Journal of Integer Sequences, Vol. 10 (2007),

Some Remarks On the Equation $F_{n}=k F_{m}$ In Fibonacci Numbers

M. Farrokhi D. G.
Faculty of Mathematical Sciences
Ferdowski University of Mashhad
Iran
m.farrokhi.d.g@gmail.com

Abstract

Let $\left\{F_{n}\right\}_{n=1}^{\infty}=\{1,1,2,3, \ldots\}$ be the sequence of Fibonacci numbers. In this paper we give some sufficient conditions on a natural number k such that the equation $F_{n}=$ $k F_{m}$ is solvable with respect to the unknowns n and m. We also show that for $k>1$ the equation $F_{n}=k F_{m}$ has at most one solution (n, m).

1 Preliminaries

Let F_{n} be the nth Fibonacci number, i.e.,

$$
F_{1}=F_{2}=1, F_{n+2}=F_{n}+F_{n+1}, \forall n \in \mathbb{N} .
$$

It is known that these numbers have the following properties :
(1) $F_{m+n}=F_{m-1} F_{n}+F_{m} F_{n+1}$;
(2) $\operatorname{gcd}\left(F_{m}, F_{n}\right)=F_{\operatorname{gcd}(m, n)}$;
(3) if $m \mid n$, then $F_{m} \mid F_{n}$;
(4) if $F_{m} \mid F_{n}$ and $m>2$, then $m \mid n$.

Now, put

$$
\begin{aligned}
\mathcal{P} & =\left\{k \in \mathbb{N}: \exists m, n \in \mathbb{N}, F_{n}=k F_{m}\right\}, \\
\mathcal{Q} & =\left\{k \in \mathbb{N}: \nexists m, n \in \mathbb{N}, F_{n}=k F_{m}\right\} .
\end{aligned}
$$

A simple computations show that the natural numbers which satisfy in \mathcal{P}, less than 100 , are as follows:

$$
1,2,3,4,5,7,8,11,13,17,18,21,29,34,47,48,55,72,76,89 .
$$

By definition of \mathcal{P} and the properties (3) and (4), for each $k \in \mathcal{P}$ there exist $m, n \in \mathbb{N}$ such that $k=\frac{F_{m n}}{F_{n}}$. However, it seems that the elements of \mathcal{Q} do not have any special form.

Using a theorem of R. D. Carmichael [2], it can be shown that the product of Fibonacci numbers and their quotients belong to \mathcal{Q} except for some cases (see Theorem 3.10).

In this paper, we use elementary methods to prove our claim. In section 3, we obtain some more properties of \mathcal{P}. For example, we show that for every element $k(>1)$ of \mathcal{P}, the equation $F_{n}=k F_{m}$ has a unique solution (n, m). Moreover, we give a necessary and sufficient condition for which the product of two elements of \mathcal{P} is again in \mathcal{P}.

2 The Main Theorem

In this section, we introduce some elements k in \mathcal{Q}, so that for each fixed $n \in \mathbb{N}$,

$$
k=F_{a_{1}} F_{a_{2}} \cdots F_{a_{n}}
$$

belongs to \mathcal{Q}, for all natural numbers a_{1}, \ldots, a_{n} but a finite number.
In order to prove the above claim, we need the following elementary properties of Fibonacci numbers.

Lemma 2.1. For all $a, b, c, a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{N}$, the following conditions hold
a) $F_{a+b-1}=F_{a} F_{b}+F_{a-1} F_{b-1}$;
b) $F_{a+b-2}=F_{a} F_{b}-F_{a-2} F_{b-2}$;
c) $F_{a+b+c-3}=F_{a} F_{b} F_{c}+F_{a-1} F_{b-1} F_{c-1}-F_{a-2} F_{b-2} F_{c-2}$;
d) if $n \geq 3$, then $F_{a_{1}+\cdots+a_{n}-n} \geq F_{a_{1}} F_{a_{2}} \cdots F_{a_{n}}$.

