Journal of Integer Sequences, Vol. 10 (2007),

A Note on the Average Order of the gcd-sum Function

Olivier Bordellès
2, Allée de la Combe
La Boriette
43000 Aiguilhe
France
borde43@wanadoo.fr

Abstract

We prove an asymptotic formula for the average order of the gcd-sum function by using a new convolution identity.

1 Introduction and main result

In 2001, Broughan [1] studied the gcd-sum function g defined for any positive integer n by

$$
g(n)=\sum_{k=1}^{n}(k, n),
$$

where (a, b) denotes the greatest common divisor of a and b. The author showed that g is multiplicative, and satisfies the convolution identity

$$
\begin{equation*}
g=\varphi * \mathrm{Id} \tag{1}
\end{equation*}
$$

where φ is the Euler totient function, Id is the completely multiplicative function defined by $\operatorname{Id}(n)=n$ and $*$ is the usual Dirichlet convolution product.

The function g appears in a specific lattice point problem [1, 6], where it can be used to estimate the number of integer coordinate points under the square-root curve. As a multiplicative function, the question of its average order naturally arises. By using the

Dirichlet hyperbola principle, Broughan [1, Theorem 4.7] proved the following result: for any real number $x \geqslant 1$, the following estimate

$$
\begin{equation*}
\sum_{n \leqslant x} g(n)=\frac{x^{2} \log x}{2 \zeta(2)}+\frac{\zeta(2)^{2}}{2 \zeta(3)} x^{2}+O\left(x^{3 / 2} \log x\right) \tag{2}
\end{equation*}
$$

holds.
The aim of this paper is to prove another convolution identity for g, and then get a fairly more precise estimate than (2).

In what follows, τ is the well-known divisor function, μ is the Möbius function, $\mathbf{1}$ is the completely multiplicative function defined by $\mathbf{1}(n)=1, F * G$ is the Dirichlet convolution product of the arithmetical functions F and G, and we denote by θ the smallest positive real number such that

$$
\begin{equation*}
\sum_{n \leqslant x} \tau(n)=x \log x+x(2 \gamma-1)+O_{\varepsilon}\left(x^{\theta+\varepsilon}\right) \tag{3}
\end{equation*}
$$

holds for any real numbers $x \geqslant 1$ and $\varepsilon>0$. The following inequality

$$
\theta \geqslant \frac{1}{4}
$$

is well-known [3]. On the other hand, Huxley [4] showed that

$$
\theta \leqslant \frac{131}{416} \approx 0.3149 \ldots
$$

holds. Now we are able to prove the following result
Theorem 1.1. For any real numbers $x \geqslant 1$ and $\varepsilon>0$, we have

$$
\sum_{n \leqslant x} g(n)=\frac{x^{2} \log x}{2 \zeta(2)}+\frac{x^{2}}{2 \zeta(2)}\left(\gamma-\frac{1}{2}+\log \left(\frac{\mathcal{A}^{12}}{2 \pi}\right)\right)+O_{\varepsilon}\left(x^{1+\theta+\varepsilon}\right)
$$

where $\mathcal{A} \approx 1.282427129 \ldots$ is the Glaisher-Kinkelin constant.
For further details about the Glaisher-Kinkelin constant, see [2, 5]. The reader interested in gcd-sum integer sequences should refer to Sloane's sequence A018804.

2 A convolution identity

The proof uses the following lemmas.

Lemma 2.1. For any real number $z \geqslant 1$ and any $\varepsilon>0$, we have

$$
\sum_{n \leqslant z} n \tau(n)=\frac{z^{2}}{2} \log z+z^{2}\left(\gamma-\frac{1}{4}\right)+O_{\varepsilon}\left(z^{1+\theta+\varepsilon}\right) .
$$

Proof. The result follows easily from (3) and Abel's summation.
Lemma 2.2. We have

$$
g=\mu *(I d \cdot \tau)
$$

Proof. Since $\varphi=\mu * \operatorname{Id}$, we have, using (1),

$$
g=\varphi * \operatorname{Id}=\mu *(\operatorname{Id} * \operatorname{Id})=\mu *(\operatorname{Id} \cdot \tau)
$$

which is the desired result.

