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Abstract

We consider sums of squares of odd and even terms of the Jacobsthal sequence and
sums of their products. We also study the analogous alternating sums. These sums are
related to products of appropriate Jacobsthal numbers and several integer sequences.
The formulas that we discover show that a certain translation property for these sums
holds, so that in practice, only sums of initial values and the information where the
summation begins are necessary.

1 Introduction

The Jacobsthal and Jacobsthal-Lucas sequences J,, and j, are defined by the recurrence
relations
JOZO, Jl = 1, Jn:Jn_1+2Jn_2 forn>2,

and
jO:27 jlzla jn:jn—1+2jn—2 fOI"I’L}Q.

In Sections 2-4 we consider sums of squares of odd and even terms of the Jacobsthal
sequence and sums of their products. These sums have nice representations as products of
appropriate Jacobsthal and Jacobsthal-Lucas numbers.

The numbers J;, appear as the integer sequence A001045 from [[] while the numbers jy
is A014551. The properties of these numbers are summarized in [[J]. For the convenience of
the reader we shall now explicitly define these sequences.
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The first eleven terms of the sequence J, are 0, 1, 1, 3, 5, 11, 21, 43, 85, 171 and 341. It
is given by the formula J,, = w

The first eleven terms of the sequence j; are 2, 1, 5, 7, 17, 31, 65, 127, 257, 511 and 1025.
It is given by the formula j, = 2" 4+ (—1)™.

In the last three sections we look into the alternating sums of squares of odd and even
terms of the Jacobsthal sequence and the alternating sums of products of two consecutive
Jacobsthal numbers. These sums also have nice representations as products of appropriate
Jacobsthal and Jacobsthal-Lucas numbers.

These formulas for ordinary sums and for alternating sums have been discovered with the
help of a PC computer and all algebraic identities needed for the verification of our theorems
can be easily checked in either Derive, Mathematica or Maple V. Running times of all these
calculations are in the range of a few seconds.

Similar results for Fibonacci, Lucas, Pell, and Pell-Lucas numbers have recently been
discovered by G. M. Gianella and the author in papers [[[, B, B, @, B, B]. They improved some
results in [{].

2 Jacobsthal even squares

The following lemma is needed to accomplish the inductive step in the proof of the first part
of our first theorem.

Foranyn =0, 1, 2,...let f, = 2570 = Jyp, 9, = 20+ = S22 and 7, = 2920 =
Lemma 1. For every m >0 and k > 0 the following equality holds
(6n+1 Tn+1 — 611 ’Yn) J22k + 8 (611—&-1 Tn+1 — ﬁn Tn) J2k
= J22k+4n+4 + J22k+4n+2 - JZn+4 - mez- (2.1)

Proof. (P1). Let A =22 B =2% and C = 2'. The difference of the left hand side and
the right hand side of the relation (2.1) is equal to

o4d /o 1tay 40 /0 dntok | o\1+4n
5 (( 1) +1)AB+ 5 (( 1172 () )(A+1)0
272

: <(_1)4k+2 (_1)1+2k+1) B*; ((_1)8n+(_1)1+8n+4k)‘

It is obvious that all coefficients in the above expression are zero and the proof is complete.
O

There are essentially three types of proofs in this paper that we indicate as P1, P2 and
P3.

In P1 and P2 we use the substitutions A = 22% B = 28" (' = 2" and M = 2% P = (—1)¥,
respectively. We prove that the difference of the left hand side and the right hand side of the
relation from the statement is equal to zero with algebraic simplification to an expression
that is obviously vanishing. This part is easily done with the help of a computer (for example
in Maple V) so that we shall only indicate the final expression.



In P3 we argue by induction on n taking care first of the initial value n = 0 and then
showing that it holds for n = r + 1 under the assumption that it is true for n = r.

The following lemma is needed to accomplish the inductive step in the proof of the second
part of our first theorem.

For any n =0, 1, 2,... let , = 2" + 1 = j 4.