Proof. Parts (a) and (b) are easily verified.
(c) Using (1), we obtain

$$
\begin{aligned}
F_{a+b+c-3} & =F_{a-1} F_{b+c-3}+F_{a} F_{b+c-2} \\
& =F_{a-1}\left(F_{b-2} F_{c-2}+F_{b-1} F_{c-1}\right)+F_{a}\left(F_{b} F_{c}-F_{b-2} F_{c-2}\right) \\
& =F_{a} F_{b} F_{c}+F_{a-1} F_{b-1} F_{c-1}-\left(F_{a}-F_{a-1}\right) F_{b-2} F_{c-2} \\
& =F_{a} F_{b} F_{c}+F_{a-1} F_{b-1} F_{c-1}-F_{a-2} F_{b-2} F_{c-2} .
\end{aligned}
$$

(d) We use induction on n. By part (c), the result holds for $n=3$. Now assume it is true for $n \geq 3$. Clearly

$$
\begin{aligned}
F_{a_{1}+\cdots+a_{n+1}-(n+1)} & =F_{a_{n+1}-1} F_{a_{1}+\cdots+a_{n}-(n+1)}+F_{a_{n+1}} F_{a_{1}+\cdots+a_{n}-n} \\
& \geq F_{a_{n+1}} F_{a_{1}+\cdots+a_{n}-n} \\
& \geq F_{a_{1}} F_{a_{2}} \cdots F_{a_{n+1}},
\end{aligned}
$$

which gives the assertion.
Remark 1. In Lemma 2.1(d), if $a_{1}=\cdots=a_{n}=1$, then $a_{1}+\cdots+a_{n}-(n+1)=-1$ and by generalizing the recursive relation for negative numbers, we get $F_{-1}=F_{1}-F_{0}=1$.

Remark 2. Note that all the formulas in Lemma 2.1 can be also deduced from Binet's formula

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}
$$

where

$$
\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2} .
$$

Lemma 2.2. Suppose m, n and k are any natural numbers with $k \mid n$, then

$$
\frac{F_{m n}}{F_{n}} \stackrel{\stackrel{F_{k}}{=} m F_{n-1}^{m-1} . . .}{ }
$$

Proof. We proceed by induction on m. Clearly, the result is true for $m=1$. Assume it is true for m. Now, using (1) and (3), we have

$$
\begin{aligned}
\frac{F_{(m+1) n}}{F_{n}} & \stackrel{F_{k}}{=} F_{n-1} \frac{F_{m n}}{F_{n}}+F_{m n+1} \\
& \xlongequal{F_{k}} m F_{n-1}^{m}+F_{m n+1} \\
& \stackrel{F_{k}}{=} m F_{n-1}^{m}+F_{n-1} F_{(m-1) n+1}+F_{n} F_{(m-1) n+2} \\
& \xlongequal{F_{k}} m F_{n-1}^{m}+F_{n-1} F_{(m-1) n+1} \\
& \vdots \\
& \xlongequal{F_{k}} m F_{n-1}^{m}+F_{n-1}^{m} \\
& \stackrel{F_{k}}{=}(m+1) F_{n-1}^{m} .
\end{aligned}
$$

Lemma 2.3. Let $a_{1}, \ldots, a_{n}, n \geq 3$ and $F_{a_{1}} F_{a_{2}} \cdots F_{a_{n}}=F_{b}$, then

$$
b+n \leq a_{1}+\cdots+a_{n} \leq b+2 n-2
$$

Proof. By Lemma 2.1, $F_{b}=F_{a_{1}} F_{a_{2}} \cdots F_{a_{n}} \leq F_{a_{1}+a_{2}+\cdots+a_{n}-n}$ and hence $b \leq a_{1}+a_{2}+\cdots+$ $a_{n}-n$. This gives the left hand side of the inequality. By repeated application of Lemma 2.1 we have

$$
\begin{aligned}
F_{b} & =F_{a_{1}} F_{a_{2}} \cdots F_{a_{n}} \\
& \geq F_{a_{1}+a_{2}-2} F_{a_{3}} \cdots F_{a_{n}} \\
& \geq F_{a_{1}+a_{2}+a_{3}-4} F_{a_{4}} \cdots F_{a_{n}} \\
& \vdots \\
& \geq F_{a_{1}+\cdots+a_{n}-2(n-1)},
\end{aligned}
$$

and so $b \geq a_{1}+\cdots+a_{n}-2(n-1)$, which completes the proof.

