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Abstract

We study integer sequences associated with the cyclic graph Cr and the complete

graph Kr. Fourier techniques are used to characterize the sequences that count walks

of length n on both these families of graphs. In the case of the cyclic graph, we show

that these sequences are associated with an induced colouring of Pascal’s triangle. This

extends previous results concerning the Jacobsthal numbers.

1 Preliminaries

In [1] we studied the Jacobsthal numbers, and showed that they provide a decomposition (or
colouring) of Pascal’s triangle. In this article, we shall relate this decomposition to the cyclic
graph C3, and then we will generalize the result to the general cyclic graph on r vertices Cr.
In addition, we will study integer sequences related to Kr, the complete graph on n vertices.

Many of the integer sequences that we will encounter are to be found in The On-Line
Encylopedia of Integer Sequences (OEIS) [7, 8].

We begin with a brief recall of the relevant results of [1]. For this, we let the sequence of
numbers J(n), be the solution of the recurrence

an = an−1 + 2an−2, a0 = 0, a1 = 1,

with
n 0 1 2 3 4 5 6 . . .

J(n) 0 1 1 3 5 11 21 . . .

J(n) =
2n

3
− (−1)n

3
. (1.1)
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These are the Jacobsthal numbers [10]. In section 4, we shall relate these numbers to a
count of walks on C3. They have many other applications, as detailed for instance in [3]
and [4]. They appear in the OEIS as A001045. When we change the initial conditions to
a0 = 1, a1 = 0, we get a sequence which we will denote by J1(n), A078008, given by

n 0 1 2 3 4 5 6 . . .
J1(n) 1 0 2 2 6 10 22 . . .

J1(n) =
2n

3
+

2(−1)n

3
. (1.2)

We see that
2n = 2J(n) + J1(n). (1.3)

What is less obvious is that the Jacobsthal numbers are sums of binomial coefficients. In
fact, we have

J1(n) =
∑

(n+k) mod 3=0

(

n

k

)

J(n) =
∑

(n+k) mod 3=1

(

n

k

)

J(n) =
∑

(n+k) mod 3=2

(

n

k

)

.

In [1], an inductive argument was used to prove this. We give below a more direct proof,
using an identity that will be used later for a more general result. This is

∑

k≡l( mod m)

(

n

k

)

=
1

m

m−1
∑

j=0

(1 + ωj)nω−lj (1.4)

where ω = e2πi/m. We then have, for m = 3,

∑

k≡−n( mod 3)

(

n

k

)

=
1

3

2
∑

j=0

(1 + ωj)nωnj

=
1

3
(2n + (1 + ω)nωn + (1 + ω2)nω2n)

=
1

3
(2n + (−ω2)nωn + (−ω)nω2n)

=
1

3
(2n + (−1)nω2nωn + (−1)nωnω2n)

=
1

3
(2n + (−1)n(ω3n + ω3n))

=
1

3
(2n + 2(−1)n) = J1(n).
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In like manner, we have

∑

k≡(−n+1)( mod 3)

(

n

k

)

=
1

3

2
∑

j=0

(1 + ωj)nω(n−1)j

=
1

3
(2n + (1 + ω)nωn−1 + (1 + ω2)nω2(n−1))

=
1

3
(2n + (−ω2)nωn−1 + (−ω)nω2(n−1))

=
1

3
(2n + (−1)nω2nωn−1 + (−1)nωnω2(n−1))

=
1

3
(2n + (−1)n(ω3n−1 + ω3n−2))

=
1

3
(2n + (−1)n(ω−1 + ω−2))

=
1

3
(2n + (−1)n(ω2 + ω1))

=
1

3
(2n − (−1)n) = J(n).

The third identity is proven in similar fashion.
Since

2n =
n
∑

k=0

(

n

k

)

we immediately obtain the required decomposition property of Pascal’s triangle. We shall
express this in terms of lower-triangular matrices, where we identify Pascal’s triangle with
the Binomial Matrix B whose (n, k)-th element is equal to

(

n
k

)

:

B =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 3 3 1 0 0 . . .
1 4 6 4 1 0 . . .
1 5 10 10 5 1 . . .
...

...
...

...
...

...
. . .























We shall call a lower-triangular matrix a zero-binomial matrix if its elements are either 0 or
binomial coefficients. We can then state the relevant result of [1] as follows.

Theorem 1.1. There exists a partition

B = B0 + B1 + B2

where the Bi are zero-binomial matrices with row sums equal to J1(n), J(n), J(n) respectively

for i = 0, . . . , 2.
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We have

Bi = ([n + k ≡ i mod 3]

(

n

k

)

),

where we use the Iverson notation [P (j)] to denote 1 if the logical expression P (j) is true,
and 0 if it is false [5].

We can see this decomposition in the following coloured rendering of B.

B =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 3 3 1 0 0 . . .
1 4 6 4 1 0 . . .
1 5 10 10 5 1 . . .
...

