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Abstract

We prove and generalize a conjecture of Goulden, Litsyn, and Shevelev that certain

Laurent polynomials related to the solution of a functional equation have only odd

negative powers.

1 Introduction

Consider the functional equation

k(1 + χ) log(1 + χ) = (k + 1)χ − t. (1)
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It is easily seen that (1) has a unique solution χ = χ(t, k) as a formal power series in t, and
that the coefficient of tn in χ(t, k) is a polynomial in k of degree n − 1:

χ(t, k) = t + k
t2

2!
+ (3k2 − k)

t3

3!
+ (15k3 − 10k2 + 2k)

t4

4!

+(105k4 − 105k3 + 40k2 − 6k)
t5

5!
+ · · ·

(2)

Here the coefficients are sequence A075856 in the Online Encyclopedia of Integer Sequences
[8].

If we set k = 1 then the coefficients of tn/n! are the Betti numbers of the moduli space
of n-pointed stable curves of genus 0, as shown by Keel [6]. These coefficients give sequence
A074059 in [8]:

χ(t, 1) = t +
t2

2!
+ 2

t3

3!
+ 7

t4

4!
+ 34

t5

5!
+ · · · (3)

For an arbitrary positive integer k, there is an interpretation of χ(t, k) in terms of configu-
ration spaces given by Manin [7, p. 197]. See also Goulden, Litsyn, and Shevelev [5] and the
references given there. The series expansion of χ has also been studied from a combinatorial
perspective. See Dumont and Ramamonjisoa [3, Proposition 6], where χ is shown to count
functional digraphs by improper edges, and Zeng [11, Corollary 11], where χ is shown to
count certain trees by improper edges. Some related bijections have been studied by Chen
and Guo [1].

Following Goulden, Litsyn, and Shevelev [5], let us define µl(n) to be the coefficient of
kn−ltn/n! in χ(t, k). The expansion (2) suggests that µ1(n) = 1 · 3 · · · (2n− 3), and thus that

∞
∑

n=1

µ1(n)
tn

n!
= 1 −

√
1 − 2t.

Goulden et al. proved more generally that for each l,
∑∞

n=0 µl(n)tn/n! is a Laurent polynomial
Ml(u) in u =

√
1 − 2t.

The first few polynomials Ml(u), given by Goulden et al. [5], are reproduced below:

M1(u) = 1 − u,

M2(u) = −1

6
u−1 +

1

2
− 1

2
u +

1

6
u2,

M3(u) =
1

72
u−3 − 1

8
u−1 +

2

9
− 1

8
u +

1

72
u3,

M4(u) = − 1

432
u−5 +

1

72
u−3 − 1

20
u−1 +

1

18
− 1

72
u − 1

144
u3 +

1

270
u4,

M5(u) =
5

10368
u−7 − 5

1728
u−5 +

43

5760
u−3 − 59

4320
u−1

+
1

90
− 5

1152
u +

1

405
u2 +

1

576
u3 − 1

270
u4 +

23

17280
u5.

In this paper we give three proofs of the following conjecture of Goulden et al. [5, Conjec-
ture 1]:
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Theorem 1. The negative powers of u in Ml(u) are all odd.

Our first proof uses a change of variables to express the generating function in y for
the Laurent polynomials Mn(u) in terms of the power series in y (with coefficients that are
Laurent polynomials in u)

S = e−y/2yu

√

1 +
2y

u2
T ,

where T is a power series in y only. It is easily seen that any odd power of S contains only
odd (but possibly negative) powers of u, while any even power of S contains no negative
powers of u. This change of variables is related to an expansion of the Lambert W function
around its branch point at −e−1 (though our proof uses only formal power series).

Our second proof uses properties of formal Laurent series, and shows that the Goulden-
Litsyn-Shevelev property holds much more generally for solutions of the functional equation

H = t + kΛ(H) (4)

where Λ(z) is an arbitrary power series of the form λ2z
2 + λ3z

3 + · · · with λ2 6= 0; the
Goulden-Litsyn-Shevelev conjecture corresponds to the case Λ(z) = (1 + z) log(1 + z) − z.

In our third proof, we consider the same generalization as in the second proof, but we
apply Lagrange inversion to obtain an explicit formula from which it is clear that there are
no negative even powers of u.

2 First Proof of Theorem 1

When χ is expanded as a power series in t, the coefficient of tn is a polynomial in k of degree
n − 1. To reverse the coefficients of these polynomials, we introduce a new variable y and
set ξ = ξ(t, y) = χ(yt, y−1), so that

∑∞

n=0 µl(n)tn/n! is the coefficient of yl in ξ. As a power
series in t,

ξ(t, y) = yt + y
t2

2!
+ (3y − y2)

t3

3!
+ (15y − 10y2 + 2y3)

t4

4!