Lemma 2. For every m > 0 and k > 0 the following equality holds

(Tn+2 Mn+1 — Tnt1 77n) J22k +8 (ﬁnﬂ Tn+2 — B Tn+1) Jok

= Jsjrants T Ioppanta = Jinre = Jinsa (2.2)
Proof. (P1).
4 1
4352 2 n n
+T <(_1)4k+2 (_1)1+2k+1) B . ((_1)8 _'_(_1)14-8 +4k>'
O
Theorem 1. For every m > 0 and k > 0 the following equalities hold
> Taesai = Y T3+ Bu ok [rn Jox + 87, (2:3)
i=0 i=0
ifm=2nandn=20,1,2,... and
Z Sypra = Z J3i + st o [ Jor + 8 5] | (2.4)
i=0 i=0

ifm=2n+1andn=20,1,2,....
Proof of (2.3). (P3). The proof is by induction on n. When n = 0 we obtain
Ty = Jg + Bo Jok [0 Jor + 8 710] = Jok, Jox = I,

because Jy =0, By =1, 70 =1 and 79 = 0.
Assume that the relation (2.3) is true for n = r. Then

2(r+1) 2r
Z Tyeroi = Joprarsa + Topparsa + Z Teroi = Tonrarse T opparsat
i=0 1=0
or 2(’V‘+1)
Z I3+ Br Jog [V o + 8 7] = Z J3 + Bry1 Jok Ve Jor + 8T,
i=0 1=0

where the last step uses Lemma 1 for n = r + 1. Hence, (2.3) is true for n = r + 1 and the
proof is completed. |



Proof of (2.4). (P3). When n = 0 we obtain
Jae + Japis = Jg + I3 + 71 Ja [0 Jox + 8 Bo] = 17 T3, + 8 Joy + 1,

since Jo=0, J1 =1, o =1, no =17 and 7, = 1. The above equality is equivalent to
3o = 16 J3, 4+ 8 Jop + 1 = (4 Jo, + 1)? which is true because it follows from the relation
Iy =4 J, + 1.

Assume that the relation (2.4) is true for n = r. Then

2(r+1)+1 2r+1

2 g2 2 2 g2 2
E oproi = Soprarsa T Jopgarys + § Sokt2i = Joprarsa T Joprarset
i=0 i=0
2r+1 2(r4+1)+1

D Syt e Ll S+ 86,1 = Y Iy vz Jog [ Jox + 8 Bria],

=0 =0

where the last step uses Lemma 2 for n = r + 1. |

3 Jacobsthal odd squares

The initial step in an inductive proof of the first part of our second theorem uses the following
lemma.

Lemma 3. For every k > 0 the following identity holds
Jyei1 =16 Jop Jop—o + 8 Jop + 1.

Proof. (P2). Let M = 2% and P = (—1)*. The difference of the left and the right hand side
is equal to L=UEH (8472 — 5 P2 4 3) = 0. O

The initial step in an inductive proof of the second part of our second theorem uses the
following lemma.

Lemma 4. For every k > 0 the following identity holds
Jyeir + Japis = 10 + 8 Joy, (34 Joj—o + 15).
Proof. (P2). 10(P —1)(P+1)(4M?*—-3P?+1). O

The following lemma is needed to accomplish the inductive step in the proof of the first
part of our second theorem.
4dn
For any n =0, 1, 2,... let m, = 2 ;l’l = Jyni1-

Lemma 5. For everym > 0 and k > 0 the following equality holds

8 J2k [2 (ﬂn—l—l Yn+1 — 571 ’Yn) JQk—2 + ﬁn-&-l Tp4+1 — 671 Wn]

= J22k+4n+5 + J22k+4n+3 - J42n+5 - szn+3- (3-1)



Proof. (P1).

549£ (1 +1) AB+% (=14 s (1)) (A + e
@ (4 (-1)** +5 (—1)1+2’“+1)B+§ (=04 (-pPreteer)

[J

The following lemma is needed to accomplish the inductive step in the proof of the second
part of our second theorem.
For any n =0, 1, 2,... let 0, = 5 Jyn13.

Lemma 6. For every m > 0 and k > 0 the following equality holds

8 Jok [2 (Tht2 Mnt1 — T M) J2k—2 + Tht2 Ont1 — Tntl On)
= Jpranst + Jakrants — Jinsr — Janis- (3.2)
Proof. (P1).

87040 . 1+2k @ . An+2k+1 _1\4n
= (( 1) +1>AB+ . (( 1) +(~1) )(A+1)O
17408

+T <4 (=1)* + 5 (_1)1+2k+1)B+§ ((_1)8n+(_1)8n+4k+1)'