Remark 3. Note that using Binet's formula, for $n>2$, one obtains

$$
\left(1-\beta^{8}\right) \alpha^{n} \leq \sqrt{5} F_{n} \leq\left(1+\beta^{6}\right) \alpha^{n},
$$

which implies the following inequalities

$$
v n-u \leq a_{1}+\cdots+a_{n}-b \leq u n-v,
$$

where

$$
u=-\frac{\log \left(\left(1-\beta^{8}\right) / \sqrt{5}\right)}{\log \alpha}=1.717 \ldots
$$

and

$$
v=-\frac{\log \left(\left(1+\beta^{6}\right) / \sqrt{5}\right)}{\log \alpha}=1.559 \ldots .
$$

One observes that the above inequalities are sharper than Lemma 2.3.
Definition. A solution of the equation $F_{a_{1}} F_{a_{2}} \cdots F_{a_{n}}=F_{b}$ is said to be nontrivial, whenever $a_{1}, \ldots, a_{n} \geq 3$ or equivalently $F_{a_{1}}, \ldots, F_{a_{n}}>1$.

Lemma 2.4. The equation $F_{a} F_{b}=F_{c}$ has no nontrivial solution, for any natural numbers a, b and c.

Proof. We may assume $a \leq b$ and the triple (a, b, c) is a nontrivial solution of the equation, i.e., $a, b \geq 3$. Clearly, $F_{b} \mid F_{c}$ and hence $b \mid c$. Now put $c=k b$ which gives $k \geq 2$ and therefore $F_{a} F_{b}=F_{k b} \geq F_{2 b}=F_{b}\left(F_{b-1}+F_{b+1}\right)>F_{b}^{2} \geq F_{a} F_{b}$, which is impossible.

We are now able to prove the main theorem of this section.
Theorem 2.5. For each fixed $n \geq 2$, the equation $F_{a_{1}} F_{a_{2}} \cdots F_{a_{n}}=F_{b}$ has at most finitely many nontrivial solutions.

Proof. By Lemma 2.4, the result follows for $n=2$. Assume, $n \geq 3$ and let $\left(a_{1}, \ldots, a_{n} ; b\right)$ be a nontrivial solution of the equation. Without loss of generality, we may assume $3 \leq$ $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$. Put $a_{1}+\cdots+a_{n}=b+k$. Clearly, by Lemma 2.3 there are only finitely many natural numbers k, which can satisfy the latter equation. As $F_{a_{n}} \mid F_{b}$ and $a_{n} \geq 3$, we have $a_{n} \mid b$ and so $b=k^{\prime} a_{n}$ for some $k^{\prime} \in \mathbb{N}$. Similarly, $F_{a_{n-1}} \mid F_{b}=F_{k^{\prime} a_{n}}$ and $a_{n-1} \geq 3$, which implies that $a_{n-1} \mid k^{\prime} a_{n}$ and so $a_{n-1}=k^{\prime \prime} k^{\prime \prime \prime}$ with $k^{\prime \prime} \mid k^{\prime}$ and $k^{\prime \prime \prime} \mid a_{n}$. Now since $F_{k^{\prime \prime \prime}}\left|F_{a_{n-1}}\right| \frac{F_{k^{\prime} a_{n}}}{F_{a_{n}}}$, Lemma 2.2 implies that $F_{k^{\prime \prime \prime}} \mid k^{\prime}$. By Lemma 2.3, there are only finitely many $k, k^{\prime}, k^{\prime \prime}, k^{\prime \prime \prime}$ satisfying these equations. Thus there are only finitely many choices for a_{n-1} and consequently for a_{1}, \ldots, a_{n-2}. Finally, there are only finitely many choices for a_{n} and b satisfying the equation.

Remark 4. The above theorem shows that except finitely many cases if $k=F_{a_{1}} \cdots F_{a_{n}}$, where $a_{1}, \ldots, a_{n} \geq 3$ the equation $F_{t}=k F_{s}$ has no solution.