...
...

...
...

...
. . .























1 0 0
0 1 1
2 1 1
2 3 3
6 5 5
10 11 11
. . .

2 Graphs

We now wish to draw a link between the foregoing and graph theory. To this end, we recall
a number of relevant definitions [6, 12]. A graph X is a triple consisting of a vertex set
V = V (X), an edge set E = E(X), and a map that associates to each edge two vertices (not
necessarily distinct) called its endpoints. A loop is an edge whose endpoints are equal. To
any graph, we may associate the adjacency matrix, which is an n× n matrix, where |V | = n
with rows and columns indexed by the elements of the vertex set V and the (x, y)-th element
is the number of edges connecting x and y. As defined, graphs are undirected, so this matrix
is symmetric. We will restrict ourselves to simple graphs, with no loops or multiple edges.

The degree of a vertex v, denoted deg(v), is the number of edges incident with v. A graph
is called k-regular if every vertex has degree k. The adjacency matrix of a k-regular graph
will then have row sums and column sums equal to k.

If x, y ∈ V then an x-y walk in X is a (loop-free) finite alternating sequence

x = x0, e1, x1, e2, x2, e3, . . . , er−1, xr−1, er, xr = y

of vertices and edges from X, starting at the vertex x and ending at the vertex y and
involving the r edges ei = {xi−1, xi}, where 1 ≤ i ≤ r. The length of this walk is r. If x = y,
the walk is closed, otherwise it is open. If no edge in the x-y walk is repeated, then the walk
is called an x-y trail. A closed x-x trail is called a circuit. If no vertex of the x-y walk is
repeated, then the walk is called an x-y path. When x = y, a closed path is called a cycle.
The number of walks from x to y of length n is given by the x, y-th entry of An, where A is
the adjacency matrix of the graph X.

The cyclic graph Cr on r vertices is the graph with r vertices and r edges such that if we
number the vertices 0, 1, . . . , r − 1, then vertex i is connected to the two adjacent vertices
i + 1 and i− 1(modr). The complete graph Kr on r vertices is the loop-free graph where for
all x, y ∈ V, x 6= y, there is an edge {x, y}.

We note that C3=K3.
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A final graph concept that will be useful is that of the chromatic polynomial of a graph.
If X = (V,E) is an undirected graph, a proper colouring of X occurs when we colour the
vertices of X so that if {x, y} is an edge in X, then x and y are coloured with different colours.
The minimum number of colours needed to properly colour X is called the chromatic number

of X and is written χ(X). For k ∈ Z+, we define the polynomial P (X, k) as the number of
different ways that we can properly colour the vertices of X with k colours.

For example,
P (Kr, k) = k(k − 1) . . . (k − r + 1) (2.1)

and
P (Cr, k) = (k − 1)r + (−1)r(k − 1). (2.2)

3 Notation

In this note, we shall employ the following notation. r will denote the number of vertices in
a graph. Note that the adjacenty matrix A of a graph with r vertices will then be an r × r
matrix. We shall reserve the number variable n to index the elements of a sequence, as in
an, the n-th element of the sequence a = {an}, or as the n-th power of a number or a matrix
(normally this will be related to the n-th term of a sequence). The notation 0n signifies the
integer sequence with generating function 1, which has elements 1, 0, 0, 0, . . ..

Note that the Binomial matrix B and the Fourier matrix Fr (see below) are indexed from
(0, 0), that is, the leftmost element of the first row is the 0, 0-th element. This allows us to

give the simplest form of their general n, k-th element (
(

n
k

)

and e−
2πink

r respectively).
The adjacency matrix of a graph, normally denoted by A, will be indexed as usual from

(1, 1). Similarly the eigenvalues of the adjacency matrix will be labelled λ1, λ2, . . . , λr.

4 Circulant matrices

We now provide a quick overview of the theory of circulant matrices [2], as these will be
encountered shortly. An r × r circulant matrix C is a matrix whose rows are obtained by
shifting the previous row one place to the right, with wraparound, in the following precise
sense. If the elements of the first row are (c1, . . . , cr) then

cjk = ck−j+1

where subscripts are taken modulo n. Circulant matrices are diagonalized by the discrete
Fourier transform, whose matrix Fr is defined as follows : let ω(r) = e−2πi/r where i =

√
−1.

Then Fr has i, j-th element ωi·j, 0 ≤ i, j ≤ r − 1.
We can write the above matrix as C = circ(c1, . . . , cr). The permutation matrix π =

circ(0, 1, 0, . . . , 0) plays a special role. If we let p be the polynomial p(x) = c1 + c2x + . . . +
crx

r−1, then C = p(π).
We have, for C a circulant matrix,

C = F−1ΛF,

Λ = diag(p(1), p(ω), . . . , p(ωr−1)).
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The i-th eigenvalue of C is λi = p(ωi), 1 ≤ i ≤ r.