Theorem 2. For every m > 0 and k > 0 the following equalities hold
Z Tiraip = Z S50+ 880 Jan 29 Jok—z + Tl (3.3)
i=0 i=0

ifm=2nandn=20,1,2,... and

Z Tesaisr = Z J3i1 + 8 Tus1 Jog (201 Jop—2 + o) (3.4)
i=0

i=0
ifm=2n+1andn=20,1,2,....
Proof of (3.3). (P3). When n = 0 we obtain
Jyeir = J7 + 880 Jor [270 Jok—2 + o) = 1+ 8 Joy [2 Jog—2 + 1],

because J; =1, By = 1, 79 = 1 and w9 = 1. But, this equality is true by Lemma 3.
Assume that the relation (3.3) is true for n = r. Then

2(7""1) 2r 2r

2 _ 72 2 2 _ 72 2 2
§ Sokroivs = Jokqaris T Sopraris + E Sokroivr = Jokgaris T Sorraris T+ E i
i=0 i=0 i=0
2(r+1)

+ 880 Jok 29 Jor—2 + 0] = D Jriiy +8Burt Tk [29ns1 Jokz + Tnsa]

1=0

where the last step uses Lemma 5 for n = r + 1. O
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Proof of (3.4). (P3). The proof is by induction on n. When n = 0 we obtain
Jyeir + Japis = I+ J5 4+ 871 Jag 210 Jak—2 + 09] = 10 + 8 Joy, [34 Jop—z + 15]

since J;1 =1, J3s =3, 1 =1, 79 =17 and 09 = 15. The above equality is true by Lemma 4.
Assume that the relation (3.4) is true for n = r. Then

2(r+1)+1 2r+1
2
Z oproip1 = J22k+4r+7 + ‘]22k+4r+5 + Z J22k+2i+1 =
i=0 1=0
2r+1
Tyesarsr + Tosares + Z Sy T 8Tvg1 Jak (21 Jor—2 + 03]
i=0
2(r+1)+1
= Z J22i+1 +87rp2 Jor 20041 Jor—2 + 0rya],
i=0
where the last step uses Lemma 6 for n = r + 1. [

4 Jacobsthal products

For the first two steps in a proof by induction of our next theorem we require the following
lemma.

Lemma 7. For every k > 0 the following equalities hold

Jgk_H =8 J2k—2 + 3. (41)

Jok Jok1 + Joparo Joprs = 3+ Jog (136 Jop—o + 55) (4.2)

Proof of (4.1). By the formula J, = w we have

22k+1 — (=1 2k+1 22k+1 +1 22]672 — (=1 2k—2
Joki1 = (=1) = = 8- St 8 Jok_2 + 3.
3 3 3
O
Proof of (4.2). (P2). =X (55 1% — 46 P2 + 9). O

With the following lemma we shall make the inductive step in the proof of the first part
of our third theorem.

Lemma 8. For every m >0 and k > 0 the following equality holds

JQk’ [8 (ﬁn-ﬁ-l Tn+1 — ﬁn %1) J2k—2 + ﬂn—f—l Hn+1 — 671 Mn] =
J2k+4n+5 J2k+4n+4 + J2k+4n+3 J2k+4n+2 - J4n+5 J4n+4 - J4TL+3 J4n+2' (43>



Proof. (P1).

Qgﬂ ((~1"*+1) AB+? (' 4 (- ) (A + e+
% <4 (—=1)*F 45 (—1)*2F 4 1) B+§ ((_1)8n+1 n (_1)8n+4k).

[J

With the following lemma we shall make the inductive step in the proof of the second
part of our third theorem.

Lemma 9. For every m >0 and k > 0 the following equality holds

Jok [8 (Tng2 M1 — Tnt1 Mn) J2k—2 + Tnt2 Vnt1 — Tnd Vn] =

Joktants Jorranta + Joriant7 Jortante — Jants Janra — Jang 7 Janvs- (4.4)
Proof. (P1).
43520 80
9 <(_1)1+2k + 1> AB+ 3 <(_1)4n+2k + (_1)4n+1> (A+ 1)0
8704 2 n n
+ - (4 (=D +5 ()" +1) B+ 5 (=1 4 (=)
L]
net 5(24n 541
For any n =0, 1, 2,... let u, = % = Jyny3 and v, = % =5 Jinyis-
Theorem 3. For every m > 0 and k > 0 the following equalities hold
Z Sok2i Joky2ie1 = Z Joi Joiv1 + B Jok [8 Y Jok—2 + fin], (4.5)
i=0 i=0
ifm=2nandn=20,1,2,... and
Z J2k+2i Jokt2i41 = Z Joi Joip1 + Tn+1 Jok [8 My Jog—2 + Vn] ) (4-6)
i=0 i=0

fm=2n+1andn=20,1,2,....
Proof of (4.5). (P3). For n = 0 the relation (4.5) is
Jok Jorr1 = Jo J1 + Bo Jor (870 Jak—2 + p10) = Jor(8 Jogp—2 + 3)

which is true since Jor1 = 8 Jor_o + 3 by the relation (4.1) in Lemma 7.