3 Proof of Theorem 1.1

By using Lemma 2.2, we get

$$
\sum_{n \leqslant x} g(n)=\sum_{d \leqslant x} \mu(d) \sum_{k \leqslant x / d} k \tau(k)
$$

and Lemma 2.1 applied to the inner sum gives

$$
\begin{aligned}
\sum_{n \leqslant x} g(n) & =\sum_{d \leqslant x} \mu(d)\left\{\frac{x^{2}}{d^{2}}\left(\frac{1}{2} \log \left(\frac{x}{d}\right)+\gamma-\frac{1}{4}\right)+O_{\varepsilon}\left(\left(\frac{x}{d}\right)^{1+\theta+\varepsilon}\right)\right\} \\
& =x^{2}\left\{\left(\frac{1}{2} \log x+\gamma-\frac{1}{4}\right) \sum_{d \leqslant x} \frac{\mu(d)}{d^{2}}-\sum_{d \leqslant x} \frac{\mu(d) \log d}{2 d^{2}}\right\}+O_{\varepsilon}\left(x^{1+\theta+\varepsilon} \sum_{d \leqslant x} \frac{1}{d^{1+\theta+\varepsilon}}\right) \\
& =x^{2}\left\{\left(\frac{1}{2} \log x+\gamma-\frac{1}{4}\right) \sum_{d=1}^{\infty} \frac{\mu(d)}{d^{2}}-\sum_{d=1}^{\infty} \frac{\mu(d) \log d}{2 d^{2}}+O\left(\frac{\log x}{x}\right)\right\}+O_{\varepsilon}\left(x^{1+\theta+\varepsilon}\right) .
\end{aligned}
$$

Now it is well-known that, for $s \in \mathbb{C}$ such that $\operatorname{Re} s>1$, we have

$$
\frac{1}{\zeta(s)}=\sum_{d=1}^{\infty} \frac{\mu(d)}{d^{s}}
$$

which gives by differentiation

$$
\frac{\zeta^{\prime}(s)}{(\zeta(s))^{2}}=\sum_{d=1}^{\infty} \frac{\mu(d) \log d}{d^{s}}
$$

for $\operatorname{Re} s>1$, and hence

$$
\sum_{n \leqslant x} g(n)=\frac{x^{2}}{2 \zeta(2)}\left(\log x-\frac{\zeta^{\prime}(2)}{\zeta(2)}+2 \gamma-\frac{1}{2}\right)+O_{\varepsilon}\left(x^{1+\theta+\varepsilon}\right)
$$

and we use

$$
\frac{\zeta^{\prime}(2)}{\zeta(2)}=\gamma-\log \left(\frac{\mathcal{A}^{12}}{2 \pi}\right) .
$$

The proof of the theorem is now complete.
Acknowledgment. I am grateful to the referee for his valuable suggestions on this paper.

References

[1] K. A. Broughan, The gcd-sum function, J. Integer Sequences 4 (2001), Art. 01.2.2.
[2] S. R. Finch, Mathematical Constants, Cambridge University Press, 2003, pp. 135-145.
[3] G. H. Hardy, The average order of the arithmetical functions $P(x)$ and $\Delta(x)$, Proc. London Math. Soc. 15 (2) (1916), 192-213.
[4] M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc. 87 (2003), 591-609.
[5] H. Kinkelin, Über eine mit der Gammafunktion verwandte Transcendente und deren Anwendung auf die Integralrechnung, J. Reine Angew. Math. 57 (1860), 122-158.
[6] A. D. Loveless, The general GCD-product function, Integers 6 (2006), article A19, available at http://www.integers-ejcnt.org/vol6.html. Corrigendum: 6 (2006), article A39.

2000 Mathematics Subject Classification: Primary 11A25; Secondary 11N37.
Keywords: gcd-sum function, Dirichlet convolution, average order of multiplicative functions.
(Concerned with sequence A018804.)

Received July 10 2006; revised version received March 28 2007. Published in Journal of Integer Sequences, March 282007.

Return to Journal of Integer Sequences home page.