5 The graph C3 and Jacobsthal numbers

We let A be the adjacency matrix of the cyclic graph C3. We have

A =





0 1 1
1 0 1
1 1 0





We note that this matrix is circulant. We shall be interested both in the powers An of A

and its eigenvalues. There is the following connection between these entities:

trace(An) =
r
∑

j=1

λn
j

where λ1, . . . , λr are the eigenvalues of A. Here, r = 3. In order to obtain the eigenvalues of
A, we use F3 to diagonalize it. We obtain

F−1
3 AF3 =





2 0 0
0 −1 0
0 0 −1





We immediately have
trace(An) = 2n + 2(−1)n

Comparing with (1.2), we have

Proposition 5.1. J1(n) = 1
3
trace(An)

Our next observation relates J1(n) to 3-colourings of Cr. For this, we recall that P (Cr, k) =
(k − 1)r + (−1)r(k − 1). Letting k = 3, we get P (Cr, 3) = 2r + 2(−1)r.

Proposition 5.2. J1(r) = 1
3
P (Cr, 3).

Since A is circulant, it and its powers An are determined by the elements of their first
rows. We shall look at the integer sequences determined by the first row elements of An -
that is, we shall look at the sequences a

(n)
1j , for j = 1, 2, 3.

Theorem 5.1.

a
(n)
11 = J1(n), a

(n)
12 = J(n), a

(n)
13 = J(n)

Proof. We use the fact that

An = F−1





2n 0 0
0 (−1)n 0
0 0 (−1)n



F (5.1)
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Then

An =
1

3





1 1 1
1 ω ω2

1 ω2 ω4









2n 0 0
0 (−1)n 0
0 0 (−1)n









1 1 1
1 ω ω2

1 ω2 ω4





=
1

3

(

2n (−1)n (−1)n

...
...

...

)





1 1 1
1 ω ω2

1 ω2 ω4





=
1

3

(

2n + 2(−1)n (2n + (−1)nω3 + (−1)nω2
3) (2n + (−1)nω2

3 + (−1)nω4
3)

...
...

...

)

Thus we obtain

a
(n)
11 = (2n + 2(−1)n)/3

a
(n)
12 = (2n + (−1)nω3 + (−1)nω2

3)/3

a
(n)
13 = (2n + (−1)nω2

3 + (−1)nω4
3)/3.

The result now follows from the fact that

1 + ω3 + ω2
3 = 1 + ω2

3 + ω4
3 = 0.

Corollary 5.1. The Jacobsthal numbers count the number of walks on C3. In particular,

J1(n) counts the number of closed walks of length n on the edges of a triangle based at

a vertex. J(n) counts the number of walks of length n starting and finishing at different

vertices.

An immediate calculation gives

Corollary 5.2.

2n = a
(n)
11 + a

(n)
13 + a

(n)
13 .

The identity
2n = 2J(n) + J1(n)

now becomes a consequence of the identity

2n = a
(n)
11 + a

(n)
13 + a

(n)
13 .

This is a consequence of the fact that C3 is 2-regular. We have arrived at a link between
the Jacobsthal partition (or colouring) of Pascal’s triangle and the cyclic graph C3. We
recall that this comes about since 2n = J1(n) + 2J(n), and the fact that J1(n) and J(n) are
expressible as sums of binomial coefficients.

We note that although C3 = K3, it is the cyclic nature of the graph and the fact that it
is 2-regular that links it to this partition. We shall elaborate on this later in the article.
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In terms of ordinary generating functions, we have the identity

1

1 − 2x
=

1 − x

(1 + x)(1 − 2x)
+

x

(1 + x)(1 − 2x)
+

x

(1 + x)(1 − 2x)

and in terms of exponential generating functions, we have

exp(2x) =
2

3
exp(−x)(1 + exp(

3x

2
) sinh(

3x

2
)) + 2

2

3
exp(

x

2
) sinh(

3x

2
)

or more simply,

exp(2x) =
1

3
(exp(2x) + 2 exp(−x)) + 2

1

3
(exp(2x) − exp(−x)).

An examination of the calculations above and the fact that F is symmetric allows us to state

Corollary 5.3.






a
(n)
11

a
(n)
12

a
(n)
13






=

1

3





1 1 1
1 ω ω2

1 ω2 ω4









2n

(−1)n

(−1)n





In fact, this result can be easily generalized to give the following











a
(n)
11

a
(n)
12
...

a
(n)
1r











=
1

r
Fr











λn
1

λn
2
...

λn
r











(5.2)

so that

An = circ(a
(n)
11 , a

(n)
12 , . . . , a

(n)
1r ) = circ(

1

r
Fr(λ

n
1 , . . . , λ

n
r )′).

It is instructive to work out the generating function of these sequences. For instance, we
have

a
(n)
12 = 1.2n + ω.(−1)n + ω2.(−1)n.