Assume that the relation (4.5) is true for n = r. Then

2(r+1) 2r

E Jok+2i Jokt2i41 = Joktrarta Joktarss + Joptarso Joptrarts + E Jokt2i Jokt2it1 =
i=0 =0
2r

Joktar+a Joktarts + Joktrart2 Jokrarts + Z Joi Jaiv1 + Bn J2k [8 Y Jok—2 + fin]
i=0
2(r+1)

= Z Joi Joiv1 + Bng1 J2k [8 Vnt1 Jok—2 + fnt1]
i=0

where the last step uses Lemma 8 for n =r + 1. Il

Proof of (4.6). (P3). For n = 0 the relation (4.6) is

Jok Joki1 + Jokto Jokts = Jo J1 + Jo s+ 71 Jor(8 1m0 Jog—2 + 1) = 3 + Jor (136 Jog—o + 55)

which is true by (4.2) in Lemma 7.
Assume that the relation (4.6) is true for n = r. Then

2(r+1)+1 2r+1

E Jokt2i Jokt2i41 = Jokrarta Joktarys + Joptarie Jontarir + g Jokt2i Jokt2i1 =

=0 i=0
2r+1
Joktar+a Joktarss + Joktart6 Jorrarsr + Z Joi J2it1 + Tot1 ok [8 M Jok—2 + )]
i=0
2(r41)+1
= Z Joi Jaiv1 + Tnta Jok [8 Mt Jok—2 + Vnta]
i=0
where the last step uses Lemma 9 for n = r + 1. |

5 Alternating Jacobsthal even squares

In this section we look for formulas that give closed forms for alternating sums of squares of
Jacobsthal numbers with even indices.

Lemma 10. For every k > 0 we have
Jop, = 4 Jop_o + 1. (5.1)

Proof. By the formula J, = w we get

92k—2 _ (_1)2k—2 92k _ (_1)% B

4 Jop._ 1=4-
2k—2 + 3 3




Lemma 11. For every k > 0 we have
J3ips — Ja, = 14 Jox (60 Jop—o + 23). (5.2)

Proof. (P2). L=UEPHD (93 02 — 20 P2 1 3). O

Let 7§ = land 7, — 7 =213 (50 - 2*" — 1), forn =0, 1, 2,.... Foranyn =0, 1, 2, ..

w _ 287441 dsnda
let v = =

Lemma 12. For every k > 0 and every n > 0 we have

Jor (4 (V1 — W) Jok—2 + T — 7)) = J22k+4n+4 - ‘]22k+4n+2 - an+4 + an+2' (5.3)
Proof. (P1).
400 8
5 ((—1)1“" + 1) AB+ ((—1)4"“’“ - 1) AC+
80 8 n
? (4 (_1)4k+5 (_1)1+2k+ 1) B+ g ((_1)2k+ (_1)4 +1) C
[
Let 35 =23 and %, — 35 =25 (200 - 2** — 1) for any n =0, 1, 2,.... For the same
values of n, let 7 = 28”;: =1 = 13—7 Jsnts-

Lemma 13. For every k > 0 and every n > 0 we have

Jok (4 (U:LH - 77;) Jok—2 + 6:L+1 - 6;;) = 22k+4n+6 - J22k+4n+4 + Jlfn+4 - JéfnJrG' (5-4>

Proof. (P1).

64300 ((_1)1+2k+1> AB—i—% <<_1)4n+2k_1> ACH
1280 4k 142k 32 2k Ant1
. (4( )% 45 (1) +1>B+ - (( 12F 4 (—1) )c.
O
Theorem 4. For every m > 0 and k > 0 the following equalities hold
Z (1) J22k+2i = Z (=)' T3 + Jox [4p Jok—o + 7] (5.5)
i=0 i=0
ifm=2nandn=20,1,2,... and
(=) Tasas = D (1) T3 = Jok (4, Tz + 5] (5.6)
i=0 i=0

ifm=2n+1andn=20,1,2,....



