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Abstract

Let {Fn}∞n=1 = {1, 1, 2, 3, . . .} be the sequence of Fibonacci numbers. In this paper
we give some sufficient conditions on a natural number k such that the equation Fn =
kFm is solvable with respect to the unknowns n and m. We also show that for k > 1
the equation Fn = kFm has at most one solution (n, m).

1 Preliminaries

Let Fn be the nth Fibonacci number, i.e.,

F1 = F2 = 1 , Fn+2 = Fn + Fn+1, ∀n ∈ N.

It is known that these numbers have the following properties :
(1) Fm+n = Fm−1Fn + FmFn+1;
(2) gcd(Fm, Fn) = Fgcd(m,n);
(3) if m|n, then Fm|Fn;
(4) if Fm|Fn and m > 2, then m|n.

Now, put

P = {k ∈ N : ∃m,n ∈ N, Fn = kFm},
Q = {k ∈ N : ∄m,n ∈ N, Fn = kFm}.

A simple computations show that the natural numbers which satisfy in P , less than 100, are
as follows:

1, 2, 3, 4, 5, 7, 8, 11, 13, 17, 18, 21, 29, 34, 47, 48, 55, 72, 76, 89.
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By definition of P and the properties (3) and (4), for each k ∈ P there exist m,n ∈ N such
that k = Fmn

Fn
. However, it seems that the elements of Q do not have any special form.

Using a theorem of R. D. Carmichael [2], it can be shown that the product of Fibonacci
numbers and their quotients belong to Q except for some cases (see Theorem 3.10).

In this paper, we use elementary methods to prove our claim. In section 3, we obtain
some more properties of P . For example, we show that for every element k(> 1) of P ,
the equation Fn = kFm has a unique solution (n,m). Moreover, we give a necessary and
sufficient condition for which the product of two elements of P is again in P .

2 The Main Theorem

In this section, we introduce some elements k in Q, so that for each fixed n ∈ N,

k = Fa1
Fa2

· · ·Fan

belongs to Q, for all natural numbers a1, . . . , an but a finite number.
In order to prove the above claim, we need the following elementary properties of Fi-

bonacci numbers.

Lemma 2.1. For all a, b, c, a1, a2, . . . , an ∈ N, the following conditions hold
a) Fa+b−1 = FaFb + Fa−1Fb−1;
b) Fa+b−2 = FaFb − Fa−2Fb−2;
c) Fa+b+c−3 = FaFbFc + Fa−1Fb−1Fc−1 − Fa−2Fb−2Fc−2;
d) if n ≥ 3, then Fa1+···+an−n ≥ Fa1

Fa2
· · ·Fan

.

Proof. Parts (a) and (b) are easily verified.
(c) Using (1), we obtain

Fa+b+c−3 = Fa−1Fb+c−3 + FaFb+c−2

= Fa−1(Fb−2Fc−2 + Fb−1Fc−1) + Fa(FbFc − Fb−2Fc−2)

= FaFbFc + Fa−1Fb−1Fc−1 − (Fa − Fa−1)Fb−2Fc−2

= FaFbFc + Fa−1Fb−1Fc−1 − Fa−2Fb−2Fc−2.

(d) We use induction on n. By part (c), the result holds for n = 3. Now assume it is
true for n ≥ 3. Clearly

Fa1+···+an+1−(n+1) = Fan+1−1Fa1+···+an−(n+1) + Fan+1
Fa1+···+an−n

≥ Fan+1
Fa1+···+an−n

≥ Fa1
Fa2

· · ·Fan+1
,

which gives the assertion.

Remark 1. In Lemma 2.1(d), if a1 = · · · = an = 1, then a1 + · · · + an − (n + 1) = −1 and
by generalizing the recursive relation for negative numbers, we get F−1 = F1 − F0 = 1.
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Remark 2. Note that all the formulas in Lemma 2.1 can be also deduced from Binet’s
formula

Fn =
αn − βn

√
5

,

where

α =
1 +

√
5

2
, β =

1 −
√

5

2
.