+ (105y − 105y2 + 40y3 − 6y4)
t5

5!
+ · · ·

and ξ satisfies the functional equation

(1 + ξ) log(1 + ξ) = (1 + y)ξ − ty2. (5)

As we shall see in the second proof, equation (5) has two solutions as power series in t and
y, but ξ is the unique solution in which the constant term in t is zero.

We can expand ξ as a power series in y, and as shown by Goulden et al. [5], in this
expansion the coefficient of yl is a Laurent polynomial in u =

√
1 − 2t.

Replacing t with 1
2
(1 − u2) in (5) gives

(1 + ξ) log(1 + ξ) = (1 + y)ξ − 1
2
(1 − u2)y2. (6)
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We will express ξ in terms of an auxiliary power series S = S(u, y) satisfying

1 + y + 1
2
(1 − u2)y2 = ey

(

1 − S2/2
)

(7)

in which the sign of S is chosen so that S = yu + · · · . Solving (7) for S gives

S = e−y/2yu

√

1 +
2y

u2
T ,

where T is the power series in y given by

T =
ey − 1 − y − y2/2

y3
.

It is clear that S is a power series in y with coefficients that are Laurent polynomials in u.
Our proof of Theorem 1 relies on the following lemma.

Lemma 1. For every nonnegative integer n, S(u, y)n contains no even negative powers of u.

Proof. If n = 2j is even, then

S2j = e−jyy2ju2j

(

1 +
2y

u2
T

)j

,

which is u2j times a polynomial in u−1 of degree 2j, so no negative powers of u appear. If
n = 2j + 1 is odd, then

S2j+1 = e−jy−y/2y2j+1u2j+1

(

1 +
2y

u2
T

)j+1/2

= e−jy−y/2y2j+1u2j+1
∑

m≥0

(

j + 1
2

m

)

2mym

u2m
Tm.

The sum does not terminate, so negative powers of u appear. However, we have an odd
power of u times a Laurent polynomial in u2, so only odd powers of u occur.

Now we want to show that 1 + ξ is ey times a power series in S. Then Theorem 1 will
follow from Lemma 1.

Let 1 + ξ = eye−G so that G = y − log(1 + ξ) = yu + · · · . Making these substitutions in
equation (6) and simplifying, we get

e−G(1 + G) = 1 − S2

2
,

which yields
S =

√

2 − 2e−G(1 + G) = G − G2/3 + · · · (8)

Then (8) can be inverted to express G as a power series in S, so 1 + ξ is ey times a power
series in S. This completes the first proof of Theorem 1.
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Remark. What led us to these substitutions? We used Maple to solve equation (5), which
gave

ξ = exp
(

W (−(1 + y + ty2)e−1−y) + 1 + y
)

− 1. (9)

Here W is the Lambert W function, which satisfies W (z)e−W (z) = z. (See, e.g., Corliss
et al. [2] for more information about this function.) Equation (9) suggests that if we set
1+ξ = ey+H then H may be simpler than ξ. (We take G = −H to make the initial coefficient
of G positive.) Since W (z) has a branch point of order 2 at z = −e−1, W (−e−1 + z) can
be expanded as a power series in

√
z. Replacing z with 2S2e−1 gives a power series with

rational coefficients:

W (−(1 − 2S2)e−1) = −1 + 2S − 4

3
S2 +

11

9
S3 − 172

135
S4 + · · · .

To apply this expansion to ξ we need to find S with

−(1 − 2S2)e−1 = −(1 + y + ty2)e−1−y.

This equation is equivalent to (7) with t = 1
2
(1 − u2).

3 Second Proof of Theorem 1

In this section we give a different proof of a generalization of Theorem 1. Throughout this
section, Φ(z) = 1 + φ1z + φ2z

2 + · · · is a power series in z with constant term 1 in which the
coefficients φ1, φ2, . . . are indeterminates, and R is the ring of polynomials in the φi, u, and
u−1, where u is another indeterminate.

Lemma 2. The equation

F 2Φ(F ) − 2yF + (1 − u2)y2 = 0 (10)

has two power series solutions F = f1y + f2y
2 + · · · with no constant term, given by F =

Z(u, y) and F = Z(−u, y), where

Z(u, y) = (1 − u)y +
(1 − u)3

2u
φ1y

2 +

(

(1 − u)5(1 + 5u)

8u3
φ2

1 +
(1 − u)4

2u
φ2

)

y3

+

(

(1 − u)7(1 + 7u + 16u2)

16u5
φ3

1 +
(1 − u)6(1 + 6u)

4u3
φ1φ2 +

(1 − u)5

2u
φ3

)

y4 + · · · . (11)

Moreover, the coefficient of yn in Z(u, y) is a Laurent polynomial in u.

