0≤j≤k≤K

Tj,kQ
′
j,k (I − Pj,k) f.

Now, proceeding as in [1], the theorem follows from Proposition2.3, Lemmas
2.5and2.6and the remarks in [8, p. 85] concerning the multiparameter maxi-
mal function.
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