Lemma 2.2. Suppose m,n and k are any natural numbers with k|n, then

Fmn

Fn

Fk≡ mFm−1
n−1 .

Proof. We proceed by induction on m. Clearly, the result is true for m = 1. Assume it is
true for m. Now, using (1) and (3), we have

F(m+1)n

Fn

Fk≡ Fn−1
Fmn

Fn

+ Fmn+1

Fk≡ mFm
n−1 + Fmn+1

Fk≡ mFm
n−1 + Fn−1F(m−1)n+1 + FnF(m−1)n+2

Fk≡ mFm
n−1 + Fn−1F(m−1)n+1

...
Fk≡ mFm

n−1 + Fm
n−1

Fk≡ (m + 1)Fm
n−1.

Lemma 2.3. Let a1, . . . , an, n ≥ 3 and Fa1
Fa2

· · ·Fan
= Fb, then

b + n ≤ a1 + · · · + an ≤ b + 2n − 2.

Proof. By Lemma 2.1, Fb = Fa1
Fa2

· · ·Fan
≤ Fa1+a2+···+an−n and hence b ≤ a1 + a2 + · · · +

an − n. This gives the left hand side of the inequality. By repeated application of Lemma
2.1 we have

Fb = Fa1
Fa2

· · ·Fan

≥ Fa1+a2−2Fa3
· · ·Fan

≥ Fa1+a2+a3−4Fa4
· · ·Fan

...

≥ Fa1+···+an−2(n−1),

and so b ≥ a1 + · · · + an − 2(n − 1), which completes the proof.
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Remark 3. Note that using Binet’s formula, for n > 2, one obtains

(1 − β8)αn ≤
√

5Fn ≤ (1 + β6)αn,

which implies the following inequalities

vn − u ≤ a1 + · · · + an − b ≤ un − v,

where

u = − log((1 − β8)/
√

5)

log α
= 1.717 . . .

and

v = − log((1 + β6)/
√

5)

log α
= 1.559 . . . .

One observes that the above inequalities are sharper than Lemma 2.3.

Definition. A solution of the equation Fa1
Fa2

· · ·Fan
= Fb is said to be nontrivial, whenever

a1, . . . , an ≥ 3 or equivalently Fa1
, . . . , Fan

> 1.

Lemma 2.4. The equation FaFb = Fc has no nontrivial solution, for any natural numbers
a, b and c.

Proof. We may assume a ≤ b and the triple (a, b, c) is a nontrivial solution of the equation,
i.e., a, b ≥ 3. Clearly, Fb|Fc and hence b|c. Now put c = kb which gives k ≥ 2 and therefore
FaFb = Fkb ≥ F2b = Fb(Fb−1 + Fb+1) > F 2

b ≥ FaFb, which is impossible.

We are now able to prove the main theorem of this section.

Theorem 2.5. For each fixed n ≥ 2, the equation Fa1
Fa2

· · ·Fan
= Fb has at most finitely

many nontrivial solutions.

Proof. By Lemma 2.4, the result follows for n = 2. Assume, n ≥ 3 and let (a1, . . . , an; b)
be a nontrivial solution of the equation. Without loss of generality, we may assume 3 ≤
a1 ≤ a2 ≤ · · · ≤ an. Put a1 + · · · + an = b + k. Clearly, by Lemma 2.3 there are only
finitely many natural numbers k, which can satisfy the latter equation. As Fan

|Fb and
an ≥ 3, we have an|b and so b = k′an for some k′ ∈ N. Similarly, Fan−1

|Fb = Fk′an
and

an−1 ≥ 3, which implies that an−1|k′an and so an−1 = k′′k′′′ with k′′|k′ and k′′′|an. Now since

Fk′′′|Fan−1
|Fk′an

Fan

, Lemma 2.2 implies that Fk′′′|k′. By Lemma 2.3, there are only finitely many

k, k′, k′′, k′′′ satisfying these equations. Thus there are only finitely many choices for an−1

and consequently for a1, . . . , an−2. Finally, there are only finitely many choices for an and b
satisfying the equation.