Proof of (5.5). (P3). For n =0 the relation (5.5) is
I3 = JE + Jo (475 Jop—o + 7)) = Jog (4 Jop_o + 1)

(i. e., the relation (5.1) multiplied by Jox) which is true by Lemma 10.
Assume that the relation (5.5) is true for n = r. Then

2(r+1) 2r
Z (=1)" - Jer0i = Qoprarra — Qopparsa + Z (=) Jrai
=0 i=0
2r
= Q%k+4r+4 - Q§k+4r+2 + Z (=1)"- ‘]22i + Joi (A, Jok—2 + 7] =
=0
2(r+1)
Z (=1)" - I3 + Jak [A7m 41 Jor—z + o]
=0
where the last step uses Lemma 12. |

Proof of (5.6). (P3). For n =0 the relation (5.6) is
T3 = Jase = (JE = J3) = Jor [4n5 Jok—o + B3] = —1 — Joy [60 Joy—s + 23],

which is true by Lemma 11.
Assume that the relation (5.6) is true for n = r. Then

2(r+1)+1 2r+1
Z (=1)"- ‘]22k+2i = J22k+4r+4 - ‘]22k+4r+6 + Z (=1)"- J22k+2i
i=0 1=0
2r+1
= J22k+4r+4 - J22k;+4r+6 + Z (—1)" - J3; — Joi [An), Jow—2 + 5]
i=0
2(r+1)+1
= Z (=1)"- J22i — Jay [4 77:;+1 Jok—2 + ﬁ:ﬁ-l] )
i=0
where the last step uses Lemma 13. [

6 Alternating Jacobsthal odd squares

In this section we look for formulas that give closed forms for alternating sums of squares of
Jacobsthal numbers with odd indices.

Lemma 14. For every k > 0 we have
i1 =1+ 8 Jop [2 Jop—o + 1] (6.1)
Proof. (P2). =P (g A2 5 P2 4 3). O

10



Lemma 15. For every k > 0 we have
J2k+3 J2k+1 — 8 + 8 JQk (30 J2k72 + 13) (62)

Proof. (P2). L= (13072 — 10 P2 + 3). O
Let 7¢* =1 and 7%, — 7% = 101 - 24+ 4 25. 2443 (24 — 1) for n =0, 1, 2,.. ..

Lemma 16. For every k > 0 and every n > 0 we have

8 JQk (2 (7;#1 - ry;) JQk—Q + T;il - Ty ) = 2k+4n+5 J2k+4n+3 JZnJrE) + an+3' (63>

Proof. (P1).

B0 (M 1) AB+ 2 () 1) ACy

320 16 n
O
Let 83" =13 and £;%, — 3 = 401 - 24+3 4+ 100 - 245 (24" — 1) for any n =0, 1, 2, ...
Lemma 17. For every k > 0 and every n > 0 we have
8 Jor (2 (M1 — M) Jor—2 + By — B,7) = 2k+4n+7 J k+drt+5 T J4n+5 me?- (6.4)
Proof. (P1).
2 4
5200 <(_1>1+2k X 1) AB + % <(_1)4n+2k+1 . 1) AC
5120 64 n
O
Theorem 5. For every m > 0 and k > 0 the following equalities hold
Z J2k+2z+1 Z (—1)° J22i+1 + 8ok 27, Jok—2 + 7], (6.5)
1= =0
ifm=2nandn=20,1,2,... and
> (0 Tgioin = > (=1 J5y — 82k [2005 Jox2 + BT, (6.6)
=0 =0

fm=2n+1andn=20,1,2,....

11



Proof of (6.5). (P3). For n =0 the relation (6.5) is
Tokpr = i + 8 Jo(2795 Jor—2 + 757)

(i. e., the relation (6.1)) which is true by Lemma 14.
Assume that the relation (6.5) is true for n = r. Then

2(r+1) 2r
> (U Feain = Frars = Borars + D (1) o

i=0 1=0

2r
= Jpsarss = Japrarss T Z (=1)" J5ipr + 8Tk [275 Jok—a + 7]

i=0

2(r+1)

- Z (=1)" T3y + 8 Jok [27m41 oz + T4 ]
i=0
where the last step uses Lemma 16. [

Proof of (6.6). (P3). The proof is again by induction on n. For n = 0 the relation (6.6) is
J3ir — Jajis = J7 — J3 — 8 Jok (21 Jog—o + 55*] which is true by Lemma 15 since 75 = 15
and G;* = 13.

