

Journal of Integer Sequences, Vol. 10 (2007), Article 07.3.1

Direct and Elementary Approach to Enumerate Topologies on a Finite Set

Messaoud Kolli Faculty of Science Department of Mathematics King Khaled University Abha Saudi Arabia kmessaud@kku.edu.sa

Abstract

Let \mathbb{E} be a set with *n* elements, and let $\tau(n, k)$ be the set of all labelled topologies on \mathbb{E} , having *k* open sets, and $T(n, k) = |\tau(n, k)|$. In this paper, we use a direct approach to compute T(n, k) for all $n \ge 4$ and $k \ge 6 \cdot 2^{n-4}$.

1 Introduction

Let \mathbb{E} be a set with n elements. The problem of determining the total number of labelled topologies T(n) one can define on \mathbb{E} is still an open question. Sharp [3], and Stephen [6] had shown that every topology which is not discrete contains $k \leq 3 \cdot 2^{n-2}$ open sets, and that this bound is optimal. Stanley [5] computed all labelled topologies on \mathbb{E} , with $k \geq 7 \cdot 2^{n-4}$ open sets. In the opposite sense, Benoumhani [1] computed, for all n, the total number of labelled topologies with $k \leq 12$ open sets. In the other hand, Erné and Stege [2] computed the total number of topologies, for $n \leq 14$. In this paper, we use a direct approach to compute all labelled topologies on \mathbb{E} having $k \geq 6 \cdot 2^{n-4}$ open sets. Furthermore, we confirm the results in [3, 5, 6]. This work is a continuation of the results of [1, 5]. Here is our approach. The set $\tau(n, k)$ is partitioned into two disjoint parts as follows:

$$\tau(n,k) = \tau_1(n,k) \cup \tau_2(n,k),$$

where

$$\tau_1(n,k) = \left\{ \tau = \{ \emptyset, A_1, \dots, A_{k-2}, \mathbb{E} \} \in \tau(n,k), \text{ such that } \bigcap_{i=1}^{k-2} A_i \neq \emptyset \right\},$$

$$\tau_2(n,k) = \tau(n,k) - \tau_1(n,k).$$

In Theorem 2.1, we prove that the cardinal $T_1(n,k) = |\tau_1(n,k)|$ satisfies

$$T_1(n,k) = \sum_{l=1}^{n-1} {n \choose l} T(l,k-1), \quad \forall n \ge 1.$$

This relation enables us to compute $T_1(n, k)$ for $k > 5 \cdot 2^{n-4}$. For the determination of the cardinal $T_2(n, k) = |\tau_2(n, k)|$, we introduce the notion of minimal open set (Definition 2.2), and we designate by $\tau_2(n, k, \alpha)$ the labelled topologies in $\tau_2(n, k)$ having $\alpha \ge 2$ minimal open sets. In Lemma 2.2, it is proved that if $k > 5 \cdot 2^{n-4}$ such that $k \ne 6 \cdot 2^{n-4}$, and $k \ne 2^{n-1}$, then all the minimal open sets of τ are necessarily singletons. So, we can compute the numbers $T_2(n, k, \alpha)$ for all $n \ge 4$, $k \ge 6 \cdot 2^{n-4}$, and $\alpha \ge 2$.

2 Basic Results

Theorem 2.1. For every integer n > 1, and $2 \le k \le 2^n$, we have

$$T_1(n,k) = \sum_{l=1}^{n-1} \binom{n}{l} T(l,k-1),$$

with the convention that T(l, 1) = 0.

Proof. Let $A \subset \mathbb{E}$, with $|A| = l \leq n - 1$, and let τ' be a topology on A, and having k - 1 open sets. To this topology we associate the following one

$$\Phi_A(\tau') = \tau = \{ O \cup A^c, \qquad O \in \tau' \} \cup \{ \varnothing \}.$$

Obviously Φ_A is an injective mapping on $\tau(l, k - 1)$ into $\tau_1(n, k)$. In the other hand, if $|A| = |B| = l \le n - 1$ and $A \ne B$, then

$$R(\Phi_A) \cap R(\Phi_B) = \emptyset$$

where $R(\Phi_A)$ is the image of Φ_A . This shows that

$$T_1(n,k) \ge \sum_{l=1}^{n-1} \binom{n}{l} T(l,k-1).$$

Conversely, if $\tau = \{\emptyset, A_1, \ldots, A_{k-2}, \mathbb{E}\} \in \tau_1(n, k)$, with $A_1 = \bigcap_{i=1}^{k-2} A_i$, then $\tau' = \{O - A_1, O \in \tau\}$ is a topology on A_1^c , having k-1 open sets, and $\Phi_{A_1^c}(\tau') = \tau$. This shows the other inequality, and completes the proof.

The following definition will be needed in the sequel.

Definition 2.2. Let $\tau = \{\emptyset, A_1, \ldots, A_{k-2}, \mathbb{E}\} \in \tau(n, k)$. The element A_i is called a minimal open set, if it satisfies:

$$A_i \cap A_j = A_i$$
 or \varnothing , $\forall j = 1, \dots, k-2$.