This implies that a
(n)
12 has generating function

g12(x) =
1

1 − 2x
+

ω

1 + x
+

ω2

1 + x

=
(1 + x)2 + ω(1 + x)(1 − 2x) + ω2(1 − 2x)(1 + x)

(1 − 2x)(1 + x)(1 + x)

=
3x(1 + x)

3(1 − 2x)(1 + x)2

=
x

1 − x − 2x2
.

This is as expected, but it also highlights the importance of

(1 − 2x)(1 + x)(1 + x) = (1 − λ1x)(1 − λ2x)(1 − λ3x) = 1 − 3x2 − 2x3.
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Hence each of these sequences not only obeys the Jacobsthal recurrence

an = an−1 + 2an−2

but also
an = 3an−2 + 2an−3.

Of course,
1 − 3x2 − 2x3 = (1 − p(ω0

3)x)(1 − p(ω1
3)x)(1 − p(ω2

3)x)

where p(x) = x + x2.

6 The case of C4

For the cyclic graph on four vertices C4 we have the following adjacency matrix

A =









0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0









(6.1)

We can carry out a similar analysis as for the case n = 3. Using F to diagonalize A, we
obtain

F−1AF =









2 0 0 0
0 0 0 0
0 0 −2 0
0 0 0 0









From this, we can immediately deduce the following result.

Theorem 6.1.

1

4
traceAn =

1

4
(2n + (−2)n + 2.0n) = 1, 0, 2, 0, 8, 0, 32, . . .

Theorem 6.2.

a
(n)
11 = (2n + (−2)n + 2.0n)/4 = 1, 0, 2, 0, 8, 0, 32, . . .

a
(n)
12 = (2n − (−2)n)/4 = 0, 1, 0, 4, 0, 16, 0 . . .

a
(n)
13 = (2n + (−2)n − 2.0n)/4 = 0, 0, 2, 0, 8, 0, 32, . . .

a
(n)
14 = (2n − (−2)n)/4 = 0, 1, 0, 4, 0, 16, 0, . . .

Proof. We have

An =
1

4









1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

















2n 0 0 0
0 0n 0 0
0 0 (−2)n 0
0 0 0 0n

















1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i
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From this we obtain

a
(n)
11 = (2n + 0n + (−2)n + 0n)/4 = (2n + (−2)n + 2.0n)/4

a
(n)
12 = (2n − i.0n − (−2)n + i.0n)/4 = (2n − (−2)n)/4

a
(n)
13 = (2n − 1.0n + (−2)n − 1.0n)/4 = (2n + (−2)n − 2.0n)/4

a
(n)
14 = (2n + i.0n − (−2)n − i.0n)/4 = (2n − (−2)n)/4.

Corollary 6.1. The sequences above count the number of walks on the graph C4. In par-

ticular, a
(n)
11 counts the number of closed walks on the edges of a quadrilateral based at a

vertex.

An easy calculation also gives us the important

Corollary 6.2.

2n = a
(n)
11 + a

(n)
12 + a

(n)
13 + a

(n)
14 .

In terms of ordinary generating functions of the sequences a
(n)
11 , a

(n)
12 , a

(n)
13 , a

(n)
14 , we have

the following algebraic expression

1

1 − 2x
=

1

1 − 2x

(

1 − 2x2

1 + 2x
+

x

1 + 2x
+

2x2

1 + 2x
+

x

1 + 2x

)

.

Anticipating the general case, we can state

Theorem 6.3. There exists a partition

B = B0 + B1 + B2 + B3

where the Bi are zero-binomial matrices with row sums equal to a
(n)
11 , a

(n)
12 , a

(n)
13 , a

(n)
14 , respec-

tively, for i = 0 . . . 3.

In fact, we have

a
(n)
11 =

∑

2k−n≡0 mod 4

(

n

k

)

a
(n)
12 =

∑

2k−n≡1 mod 4

(

n

k

)

a
(n)
13 =

∑

2k−n≡2 mod 4

(

n

k

)

a
(n)
14 =

∑

2k−n≡3 mod 4

(

n

k

)

.

We shall provide a proof for this later, when we look at the general case. Each of these
sequences satisfy the recurrence

an = 4an−2.
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We can see the decomposition induced from C4 in the following coloured rendering of B.

B =



























1 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 . . .
1 2 1 0 0 0 0 . . .
1 3 3 1 0 0 0 . . .
1 4 6 4 1 0 0 . . .
1 5 10 10 5 1 0 . . .
1 6 15 20 15 6 1 . . .
...

...
...

...
...

...
...

. . .



























1 0 0 0
0 1 0 1
2 0 2 0
0 4 0 4
8 0 8 0
0 16 0 16
32 0 32 0
. . . .