Remark 4. The above theorem shows that except finitely many cases if k = Fa1
· · ·Fan

,
where a1, . . . , an ≥ 3 the equation Ft = kFs has no solution.
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3 Some More Results

In this section, we consider some more properties of the elements of P and Q. For instant,
it is shown that every element k > 1 of P satisfies a unique equation of the form Fn = kFm.

Theorem 3.1. The equation FaFb = FcFd holds for natural numbers a, b, c, d if and only if
Fa = Fc and Fb = Fd, or Fa = Fd and Fb = Fc.

Proof. Clearly, if one the numbers a, b, c or d, (a, say), is less than 3 then Fb = FcFd and
Lemma 2.4 implies that either Fc = Fa = 1 and Fb = Fd, or Fd = Fa = 1 and Fb = Fc.
Therefore, we assume that a, b, c, d ≥ 3 and by symmetry we may assume that 3 ≤ a ≤ b, c, d.
Using Lemma 2.1, we have

Fa+b−2 < FaFb = FcFd < Fc+d−1,

which implies that a + b − 2 < c + d − 1 and hence a + b ≤ c + d. Similarly c + d ≤ a + b
and so a + b = c + d. By repeated application of Lemma 2.1, we obtain

FaFb = FcFd

⇒ Fa−1Fb−1 = Fc−1Fd−1
...

⇒ F2Fb−a+2 = Fc−a+2Fd−a+2

⇒ Fb−a+2 = Fc−a+2Fd−a+2.

Now by Lemma 2.4, Fc−a+2 = 1 or Fd−a+2 = 1, which implies that either a = c and b = d,
or a = d and b = c.

The following corollaries follow immediately.

Corollary 3.2. Suppose Fa

Fb

= Fc

Fd

6= 1, then Fa = Fc and Fb = Fd.

Corollary 3.3. Every element k > 1 of P satisfies a unique equation of the form Fn = kFm,
for some natural numbers m and n.

Corollary 3.4. The least common multiple of two Fibonacci numbers is again a Fibonacci
number if and only if one divides the other.

Proof. Suppose lcm(Fm, Fn) = Fk, for some natural numbers m and n. Then clearly

FmFn = gcd(Fm, Fn)lcm(Fm, Fn) = Fgcd(m,n)Fk

and so gcd(Fm, Fn) = Fgcd(m,n) is either Fm or Fn. Hence either Fm|Fn or Fn|Fm.

Theorem 3.5. For any natural numbers a, b, c, d and e, the equation FaFbFc = FdFe has no
nontrivial solution.
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Proof. Assume (a, b, c; d, e) is a nontrivial solution of the equation FaFbFc = FdFe. Hence
a, b, c, d, e ≥ 3. By Lemma 2.1, we have

Fa+b+c−4 < FaFbFc = FdFe < Fd+e−1

and
Fd+e−2 < FdFe = FaFbFc ≤ Fa+b+c−3,

which imply that a + b + c = d + e + 2. Using Lemma 2.1 once more and noting the identity
a + b + c − 3 = d + e − 1, we obtain

Fd+e−4 ≤ Fd−1Fe−1

= Fa−1Fb−1Fc−1 − Fa−2Fb−2Fc−2

< Fa−1Fb−1Fc−1

≤ Fa+b+c−6.

Thus d + e + 2 < a + b + c, which is impossible.

Theorem 3.6. Let (a, b, c; d, e, f) be a nontrivial solution of the equation FaFbFc = FdFeFf ,
then a, b, c are equal to d, e, f , in some order.

Proof. Without loss of generality, we may assume that a ≤ d, 3 ≤ a ≤ b ≤ c and 3 ≤ d ≤
e ≤ f . If a = d, the result follows immediately by Theorem 3.1. Now assume that a < d.
Using Lemma 2.1, we have

Fa+b+c−4 < FaFbFc = FdFeFf ≤ Fd+e+f−3

and
Fd+e+f−4 < FdFeFf = FaFbFc ≤ Fa+b+c−3.