3 Some More Results

In this section, we consider some more properties of the elements of \mathcal{P} and \mathcal{Q}. For instant, it is shown that every element $k>1$ of \mathcal{P} satisfies a unique equation of the form $F_{n}=k F_{m}$.

Theorem 3.1. The equation $F_{a} F_{b}=F_{c} F_{d}$ holds for natural numbers a, b, c, d if and only if $F_{a}=F_{c}$ and $F_{b}=F_{d}$, or $F_{a}=F_{d}$ and $F_{b}=F_{c}$.

Proof. Clearly, if one the numbers a, b, c or d, (a, say), is less than 3 then $F_{b}=F_{c} F_{d}$ and Lemma 2.4 implies that either $F_{c}=F_{a}=1$ and $F_{b}=F_{d}$, or $F_{d}=F_{a}=1$ and $F_{b}=F_{c}$. Therefore, we assume that $a, b, c, d \geq 3$ and by symmetry we may assume that $3 \leq a \leq b, c, d$. Using Lemma 2.1, we have

$$
F_{a+b-2}<F_{a} F_{b}=F_{c} F_{d}<F_{c+d-1}
$$

which implies that $a+b-2<c+d-1$ and hence $a+b \leq c+d$. Similarly $c+d \leq a+b$ and so $a+b=c+d$. By repeated application of Lemma 2.1, we obtain

$$
\begin{aligned}
& F_{a} F_{b}
\end{aligned}=F_{c} F_{d},
$$

Now by Lemma 2.4, $F_{c-a+2}=1$ or $F_{d-a+2}=1$, which implies that either $a=c$ and $b=d$, or $a=d$ and $b=c$.

The following corollaries follow immediately.
Corollary 3.2. Suppose $\frac{F_{a}}{F_{b}}=\frac{F_{c}}{F_{d}} \neq 1$, then $F_{a}=F_{c}$ and $F_{b}=F_{d}$.
Corollary 3.3. Every element $k>1$ of \mathcal{P} satisfies a unique equation of the form $F_{n}=k F_{m}$, for some natural numbers m and n.

Corollary 3.4. The least common multiple of two Fibonacci numbers is again a Fibonacci number if and only if one divides the other.

Proof. Suppose $\operatorname{lcm}\left(F_{m}, F_{n}\right)=F_{k}$, for some natural numbers m and n. Then clearly

$$
F_{m} F_{n}=\operatorname{gcd}\left(F_{m}, F_{n}\right) \operatorname{lcm}\left(F_{m}, F_{n}\right)=F_{\operatorname{gcd}(m, n)} F_{k}
$$

and so $\operatorname{gcd}\left(F_{m}, F_{n}\right)=F_{\operatorname{gcd}(m, n)}$ is either F_{m} or F_{n}. Hence either $F_{m} \mid F_{n}$ or $F_{n} \mid F_{m}$.
Theorem 3.5. For any natural numbers a, b, c, d and e, the equation $F_{a} F_{b} F_{c}=F_{d} F_{e}$ has no nontrivial solution.

Proof. Assume ($a, b, c ; d, e$) is a nontrivial solution of the equation $F_{a} F_{b} F_{c}=F_{d} F_{e}$. Hence $a, b, c, d, e \geq 3$. By Lemma 2.1, we have

$$
F_{a+b+c-4}<F_{a} F_{b} F_{c}=F_{d} F_{e}<F_{d+e-1}
$$

and

$$
F_{d+e-2}<F_{d} F_{e}=F_{a} F_{b} F_{c} \leq F_{a+b+c-3},
$$

which imply that $a+b+c=d+e+2$. Using Lemma 2.1 once more and noting the identity $a+b+c-3=d+e-1$, we obtain

$$
\begin{aligned}
F_{d+e-4} & \leq F_{d-1} F_{e-1} \\
& =F_{a-1} F_{b-1} F_{c-1}-F_{a-2} F_{b-2} F_{c-2} \\
& <F_{a-1} F_{b-1} F_{c-1} \\
& \leq F_{a+b+c-6} .
\end{aligned}
$$

Thus $d+e+2<a+b+c$, which is impossible.
Theorem 3.6. Let $(a, b, c ; d, e, f)$ be a nontrivial solution of the equation $F_{a} F_{b} F_{c}=F_{d} F_{e} F_{f}$, then a, b, c are equal to d, e, f, in some order.