7 The case of C5

This case is worth noting, in the context of integer sequences, as there is a link with the
Fibonacci numbers. For the cyclic graph on five vertices C5 we have the following adjacency
matrix

A =













0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0













(7.1)

Diagonalizing with F, we obtain

Λ =















2 0 0 0 0

0
√

5
2
− 1

2
0 0 0

0 0 −
√

5
2
− 1

2
0 0

0 0 0 −
√

5
2
− 1

2
0

0 0 0 0
√

5
2
− 1

2















Proposition 7.1. 1
5
trace(An) = (2n + 2(−1)n(F (n + 1) + F (n − 1)))/5.

Proof. We have 1
5
trace(An) = (2n + 2(

√
5

2
− 1

2
)n + 2(−

√
5

2
− 1

2
)n)/5. An easy manipulation

produces the result.

This sequence is A054877.
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Theorem 7.1.

a
(n)
11 = (2n + 2(

√
5

2
− 1

2
)n + 2(−

√
5

2
− 1

2
)n)/5

a
(n)
12 = (2n + (

√
5

2
− 1

2
)n+1 + (−

√
5

2
− 1

2
)n+1)/5

a
(n)
13 = (2n + (

√
5

2
− 1

2
)n(

√
5

2
+

1

2
) + (−

√
5

2
− 1

2
)n)(

√
5

2
− 1

2
))/5

a
(n)
14 = (2n + (

√
5

2
− 1

2
)n(

√
5

2
+

1

2
) + (−

√
5

2
− 1

2
)n)(

√
5

2
− 1

2
))/5

a
(n)
15 = (2n + (

√
5

2
− 1

2
)n+1 + (−

√
5

2
− 1

2
)n+1)/5.

Proof. The result follows from the fact that the first row of An is given by 1
5
F(λn

1 , λ
n
2 , λ

n
3 , λ

n
4 , λ

n
5 )′.

Corollary 7.1. The sequences in Theorem 7.1 count walks on C5. In particular, the sequence

a
(n)
11 counts closed walks of length n along the edges of a pentagon, based at a vertex.

We note that a
(n)
12 = a

(n)
15 . This is A052964. Similarly a

(n)
13 = a

(n)
14 . This is (the absolute

value of) A084179.
An easy calculation gives us the important result

Corollary 7.2.

2n = a
(n)
11 + a

(n)
12 + a

(n)
13 + a

(n)
14 + a

(n)
15 .

In terms of the ordinary generating functions for these sequences, we obtain the following
algebraic identity

1

1 − 2x
=

1

1 − 2x

(

1 − x − x2

1 + x − x2
+

2x(1 − x)

1 + x − x2
+

2x2

1 + x − x2
.

)

Anticipating the general case, we can state the

Theorem 7.2. There exists a partition

B = B0 + B1 + B2 + B3 + B4

where the Bi are zero-binomial matrices with row sums equal to a
(n)
11 , a

(n)
12 , a

(n)
13 , a

(n)
14 , a

(n)
15 ,

respectively, for i = 0 . . . 4.
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In fact, we have

a
(n)
11 =

∑

2k−n≡0 mod 5

(

n

k

)

a
(n)
12 =

∑

2k−n≡1 mod 5

(

n

k

)

a
(n)
13 =

∑

2k−n≡2 mod 5

(

n

k

)

a
(n)
14 =

∑

2l−n≡3 mod 5

(

n

k

)

a
(n)
15 =

∑

2k−n≡4 mod 5

(

n

k

)

.

We note that

(1 − p(ω0
5)x)(1 − p(ω1

5)x)(1 − p(ω2
5)x)(1 − p(ω3

5)x)(1 − p(ω4
5)x) = 1 − 5x3 + 5x4 − 2x5

for p(x) = x + x4 which implies that each of the sequences satisfies the recurrence

an = 5an−3 − 5an−4 + 2an−5.

8 The General Case of Cr

We begin by remarking that since Cr is a 2-regular graph, its first eigenvalue is 2. We have
seen explicit examples of this in the specific cases studied above. We now let A denote the ad-
jacency matrix of Cr. We have A = p(π) where p(x) = x+xr−1, so A = circ(0, 1, 0, . . . , 0, 1).

Theorem 8.1.

2n =
r
∑

j=1

a
(n)
1j

where a
(n)
1j is the j-th element of the first row of An.

Proof. We have

(a
(n)
1j )1≤j≤r =

1

r
F(λn

1 , λ
n
2 , . . . , λ

n
r )′

=
1

r
(

r
∑

k=1

λn
kω

(j−1)(k−1)).

13



Hence we have

r
∑

j=1

a
(n)
1j =

1

n

r
∑

j=1

r
∑

k=1

λn
kω

(j−1)(k−1)

=
1

r

r
∑

k=1

λn
k

r
∑

j=1

ω(j−1)(k−1)

=
1

r
rλn

1 =
1

r
r2n = 2n.

We can now state the main result of this section.