Thus a + b + c = d + e + f , and so by Lemma 2.1 we obtain

Fa−1Fb−1Fc−1 − Fa−2Fb−2Fc−2 = Fd−1Fe−1Ff−1 − Fd−2Fe−2Ff−2

2Fa−2Fb−2Fc−2 − Fa−3Fb−3Fc−3 = 2Fd−2Fe−2Ff−2 − Fd−3Fe−3Ff−3

...

Hence for each i ≥ 1

Fi+1Fa−iFb−iFc−i − FiFa−i−1Fb−i−1Fc−i−1 = Fi+1Fd−iFe−iFf−i − FiFd−i−1Fe−i−1Ff−i−1.

By replacing i by a in the above equality, we obtain

0 ≥ −FaFb−a−1Fc−a−1 = Fa+1Fd−aFe−aFf−a − FaFd−a−1Fe−a−1Ff−a−1 ≥ 0.

Then
Fa+1Fd−aFe−aFf−a − FaFd−a−1Fe−a−1Ff−a−1 = 0,

which is impossible, since otherwise we must have

Fd−aFe−aFf−a = Fd−a−1Fe−a−1Ff−a−1 = 0,

which implies that d = a.
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The following corollary is an immediate consequence of the above theorem.

Corollary 3.7. Let x = Fa

Fb

, y = Fc

Fd

be in P. Then xy ∈ P if and only if one of the following
occurs

i) x = 1;
ii) y = 1;
iii) x = y = 2;
iv) Fa = Fd, or
v) Fb = Fc.

Now we turn to the equation Fa1
Fa2

· · ·Fan
= Fb. The special case when ai’s are equal

follows easily from the following theorem. We are not aware of its proof so we prove it here
(see [3]).

Theorem 3.8. Let p be a prime and let m and n be natural numbers such that p ∤ m and
pα‖Fn, for α > 0. Then

i) pα+1‖Fnmp, if (p, α) 6= (2, 1);
ii) pα+2‖Fnmp, if (p, α) = (2, 1).

Proof. By the assumption and Lemma 2.2,

Fnm

Fn

p≡ mFm−1
n−1 .

Thus if p ∤ m then pα‖Fnm and hence it is enough to show that pα+1‖Fnp. By repeated
applications of (1), we have

Fpn

Fn

= Fn−1

F(p−1)n

Fn

+ F(p−1)n+1

= Fn−1

(

Fn−1

F(p−2)n

Fn

+ F(p−2)n+1

)

+ F(p−1)n+1

...

= F p−1
n−1 + F p−2

n−1Fn+1 + F p−3
n−1F2n+1 + · · · + Fn−1F(p−2)n+1 + F(p−1)n+1.

Now, for each k ∈ N

Fkn+1 = FnF(k−1)n + Fn+1F(k−1)n+1

p2α

≡ Fn+1F(k−1)n+1

...
p2α

≡ F k
n+1

p2α

≡ (Fn + Fn−1)
k

p2α

≡ kFnF k−1
n−1 + F k

n−1.
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Hence

Fpn

Fn

p2α

≡ F p−1
n−1 + F p−2

n−1Fn+1 + · · · + Fn−1F(p−2)n+1 + F(p−1)n+1

p2α

≡ F p−1
n−1 + F p−2

n−1(Fn + Fn−1) + · · · + Fn−1

(
(p − 2)FnF

p−3
n−1 + F p−1

n−1

)

+
(
(p − 1)FnF

p−2
n−1 + F p−1

n−1

)

p2α

≡ p(p − 1)

2
FnF p−2

n−1 + pF p−1
n−1 ,

which implies that pα+1‖Fnp whenever (p, α) 6= (2, 1). This proves (i).
Now, if (p, α) = (2, 1) then Fn is even, 3|n and n

3
is odd. On the other hand, 8‖F6 and

by the proof of part (i), 8‖F2n which completes the proof of part (ii).