Proof. Let F = f1y + f2y
2 + · · · . Substituting in (10) and equating coefficients of y2 gives

(f1−1)2−u2 = 0, so if F satisfies (10) then f1 is either 1−u or 1+u. The coefficient of yn+1

in F 2Φ(F ) is a polynomial in φ1, . . . , φn−1, f1, . . . , fn in which fn occurs only in the term
2f1fn, and the coefficient of yn+1 in −2yF is −2fn−1. Thus for n ≥ 2, the coefficient of yn+1

in the left side of (10) is a polynomial in φ1, . . . , φn−1, f1, . . . , fn in which fn occurs only in
the term 2(f1 −1)fn. Thus after a choice of either f1 = 1−u or f1 = 1+u, there is a unique
solution of (10) in which fn is a polynomial in φ1, . . . , φn−1, f1, . . . , fn−1 divided by f1 − 1.
Since f1 − 1 is either u or −u, it follows that fn is a Laurent polynomial in u. Replacing u
by −u switches the two possibilities for f1, so it must also switch the two solutions.
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In the next lemma we will work in the ring R((X))[[y]] of formal power series in y with
coefficients that are Laurent series in X. These are series of the form

∞
∑

i=−∞

∞
∑

j=0

aijX
iyj

such that for each j ≥ 0, aij = 0 for all but finitely many negative values of i. Related
applications of formal Laurent series were used by Gessel [4] and Xin [10].

Lemma 3. Let X be an indeterminate and let Z(u, y) be as in Lemma 2. Then in the formal

Laurent series ring R((X))[[y]], we have

Φ(X) − 2y

X
+

(1 − u2)y2

X2
=

(

1 − Z(u, y)

X

)(

1 − Z(−u, y)

X

)

T, (12)

where T ∈ R[[X, y]] and T has constant term 1 in X and y.

Proof. Let

X2Φ(X) − 2yX + (1 − u2)y2 =
∞

∑

j=0

cjX
j

and let

T1 =

(

1 − Z(u, y)

X

)−1 (

Φ(X) − 2y

X
+

(1 − u2)y2

X2

)

.

In the ring R((X))[[y]] we have the expansion

(

1 − Z(u, y)

X

)−1

=
∞

∑

n=0

(

Z(u, y)

X

)n

.

Then writing Z for Z(u, y), we have

T1 =
∞

∑

i=0

(

Z

X

)i ∞
∑

j=0

cjX
j−2,

so the coefficient of X−m in T1 is
∑

j≥max(2−m,0)

cjZ
m+j−2.

Thus for m ≥ 2 the coefficient of X−m in T1 is 0. A similar argument applied to
T = (1 − Z(−u, y)/X)−1 T1 shows that the coefficient of X−m in T is 0 for m ≥ 1, so
T ∈ R[[X, y]].

Finally, setting y = 0 in (12) shows that the constant term in y in T is Φ(X), so the
constant term in X and y is 1.

Lemma 4. For any nonnegative integer r, Z(u, y)r contains no even negative powers of u.
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Proof. It is sufficient to prove that Z(u, y)r + Z(−u, y)r contains no negative powers of u.
Let Ψ be the expression appearing in (12). Since the left side of (12) has constant term
1 and has no negative powers of u, log Ψ is a well-defined element of R((X))[[y]] with no
negative powers of u.

The logarithm of the right side of (12) is

−
∞

∑

r=1

Z(u, y)r + Z(−u, y)r

rXr
+ log T

Since T contains no negative powers of X, for r > 0 the coefficient of X−r in log Ψ is
−1

r
(Z(u, y)r + Z(−u, y)r), which therefore contains no negative powers of u.

We can now prove our generalization of the Goulden-Litsyn-Shevelev Conjecture.

Theorem 2. Let Λ(z) = λ2z
2 + λ3z

3 + · · · be a formal power series, where λ2 6= 0. Then

the equation

H = t + kΛ(H) (13)

has a unique power series solution H(t, k) = t + λ2kt2 + (λ3k + 2λ2
2k

2)t3 + · · · , in which

the coefficient of tn is a polynomial in k of degree n − 1. Let µl(n)/n! be the coefficient of

kn−ltn in H(t, k). Then
∑∞

n=0 µl(n)tn/n! is a Laurent polynomial in
√

1 − 4λ2t with no even

negative powers.2

Proof. We shall prove only the case λ2 = 1
2

of the theorem. The general case then follows,
after a short calculation, by replacing k with 2λ2k in (13).