Theorem 8.2. Let A be the adjacency matrix of the cyclic graph on r vertices Cr. Let a
(n)
1j

be the first row elements of the matrix An. There exists a partition

B = B0 + B1 + . . . + Br−1

where the Bi are zero-binomial matrices with row sums equal to the sequences a
(n)
1,i+1, respec-

tively, for i = 0 . . . r − 1.

Proof. We have already shown that

2n =
n
∑

i=0

(

n

i

)

=
r
∑

j=1

a
(n)
1j .

We shall now exhibit a partition of this sum which will complete the proof. For this, we
recall that A = p(π), where p(x) = x + xr−1. Then

(a
(n)
1j )1≤j≤r =

1

r
Fr















p(ω0
r)

n

p(ω1
r)

n

p(ω2
r)

n

...
p(ωr−1

r )n















=
1

r
Fr















(ω0 + ω0.(r−1))n

(ω1 + ω1.(r−1))n

(ω2 + ω2.(r−1))n

...
(ωr−1 + ω(r−1).(r−1))n















=
1

r
Fr















(ω0 + ω−0)n

(ω1 + ω−1)n

(ω2 + ω−2)n

...
(ωr−1 + ω−(r−1))n
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a
(n)
1j =

1

r

r−1
∑

l=0

(ωl
r + ω−l

r )nω(j−1)l
r

=
1

r

r−1
∑

l=0

n
∑

k=0

(

n

k

)

ωkl
r ω−l(n−k)

r ω(j−1)l
r

=
n
∑

k=0

(

n

k

)

(
1

r

r−1
∑

l=0

ωkl
r ω−l(n−k)

r ω(j−1)l
r )

=
n
∑

k=0

(

n

k

)

(
1

r

r−1
∑

l=0

ω2kl+l(j−1−n)
r )

=
∑

r|2k+(j−1−n)

(

n

k

)

=
∑

2k≡(n+1−j) mod r

(

n

k

)

.

We thus have

Bi = [2k ≡ n + 1 − i mod r]

(

n

k

)

.

Corollary 8.1.

An = circ

(

1

r
Fr

(

2n cos(
2πj

r
)n

)

0≤j≤r−1

)

.

Proof. This comes about since (ωj + ω−j) = e2πij/k + e−2πij/k = 2 cos(2πj/r).

This verifies the well-known fact that the eigenvalues of Cr are given by 2 cos(2πj/r),
for 0 ≤ j ≤ r − 1 [12]. It is clear now that if σi = i-th symmetric function in 2 cos(2πj/r),

0 ≤ j ≤ r − 1, then the sequences a
(n)
1j , 1 ≤ j ≤ r, satisfy the recurrence

an = σ2an−2 − σ3an−3 + · · · + (−1)r−1σr−1ar−1.

We thus have

Corollary 8.2. The sequences

a
(n)
1j =

∑

2k=≡n+1−j mod r

(

n

k

)

,

which satisfy the recurrence

an = σ2an−2 − σ3an−3 + · · · + (−1)r−1σr−1ar−1

count the number of walks of length n from vertex 1 to vertex j of the cyclic graph Cr.

15



9 A worked example

We take the case r = 8. We wish to characterize the 8 sequences
∑

8|2k+(j−1−n)

(

n
k

)

for
j = 1 . . . 8. We give details of these sequences in the following table.

sequence an binomial expression

1, 0, 2, 0, 6, 0, 20 . . . (1 + (−1)n)(0n + 2.2n/2 + 2n)/8
∑

n−2k≡0 mod 8

(

n
k

)

0, 1, 0, 3, 0, 10, 0 . . . (1 − (−1)n)(2n +
√

2(
√

2)n)/8
∑

2k−n≡1 mod 8

(

n
k

)

0, 0, 1, 0, 4, 0, 16, . . . (1 + (−1)n)2n/8 − 0n/4
∑

2k−n≡2 mod 8

(

n
k

)

0, 0, 0, 1, 0, 6, 0 . . . (1 − (−1)n)(2n −
√

2(
√

2)n)/8
∑

2k−n≡3 mod 8

(

n
k

)

0, 0, 0, 0, 2, 0, 12, . . . (1 + (−1)n)(2n − 2(
√

2)n)/8 + 0n/4
∑

2k−n≡4 mod 8

(

n
k

)

0, 0, 0, 1, 0, 6, 0 . . . (1 − (−1)n)(2n −
√

2(
√

2)n)/8
∑

2k−n≡5 mod 8

(

n
k

)

0, 0, 1, 0, 4, 0, 16, . . . (1 + (−1)n)2n/8 − 0n/4
∑

2k−n≡6 mod 8

(

n
k

)

0, 1, 0, 3, 0, 10, 0 . . . (1 − (−1)n)(2n +
√

2(
√

2)n)/8
∑

2k−n≡7 mod 8

(

n
k

)