Proof. Without loss of generality, we may assume that $a \leq d, 3 \leq a \leq b \leq c$ and $3 \leq d \leq$ $e \leq f$. If $a=d$, the result follows immediately by Theorem 3.1. Now assume that $a<d$. Using Lemma 2.1, we have

$$
F_{a+b+c-4}<F_{a} F_{b} F_{c}=F_{d} F_{e} F_{f} \leq F_{d+e+f-3}
$$

and

$$
F_{d+e+f-4}<F_{d} F_{e} F_{f}=F_{a} F_{b} F_{c} \leq F_{a+b+c-3} .
$$

Thus $a+b+c=d+e+f$, and so by Lemma 2.1 we obtain

$$
\begin{aligned}
& F_{a-1} F_{b-1} F_{c-1}-F_{a-2} F_{b-2} F_{c-2}=F_{d-1} F_{e-1} F_{f-1}-F_{d-2} F_{e-2} F_{f-2} \\
& 2 F_{a-2} F_{b-2} F_{c-2}-F_{a-3} F_{b-3} F_{c-3}=2 F_{d-2} F_{e-2} F_{f-2}-F_{d-3} F_{e-3} F_{f-3} \\
& \vdots
\end{aligned}
$$

Hence for each $i \geq 1$

$$
F_{i+1} F_{a-i} F_{b-i} F_{c-i}-F_{i} F_{a-i-1} F_{b-i-1} F_{c-i-1}=F_{i+1} F_{d-i} F_{e-i} F_{f-i}-F_{i} F_{d-i-1} F_{e-i-1} F_{f-i-1} .
$$

By replacing i by a in the above equality, we obtain

$$
0 \geq-F_{a} F_{b-a-1} F_{c-a-1}=F_{a+1} F_{d-a} F_{e-a} F_{f-a}-F_{a} F_{d-a-1} F_{e-a-1} F_{f-a-1} \geq 0
$$

Then

$$
F_{a+1} F_{d-a} F_{e-a} F_{f-a}-F_{a} F_{d-a-1} F_{e-a-1} F_{f-a-1}=0
$$

which is impossible, since otherwise we must have

$$
F_{d-a} F_{e-a} F_{f-a}=F_{d-a-1} F_{e-a-1} F_{f-a-1}=0
$$

which implies that $d=a$.

The following corollary is an immediate consequence of the above theorem.
Corollary 3.7. Let $x=\frac{F_{a}}{F_{b}}, y=\frac{F_{c}}{F_{d}}$ be in \mathcal{P}. Then $x y \in \mathcal{P}$ if and only if one of the following occurs
i) $x=1$;
ii) $y=1$;
iii) $x=y=2$;
iv) $F_{a}=F_{d}$, or
v) $F_{b}=F_{c}$.

Now we turn to the equation $F_{a_{1}} F_{a_{2}} \cdots F_{a_{n}}=F_{b}$. The special case when a_{i} 's are equal follows easily from the following theorem. We are not aware of its proof so we prove it here (see [3]).

Theorem 3.8. Let p be a prime and let m and n be natural numbers such that $p \nmid m$ and $p^{\alpha} \| F_{n}$, for $\alpha>0$. Then
i) $p^{\alpha+1} \| F_{n m p}$, if $(p, \alpha) \neq(2,1)$;
ii) $p^{\alpha+2} \| F_{n m p}$, if $(p, \alpha)=(2,1)$.

Proof. By the assumption and Lemma 2.2,

$$
\frac{F_{n m}}{F_{n}} \stackrel{p}{=} m F_{n-1}^{m-1}
$$

Thus if $p \nmid m$ then $p^{\alpha} \| F_{n m}$ and hence it is enough to show that $p^{\alpha+1} \| F_{n p}$. By repeated applications of (1), we have

$$
\begin{aligned}
\frac{F_{p n}}{F_{n}} & =F_{n-1} \frac{F_{(p-1) n}}{F_{n}}+F_{(p-1) n+1} \\
& =F_{n-1}\left(F_{n-1} \frac{F_{(p-2) n}}{F_{n}}+F_{(p-2) n+1}\right)+F_{(p-1) n+1} \\
& \vdots \\
& =F_{n-1}^{p-1}+F_{n-1}^{p-2} F_{n+1}+F_{n-1}^{p-3} F_{2 n+1}+\cdots+F_{n-1} F_{(p-2) n+1}+F_{(p-1) n+1} .
\end{aligned}
$$