We prove only the last assertion of the theorem; the other assertions are straightforward.
Set J(t, y) = H(yt, y−1) so that

∑∞

n=0 µl(n)tn/n! is the coefficient of yl in J and set Φ(z) =
2Λ(z)/z2 = 1+2λ3z+ . . . . Then (13) becomes J = yt+ 1

2
y−1J2Φ(J), which may be rewritten

as
J2Φ(J) − 2yJ + 2ty2 = 0. (14)

By Lemma 2, J = Z(
√

1 − 2t, y) is a solution of (14) with no constant term in t, so it must
be the unique such solution, and the conclusion follows from the case m = 1 of Lemma 4.

Remark. The reader may wonder how the two solutions of Lemma 2 became the unique so-
lution of Theorem 2. We have two solutions, Z(

√
1 − 2t, y) and Z(−

√
1 − 2t, y) of (14).

The coefficient of tn in Z(
√

1 − 2t, y) is a polynomial in y, but the coefficient of tn in
Z(−

√
1 − 2t, y) is not a polynomial in y, so although Z(−

√
1 − 2t, y) corresponds to a so-

lution (with nonzero constant term in t) of (14), it does not correspond to a formal power
series solution of (13).

Theorem 1 is obtained from Theorem 2 by taking Λ(z) = (1 + z) log(1 + z) − z.

2The n! in the denominator is only for compatibility with the original Goulden-Litsyn-Shevelev conjecture.
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Two cases of Theorem 2 with simple combinatorial interpretations are worth mentioning.
First take Λ(z) = ez −z−1. (It is interesting to note that in this case, as in (1), the solution
can be expressed in terms of the Lambert W function.) Here

H(t, k) = t + k
t2

2!
+ (k + 3k2)

t3

3!
+ (k + 10k2 + 15k3)

t4

4!

+ (k + 25k2 + 105k3 + 105k4)
t5

5!
+ · · ·

The coefficient of kitn/n! in H(t, k) is the number of rooted trees with i unlabeled internal
vertices, each with at least two children, and n labeled leaves. (These are sometimes called
phylogenetic trees.) Setting k = 1 gives

H(t, 1) = t +
t2

2!
+ 4

t3

3!
+ 26

t4

4!
+ 236

t5

5!
+ 2752

t6

6!
+ 39208

t7

7!
+ 660032

t8

8!
· · · .

These coefficients are sequence A000311 in [8].
Another example is Λ(z) = z2/(1 − z), so

H = t + k
H2

1 − H
. (15)

Here we can solve for H explictly, obtaining

H =
1 + t −

√

(1 − t)2 − 4kt

1 + k
= t +

∞
∑

n=2

n−1
∑

i=1

1

i

(

n − 2

i − 1

)(

n + i − 1

i − 1

)

kitn, (16)

where the formula for the coefficients is easily derived by Lagrange inversion. It is clear from
(15) that the coefficient of kitn in H(t, k) is the number of ordered trees with n leaves and i
internal vertices, in which every internal vertex has at least two children. These coefficients
are sequence A033282 in [8], which gives many references and some additional combinatorial
interpretations, notably in terms of dissections of a polygon.

Using the explicit formula (16) for the solution of (15) we can verify this case of Theorem 2
directly. In fact, a stronger statement holds here: if ρl(n) is the coefficient of kn−ltn in H(t, k)
(here it is appropriate to use ordinary, rather than exponential, generating functions) then
∑∞

n=0 ρl(n)tn is a Laurent polynomial in
√

1 − 4t in which the only even powers of
√

1 − 4t
are (

√
1 − 4t)0 and (

√
1 − 4t)2. To see this, we note that it follows from (16) that

∞
∑

l=0

yl

∞
∑

n=0

ρl(n)tn = H(yt, y−1) = y
1 + yt −

√

(1 − yt)2 − 4t

2(1 + y)
= J(t, y)

Setting u =
√

1 − 4t, so that t = (1 − u2)/4, we have

J((1 − u2)/4, y) = y
4 + y(1 − u2) − u

√

16 + 8y(1 − u−2) + y2(u − u−1)2

8(1 + y)
.