Assume that the relation (6.6) is true for n = r. Then

2(r+1)+1 2r41

Z (—1)* ']22k+2i+1 = J22k+4r+5 - J22k+4r+7 + Z (—1)* ’]22k+2i+1

i=0 i=0
2r+1

= Tesars = Joprarir + O (=1 T3y — 8Tk 20 Jon—a + B;7]
i=0
2(r+1)+1
= Z (—1)* J22i+1 —8.Jay, [2 M1 J2k—2 + 6211] )
i=0
where the last step uses Lemma 17. [

7 Alternating Jacobsthal products
Lemma 18. For every k > 0 we have

Joky3 Jokro — Jogr1 Jor = 3+ Jog [120 Jop_o + 49] . (7.1)
Proof. (P2). C=XPHU (49 012 — 40 P2 +9). O
Lemma 19. For every k > 0 and every n > 0 we have

kokk

Jo (8 (Vy — ) Jon—a + T — ) =

J2k:+4n+5 J2k+4n+4 - J2k+4n+3 J2k+4n+2 - J4n+5 J4n+4 + J4n+3 J4n+2' (72)

12



Proof. (P1).

800 4
= ((_1)1+2k >AB+§ <( 1)4n+2k )AC’—l—
4
?0 (4 1)1+2k+ 1) B 5 <(_1)2k+ (_1)4n+1> C
[
Let 5" =49 and G5 — G5 =799 - 244 4 25 . 2409 (24 — 1) for any n =0, 1, 2,.. ..
Lemma 20. For every k > 0 and every n > 0 we have
Jor (8 (11 — 1) Jon—2 + B0 — 5,77) =
Jokt+an+6 JS2ktantT — J2ktanta Jokvants + Jants Janra — Jante Janit. (7.3)
Proof. (P1).
12800 16
— <(_1)1+2k i 1) AB + < <(_1)4n+2k _ 1> AC+
2560 16
= (4 (—1)** +5 (=1)"2F 4 1) B+ ((—1)% + (—1)4"“) C.
]
Theorem 6. For every m > 0 and k > 0 the following equalities hold
D (1) Tanrai Fawyoier = 3 (= 1) o Joigr + ok [875 Jox—a + 777 (7.4)
i=0 i=0
ifm=2n andn =20, 1, 2, and
> (1) Japgai Tonsaicn = Y (=1) o Jaigr — ok (80 Jon—a + B3], (7.5)
i=0 i=0
ifm=2n+1andn=20,1,2,....
Proof of (7.4). (P3). For n = 0 the relation (7.4) is
Jor Jorr1 = Jo J1 + Jor [875 Jok—2 + 70| = Jok [8 Jop—2 + 3]
which is true by the relation (4.1) in Lemma 7 since Jy =0, J; =1, 7§ = 1 and 7™ = 3.
Assume that the relation (7.4) is true for n = r. Then
2(T’+l) 2r
Z (—=1)"Jart2iJoky2i1 = Z<_1)1J2k+2i<]2k+2i+1 + Joktar+adokrarts — Jakrarr2Jokrarts
=0 i=0
2r
= Jokrar+adokrarss — Jokrarr2Joprarys + Z ) Jaidaiv1 + Jok 875 Jon—2 + 7]
=0
2(r+1)
= Z (=1)"Jaidoit1 + Jok [8 Va1 Jor—2 + 721*1] ;
i=0
where the last step uses Lemma 19. [

13



Proof of (7.5). (P3). For n = 0 the relation (7.5) is

Jok Jop+1 — okt Jokrs = Jo 1 — Jo J3—
Jgk [8 778 JQk_Q -+ 68**] =-3—- Jgk [120 JQk_Q + 49] y

(i. e., the relation (7.1)) which is true by Lemma 18.
Assume that the relation (7.5) is true for n = r. Then

2(r+1)+1 2r+1
; i
E (—1)" Jokt2i Jokroit1 = E (—1)" Joks2i Jort2i+1 + J2ktara Jopraris—
i=0 =0

2r+1
i
Joktar+6 Joktar+7 = Joktar+a Jokrar+s — Jokrart6 Jontaryr + E (—=1)" Joi Joj1—

i=0
2(r+1)+1
Jok [81, Jor—2 + B,7] = Z (—1)" Joi Jaisr — Jan [ 11 Jow—z + Bi30]
i=0
where the last step uses Lemma 20. |
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