In terms of ordinary generating functions, we have

1, 0, 2, 0, 6, 0, 20 . . . :
1 − 4x + 2x2

(1 − 2x2)(1 − 4x2)

0, 1, 0, 3, 0, 10, 0 . . . :
x(1 − 3x2)

(1 − 2x2)(1 − 4x2)

0, 0, 1, 0, 4, 0, 16, . . . :
x2(1 − 2x2)

(1 − 2x2)(1 − 4x2)

0, 0, 0, 1, 0, 6, 0 . . . :
x3

(1 − 2x2)(1 − 4x2)

0, 0, 0, 0, 2, 0, 12, . . . :
2x4

(1 − 2x2)(1 − 4x2)

0, 0, 0, 1, 0, 6, 0 . . . :
x3

(1 − 2x2)(1 − 4x2)

0, 0, 1, 0, 4, 0, 16, . . . :
x2(1 − 2x2)

(1 − 2x2)(1 − 4x2)

0, 1, 0, 3, 0, 10, 0 . . . :
x(1 − 3x2)

(1 − 2x2)(1 − 4x2)

All these sequences satisfy the recurrence

an = 6an−2 − 8an−4

with suitable initial conditions. In particular, the sequence 1, 0, 2, 0, 6, . . . has general term

a
(n)
11 =

0n

4
+ (1 + (−1)n)(

2n

8
+

(
√

2)n

4
)

This counts the number of closed walks at a vertex of an octagon.
The sequences are essentially A112798, A007582, A000302, A006516, A020522, with

interpolated zeros.
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10 The case n → ∞
We recall that the modified Bessel function of the first kind [11], [13] is defined by the integral

Ik(z) =

∫ π

0

ez cos(t) cos(kt)dt.

In(z) has the following generating function

ez(t+1/t)/2 =
∞
∑

k=−∞
Ik(z)tk.

Letting z = 2x and t = 1, we get

e2x =
∞
∑

k=−∞
Ik(2x) = I0(2x) + 2

∞
∑

k=1

Ik(2x).

The functions Ik(2x) are the exponential generating functions for the columns of Pascal’s
matrix (including ‘interpolated’ zeros). For instance, I0(2x) generates the sequence of central
binomial coefficients 1, 0, 2, 0, 6, 0, 20, 0, 70, . . . with formula

(

n
n/2

)

(1 + (−1)n)/2. This gives
us the limit case of the decompositions of Pascal’s triangle - in essence, each of the infinite
matrices that sum to B∞ corresponds to a matrix with only non-zero entries in a single
column.

The matrix

A∞ =















0 1 0 0 0 · · ·
1 0 1 0 0 · · ·
0 1 0 1 0 · · ·
0 0 1 0 1 · · ·
...

...
...

...
...

. . .















corresponds to the limit cyclic graph C∞. We can characterize the (infinite) set of sequences
that correspond to the row elements of the powers An

∞ as those sequences with exponential
generating functions given by the family Ik(2x). We also obtain that trace(An

∞) is the set of
central binomial numbers (with interpolated zeros) generated by I0(2x).

11 Sequences associated with Kr

By way of example for what follows, we look at the adjacency matrix A for K4. We note
that K4 is 3-regular. A is given by

A =









0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0
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Again, this matrix is circulant, with defining polynomial p(x) = x+x2 +x3 = x(1 +x+x2).
Using F to diagonalize it, we obtain

Λ =









3 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









This leads us to the sequence 1
4
trace(An) = (3n + 3(−1)n)/4 = 1, 0, 3, 6, 21, 60, . . ., which is

A054878. Comparing this result with the expression P (Cn, 4) = 3n + 3(−1)n we see that
trace(An) = P (Cn, 4).

Proposition 11.1.

a
(n)
11 = (3n + 3(−1)n)/4 = 1, 0, 3, 6, 21, 60, . . .

a
(n)
12 = (3n − (−1)n)/4 = 0, 1, 2, 7, 20, 61, . . .

a
(n)
13 = (3n − (−1)n)/4 = 0, 1, 2, 7, 20, 61, . . .

a
(n)
14 = (3n − (−1)n)/4 = 0, 1, 2, 7, 20, 61, . . .

Proof. Using

(a
(n)
1j )1≤j≤n =

1

n
F(λn

1 , λ
n
2 , . . . , λ

n
n)′

we obtain, for instance,

a
(n)
12 = (3n + ω(−1)n + ω2(−1)n + ω3(−1)n)/4

= (3n + (−1)n(ω + ω2 + ω3))/4 = (3n − (−1)n)/4

We note that a
(n)
11 is A054878, while a

(n)
12 = a

(n)
13 = a

(n)
14 are all equal to A015518.

Corollary 11.1.

3n = a
(n)
11 + a

(n)
12 + a

(n)
13 + a

(n)
14 .