Note that the expression under the square root sign involves only even powers of u, and it is
multiplied by u, giving only odd powers of u. Thus the contribution to even powers of u is

y
4 + y(1 − u2)

8(1 + y)
=

y

2
− y2(3 + u2)

8(1 + y)
=

y

2
+

∞
∑

l=2

1
8
(−1)l−1(3 + u2)yl.
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4 Third proof of Theorem 1

In our third proof, we use Lagrange inversion to prove Lemma 4 (from which, as we have
seen, Theorem 2 follows easily) by giving an explicit formula for Z(u, y)r that makes it clear
that it has no even negative powers of u.

Theorem 3. With Z(u, y) as in Lemma 2, we have for any positive integer r,

Z(u, y)r = yr(1 − u)r +
∞

∑

n=r+1

yn

×
∑

m1+2m2+···=n−r

(−1)m r

2m + n

(

m

m1,m2, · · ·

)

Pm,n(u)φm1

1 φm2

2 · · · , (17)

where m = m1 + m2 + · · · and

Pm,n(u) =
n

∑

i=1−2m

(

2m + n

2m + i

)(

m + i/2

m

)

(−u)i. (18)

Proof. Let us set Ψ(z) = z2(φ1z +φ2z
2 + · · · ), so that with Φ(z) as defined at the beginning

of Section 3 we have z2Φ(z) = z2 +Ψ(z). Then (10) may be written (F −y)2 = u2y2−Ψ(F ).
Taking square roots gives

F − y = −uy

√

1 − Ψ(F )

u2y2
, (19)

where the sign of the square root is chosen so as to give the solution in which the coefficient of
y is 1−u rather than 1+u. To apply Lagrange inversion, we must make a slight modification
in (19). It is not difficult to show, e.g., by equating coefficients in (10), that the coefficient of
yn in Z(u, y) is a sum of terms in φm1

1 φm2

2 · · ·φmn−1

n−1 , where m1+2m2+· · · (n−1)mn−1 = n−1.
Thus the variable y in Z(u, y) is redundant; Z(u, y) can be recovered from Z(u, 1) be replacing
each φi with yiφi and then multiplying by y. So it is enough to solve F = 1−u

√

1 − u−2Ψ(F )
for F as a power series in φ1, φ2, . . . . Finally, to put this equation into a form to which
Lagrange inversion, in its usual form, can be applied (see, e.g., Stanley [9, Theorem 5.4.2])
we introduce a new redundant variable x and consider the equation

F = x
(

1 − u
√

1 − u−2Ψ(F )
)

. (20)

for F in as power series in x. Applying Lagrange inversion, we have for any positive integer r,

[xs]F r =
r

s
[ts−r]

(

1 − u
√

1 − u−2Ψ(t)
)s

=
r

s
[ts−r]

s
∑

j=0

(

s

j

)

(−u)j
(

1 − u−2Ψ(t)
)j/2

=
r

s
[ts−r]

s
∑

j=0

(

s

j

)

(−u)j
∑

m

(

j/2

m

)

(−u−2)mΨ(t)m
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=
r

s
[ts−r]

s
∑

j=0

(

s

j

)

∑

m

(−1)m

(

j/2

m

)

(−u)j−2m

×
∑

m1+m2+···=m

(

m

m1,m2, · · ·

)

φm1

1 φm2

2 · · · t2m+m1+2m2+···.

Thus with m = m1 + m2 + · · · and n = r + m1 + 2m2 + · · · , setting s = 2m + n gives

F r =
∑

m1,m2,...

x2m+n r

2m + n

(

m

m1,m2, · · ·

)

φm1

1 φm2

2 · · ·

× (−1)m

2m+n
∑

j=0

(

2m + n

j

)(

j/2

m

)

(−u)j−2m

To obtain (17), we first set x = 1, replace each φi with yiφi, and multiply by yr. The
contribution from m1 = m2 = · · · = 0 (which gives m = 0 and n = r) is

yr

r
∑

j=0

(

r

j

)

(−u)j = yr(1 − u)r.

If m > 0 then
(

j/2
m

)

= 0 for j = 0, so we may start the inner sum on j with j = 1, rather
than j = 0. Finally, setting j = i + 2m yields (17).

It follows immediately from Theorem 3 that Z(u, y) has no negative even powers of u,
since

(

m+i/2
m

)

is 0 when i is even and negative and i ≥ 1 − 2m.

Remarks. The coefficients of Z(u, y) as displayed in (11) show divisibility by powers of
1− u, and it is not difficult to prove from (18) that the numerator of Pm,n(u) is divisible by
(1 − u)m+n.

Theorem 3 can be generalized to the equation (F−y)p+Ψ(F )−upyp = 0. The coefficients
are Laurent polynomials in u in which the coefficient of u−ip is 0 for every positive integer i.
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