Now, for each $k \in \mathbb{N}$

$$
\begin{aligned}
F_{k n+1} & =F_{n} F_{(k-1) n}+F_{n+1} F_{(k-1) n+1} \\
& \stackrel{p^{2 \alpha}}{\equiv} F_{n+1} F_{(k-1) n+1} \\
& \vdots \\
& \stackrel{p^{2 \alpha}}{\equiv} F_{n+1}^{k} \\
& \stackrel{p^{2 \alpha}}{\equiv}\left(F_{n}+F_{n-1}\right)^{k} \\
& \stackrel{p^{2 \alpha}}{\equiv} k F_{n} F_{n-1}^{k-1}+F_{n-1}^{k} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{F_{p n}}{F_{n}} \stackrel{p^{2 \alpha}}{\equiv} F_{n-1}^{p-1}+F_{n-1}^{p-2} F_{n+1}+\cdots+F_{n-1} F_{(p-2) n+1}+F_{(p-1) n+1} \\
& \stackrel{p^{2 \alpha}}{\equiv} F_{n-1}^{p-1}+F_{n-1}^{p-2}\left(F_{n}+F_{n-1}\right)+\cdots+F_{n-1}\left((p-2) F_{n} F_{n-1}^{p-3}+F_{n-1}^{p-1}\right) \\
&+\left((p-1) F_{n} F_{n-1}^{p-2}+F_{n-1}^{p-1}\right) \\
& \stackrel{p^{2 \alpha}}{\equiv} \\
& \stackrel{p(p-1)}{2} F_{n} F_{n-1}^{p-2}+p F_{n-1}^{p-1},
\end{aligned}
$$

which implies that $p^{\alpha+1} \| F_{n p}$ whenever $(p, \alpha) \neq(2,1)$. This proves (i).
Now, if $(p, \alpha)=(2,1)$ then F_{n} is even, $3 \mid n$ and $\frac{n}{3}$ is odd. On the other hand, $8 \| F_{6}$ and by the proof of part (i), $8 \| F_{2 n}$ which completes the proof of part (ii).

Theorem 3.9. For all $k>1$, the equation $F_{n}=F_{m}^{k}$ has only the solutions $F_{m}=F_{n}=1$, or $k=3, m=3$ and $n=6$.

Proof. Let $k>1, n \geq m \geq 3$ and $F_{n}=F_{m}^{k}$. As $F_{m} \mid F_{n}$, we have $m \mid n$ and so $n=d m$, for some $d \in \mathbb{N}$. Also, by Lemma 2.2, $F_{m} \mid d$. Now, if p is a prime divisor of F_{m} such that $p^{a} \| F_{m}$, where $(p, a) \neq(2,1)$, then p is also a divisor of d and by Theorem 3.8, $p^{a+b} \| F_{n}$, where $p^{b} \| d$. On the other hand, $p^{k a} \| F_{n}$ and so $a+b=k a$, i.e., $b=(k-1) a$. Now, we have

$$
k-1 \geq d=p^{b} d^{\prime} \geq p^{b}=p^{(k-1) a} \geq p^{k-1} \geq k,
$$

which is impossible and hence $F_{m}=2$. If $p>3$ and p divides n, then $F_{p} \mid 2^{k}$, which is also impossible. Hence $n=2^{s} 3^{t}$ and as $F_{4}, F_{9} \nmid 2^{k}$, we must have $n=6$.
R. D. Carmichael [2] showed that if $n>2$ and $n \neq 6,12$ then F_{n} has a prime divisor p, which does not divide the Fibonacci numbers F_{m}, for all $1 \leq m<n$. Applying this result one can obtain the general solutions of the equation $F_{a_{1}} \cdots F_{a_{m}}=F_{b}$ and more generally the solutions of the equation $F_{a_{1}} \cdots F_{a_{m}}=F_{b_{1}} \cdots F_{b_{n}}$. For some applications of this beautiful theorem, see [1].