Corollary 11.2. The sequences a
(n)
1j satisfy the linear recurrence

an = 2an−1 + 3an−2

with initial conditions

a0 = 1, a1 = 0, j = 0

a0 = 0, a1 = 1, j = 2 . . . 4.

This result is typical of the general case, which we now address. Thus we let A by the
adjacency matrix of the complete graph Kr on r vertices.

Lemma 11.1. The eigenvalues of A are r − 1,−1, . . . ,−1.
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Proof. We have A = p(π), where p(x) = x + x2 + . . . + xr−1. The eigenvalues of A are
p(1), p(ω), p(ω2), . . . , p(ωr−1), where ωr = 1. Then p(1) = 1 + . . . + 1 = r − 1. Now

p(x) = x + . . . + xr−1 = 1 + x + . . . + xr−1 − 1 =
1 − xr

1 − x
− 1.

Then

p(ωj) =
1 − ωrj

1 − ωj
− 1 = −1

since ωrj = 1 for j ≥ 1.

Theorem 11.1. Let A be the adjacency matrix of the complete graph Kr on r vertices. Then

the r sequences a
(n)
1j defined by the first row of An satisfy the recurrence

an = (r − 2)an−1 + (r − 1)an−2

with initial conditions

a0 = 1, a1 = 0, j = 1

a0 = 0, a1 = 1, j = 2 . . . r.

In addition, we have

(r − 1)n =
r
∑

j=1

a
(n)
1j .

Proof. We have











a
(n)
11

a
(n)
12
...

a
(n)
1r











=
1

r
Fr











λn
1

λn
2
...

λn
r











=
1

r
Fr











p(1)n

p(ω2
r)

n

...
p(ωr−1

r )n











=
1

r
Fr











(r − 1)n

(−1)n

...
(−1)n











Hence

a
(n)
11 =

1

r
((r − 1)n + (−1)n + . . . + (−1)n)

=
1

r
((r − 1)n + (r − 1)(−1)n).
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It is now easy to show that a
(n)
11 satisfies the recurrence

an = (r − 2)an−1 + (r − 1)an−2

with a0 = 1 and a1 = 0.
For j > 1, we have

a
(n)
1j =

1

r
((r − 1)n + (−1)nωj + · · · + (−1)nωj(k−1))

=
1

r
((r − 1)n + (−1)n(ωj + . . . + ωj(k−1))

=
1

r
((r − 1)n + (−1)n(

1 − ωjk

1 − ωj
− 1)

=
1

r
((r − 1)n − (−1)n).

This is the solution of the recurrence

an = (r − 2)an−1 + (r − 1)an−2

with a0 = 0 and a1 = 1 as required. To prove the final assertion, we note that

r
∑

j=1

a1j(n) = a11(n) + (r − 1)a
(n)
12

=
(r − 1)n

r
+

(−1)n(r − 1)

r
+ (r − 1)

(

(r − 1)n

r
− (−1)n

r

)

=
(r − 1)n

r
(1 + r − 1) +

(−1)n(r − 1)

r
− (r − 1)(−1)n

r

=
(r − 1)n

r
r = (r − 1)n.

Thus the recurrences have solutions

an =
(r − 1)n

r
+

(−1)n(r − 1)

r

when
a0 = 1, a1 = 0,

and

a′
n =

(r − 1)n

r
− (−1)n

r

for
a′

0 = 0, a′
1 = 1.

We recognize in the first expression above the formula for the chromatic polynomial P (Cn, r),
divided by the factor r. Hence we have
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Corollary 11.3. 1
r
trace(An) = a

(n)
11 = 1

r
P (Cn, r).

We list below the first few of these sequences, which count walks of length n on the
complete graph Kr. Note that we give the sequences in pairs, as for each value of r, there
are only two distinct sequences. The first sequence of each pair counts the number of closed
walks from a vertex on Kr. In addition, it counts r-colourings on Cn (when multiplied by
r).

r = 3

(2n + 2(−1)n)/3 : 1, 0, 2, 2, 6, 10, 22, . . .

(2n − (−1)n)/3 : 0, 1, 1, 3, 5, 11, 21, . . .

r = 4

(3n + 3(−1)n)/4 : 1, 0, 3, 6, 21, 60, 183, . . .

(3n − (−1)n)/4 : 0, 1, 2, 7, 20, 61, 182, . . .

r = 5

(4n + 4(−1)n)/5 : 1, 0, 4, 12, 52, 204, 820, . . .

(4n − (−1)n)/5 : 0, 1, 3, 13, 51, 205, 819, . . .

r = 6

(5n + 5(−1)n)/6 : 1, 0, 5, 20, 105, 520, 2605, . . .

(5n − (−1)n)/6 : 0, 1, 4, 21, 104, 521, 2604, . . .

We have encountered the first four sequences already. The last four sequences are A109499,
A015521, A109500 and A015531.
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