Theorem 3.9. For all k > 1, the equation Fn = F k
m has only the solutions Fm = Fn = 1, or

k = 3, m = 3 and n = 6.

Proof. Let k > 1, n ≥ m ≥ 3 and Fn = F k
m. As Fm|Fn, we have m|n and so n = dm, for

some d ∈ N. Also, by Lemma 2.2, Fm|d. Now, if p is a prime divisor of Fm such that pa‖Fm,
where (p, a) 6= (2, 1), then p is also a divisor of d and by Theorem 3.8, pa+b‖Fn, where pb‖d.
On the other hand, pka‖Fn and so a + b = ka, i.e., b = (k − 1)a. Now, we have

k − 1 ≥ d = pbd′ ≥ pb = p(k−1)a ≥ pk−1 ≥ k,

which is impossible and hence Fm = 2. If p > 3 and p divides n, then Fp|2k, which is also
impossible. Hence n = 2s3t and as F4, F9 ∤ 2k, we must have n = 6.

R. D. Carmichael [2] showed that if n > 2 and n 6= 6, 12 then Fn has a prime divisor p,
which does not divide the Fibonacci numbers Fm, for all 1 ≤ m < n. Applying this result
one can obtain the general solutions of the equation Fa1

· · ·Fam
= Fb and more generally the

solutions of the equation Fa1
· · ·Fam

= Fb1 · · ·Fbn
. For some applications of this beautiful

theorem, see [1].
We say a solution of the equation Fa1

· · ·Fam
= Fb1 · · ·Fbn

is nontrivial, whenever ai, bj ≥
3 and ai 6= bj, for all i = 1, . . . ,m and j = 1, . . . , n.

Theorem 3.10. i) The only nontrivial solutions of the equation Fa1
Fa2

· · ·Fan
= Fb with

n > 1 and a1 ≤ · · · ≤ an are

(3, 3, 3; 6) , (3, 4, 4, 6; 12) , (3, 3, 3, 3, 4, 4; 12)

ii) The only nontrivial solutions of the equation Fa1
· · ·Fam

= Fb1 · · ·Fbn
are

(3, . . . , 3; 6, . . . , 6) , m = 3n

(

a
︷ ︸︸ ︷

3, . . . , 3,

b
︷ ︸︸ ︷

6, . . . , 6, 4, . . . , 4; 12, . . . , 12) , a + 3b = 4n

(

a
︷ ︸︸ ︷

3, . . . , 3, 4, . . . , 4;

b
︷ ︸︸ ︷

6, . . . , 6, 12, . . . , 12) , a = 3b + 4n

(

a
︷ ︸︸ ︷

6, . . . , 6, 4, . . . , 4;

b
︷ ︸︸ ︷

3, . . . , 3, 12, . . . , 12) , 3a = b + 4n
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Proof. The proofs of both parts follow easily from Carmichael’s theorem.

The following theorem is another consequence of Carmichael’s theorem.

Theorem 3.11. Suppose p1, p2, . . . , pn are arbitrary distinct prime numbers. Then there are
only finitely many n-tuples (a1, . . . , an) of nonnegative integers such that pa1

1 · · · pan

n ∈ P.

Proof. Assume {(ai1 , . . . , ain)}∞i=1 is an infinite sequence of distinct n-tuples such that for
each i the number ki = pi1

1 · · · pin
n belongs to P . Then there exist some natural numbers mi

and ni such that Fni
= kiFmi

. Without loss of generality, we may assume that ni 6= mi and
n′

is are all distinct and greater than 12. Since there are infinitely many n-tuples, we may
ignore the prime factors of the equations Fni

= kiFmi
so that we obtain an equation of type

as in Theorem 3.10, which contradicts Theorem 3.10.

Although we were able to obtain the general solutions of the equation Fa1
· · ·Fan

= Fb

using Carmichael’s theorem, an elementary proof may nevertheless be of interest.
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