We say a solution of the equation $F_{a_{1}} \cdots F_{a_{m}}=F_{b_{1}} \cdots F_{b_{n}}$ is nontrivial, whenever $a_{i}, b_{j} \geq$ 3 and $a_{i} \neq b_{j}$, for all $i=1, \ldots, m$ and $j=1, \ldots, n$.

Theorem 3.10. i) The only nontrivial solutions of the equation $F_{a_{1}} F_{a_{2}} \cdots F_{a_{n}}=F_{b}$ with $n>1$ and $a_{1} \leq \cdots \leq a_{n}$ are

$$
(3,3,3 ; 6),(3,4,4,6 ; 12),(3,3,3,3,4,4 ; 12)
$$

ii) The only nontrivial solutions of the equation $F_{a_{1}} \cdots F_{a_{m}}=F_{b_{1}} \cdots F_{b_{n}}$ are

$$
\begin{aligned}
& (3, \ldots, 3 ; 6, \ldots, 6) \quad, \quad m=3 n \\
& (\overbrace{3, \ldots, 3}^{a}, \overbrace{6, \ldots, 6}^{b}, 4, \ldots, 4 ; 12, \ldots, 12) \quad, \quad a+3 b=4 n \\
& (\overbrace{3, \ldots, 3}^{a}, 4, \ldots, 4 ; \overbrace{6, \ldots, 6}^{b}, 12, \ldots, 12) \quad, \quad a=3 b+4 n \\
& (\overbrace{6, \ldots, 6}^{a}, 4, \ldots, 4 ; \overbrace{3, \ldots, 3}^{b}, 12, \ldots, 12) \quad, \quad 3 a=b+4 n
\end{aligned}
$$

Proof. The proofs of both parts follow easily from Carmichael's theorem.
The following theorem is another consequence of Carmichael's theorem.
Theorem 3.11. Suppose $p_{1}, p_{2}, \ldots, p_{n}$ are arbitrary distinct prime numbers. Then there are only finitely many n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ of nonnegative integers such that $p_{1}^{a_{1}} \cdots p_{n}^{a_{n}} \in \mathcal{P}$.

Proof. Assume $\left\{\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)\right\}_{i=1}^{\infty}$ is an infinite sequence of distinct n-tuples such that for each i the number $k_{i}=p_{1}^{i_{1}} \cdots p_{n}^{i_{n}}$ belongs to \mathcal{P}. Then there exist some natural numbers m_{i} and n_{i} such that $F_{n_{i}}=k_{i} F_{m_{i}}$. Without loss of generality, we may assume that $n_{i} \neq m_{i}$ and $n_{i}^{\prime} s$ are all distinct and greater than 12 . Since there are infinitely many n-tuples, we may ignore the prime factors of the equations $F_{n_{i}}=k_{i} F_{m_{i}}$ so that we obtain an equation of type as in Theorem 3.10, which contradicts Theorem 3.10.

Although we were able to obtain the general solutions of the equation $F_{a_{1}} \cdots F_{a_{n}}=F_{b}$ using Carmichael's theorem, an elementary proof may nevertheless be of interest.

4 Acknowledgment

The author would like to thank the referee for some useful suggestions and corrections.

References

[1] Y. Bugeaud, F. Luca, M. Mignotte and S. Siksek, On Fibonacci numbers with few prime divisors, Proc. Japan Acad. Ser. A 81 (2005), 17-20.
[2] R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^{n} \pm \beta^{n}$, Ann. Math. (2) $15(1913 / 14), 30-48$.
[3] S. Vajda, Fibonacci 8 Lucas Numbers, and the Golden Section, Ellis Horwood Limited, Chichester, England, 1989.

2000 Mathematics Subject Classification: Primary 11B39; Secondary 11B50, 11D99.
Keywords: Fibonacci numbers.
(Concerned with sequence A000045.)

Received March 28 2007; revised version received May 22 2007. Published in Journal of Integer Sequences, June 42007.

Return to Journal of Integer Sequences home page.