Remark 2.3. i) A topology on \mathbb{E} is a bounded lattice with $(1 = \mathbb{E}, 0 = \emptyset)$. A minimal open set is in fact an atom. Recall that an atom in a partially ordered set is an element which covers 0. So, every topology has at least one minimal open set, and $\tau_1(n, k)$ is the subset of topologies having exactly one minimal open set.

ii) If $\tau \in \tau_2(n,k)$, then τ has at least two minimal open sets.

iii) The space \mathbb{E} is a union of α minimal open sets for the topology $\tau \in \tau(n,k)$ if and only if $k = 2^{\alpha}$.

iv) If τ has α minimal open sets, then $k \geq 2^{\alpha}$.

Definition 2.4. For $\alpha \geq 2$, we define

 $\tau_2(n,k,\alpha) = \{ \tau \in \tau_2(n,k), \quad \tau \text{ has } \alpha \text{ minimal open sets } \}.$

Note that if $\alpha_1 \neq \alpha_2$, then $\tau_2(n, k, \alpha_1) \cap \tau_2(n, k, \alpha_2) = \emptyset$. So

$$T_2(n,k) = \sum_{\alpha \ge 2, \quad 2^{\alpha} \le k} T_2(n,k,\alpha).$$

The computation of $T_2(n, k)$ is then equivalent to the computation of $T_2(n, k, \alpha)$, for $\alpha \ge 2$, under the condition $2^{\alpha} \le k$. If $k = 2^{\alpha}$, then

$$T_2(n, 2^\alpha, \alpha) = S(n, \alpha),$$

where $S(n, \alpha)$ is the Stirling number of the second kind.

Lemma 2.1. Let $n \ge 1$, $\alpha \ge 2$. Then $\tau_2(n, k, \alpha)$ is empty, for $k > 2^{n-1} + 2^{\alpha-1}$. In addition, this bound is optimal:

$$\tau_2(n, 2^{n-1} + 2^{\alpha - 1}, \alpha) \neq \emptyset.$$

Proof. We argue by contradiction. Suppose that $\tau \in \tau_2(n, k, \alpha)$, and write it as

$$\tau = \{ \varnothing, A_1, \ldots, A_\alpha, \ldots, \mathbb{E} \},\$$

where $A_1, ..., A_{\alpha}$ are the α minimal open sets of τ . Put $A = \bigcup_{i=1}^{\alpha} A_i$, the topology $\tau' = \{O - A, O \in \tau\}$ on A^c has at least $\lceil k \ 2^{1-\alpha} - 1 \rceil$ open sets. In the other hand, $|A^c| \leq n - \alpha$, and since τ' is at most the discrete topology, we obtain

$$k \ 2^{1-\alpha} - 1 \le |\tau'| \le 2^{n-\alpha}.$$

This contradiction proves that $\tau_2(n, k, \alpha)$ is empty. The second assertion will be proved in the next section.

Lemma 2.2. Let $\tau \in \tau_2(n, k, \alpha)$, with $k > 5 \cdot 2^{n-4}$, $k \neq 6 \cdot 2^{n-4}$, and $k \neq 2^{n-1}$. Then, all the minimal open sets of τ are singletons.

Proof. Let $\tau = \{\emptyset, A_1, \ldots, A_{\alpha}, \ldots, \mathbb{E}\} \in \tau_2(n, k, \alpha)$, where A_1, \ldots, A_{α} are its minimal open sets, and suppose that $A = \bigcup_{i=1}^{\alpha} A_i$ has more than $\alpha + 1$ elements. The same argument used in the previous Lemma gives $5 \cdot 2^{n-4} < k \leq 2^{n-2} + 2^{\alpha-1}$. This last inequality is possible only for $\alpha = n - 1$ or $\alpha = n - 2$. In the first case, \mathbb{E} is a union of n - 1 minimal open sets, so $k = 2^{n-1}$, which is excluded. In the second, necessarily $k = 6 \cdot 2^{n-4}$, which is also excluded. So, all the minimal open sets of τ are singletons. \Box

3 Computation

Firstly, we compute $T_2(n, k, \alpha)$, for $k \ge 6 \cdot 2^{n-4}$ and $\alpha \ge 2$. We use the notation

$$(n)_l = n(n-1)\cdots(n-l+1),$$

and we convenient that if l > n, then $(n)_l = 0$. We start by the number of topologies $\tau \in \tau_2(n, k, \alpha)$, such that τ has at least one minimal open set, which is not a singleton. For this, the previous Lemma gives $k = 2^{n-1}$ or $k = 6 \cdot 2^{n-4}$. If $k = 2^{n-1}$, then $\alpha = n-1$ and the number of these topologies is

$$S(n, n-1) = \frac{(n)_2}{2}.$$

If $k = 6 \cdot 2^{n-4}$, we have $\alpha = n-2$, and the number of these topologies is

$$2(n-2)\binom{n}{n-2}\binom{n-2}{1} = (n-2) \ (n)_3.$$

The remaining topologies of $\tau_2(n, k, \alpha)$ have the property that all their minimal open sets are singletons. For this, let $\tau \in \tau_2(n, k, \alpha)$

$$\tau = \{ \emptyset, A_1, \dots, A_\alpha, \dots, \mathbb{E} \}$$

Put $\alpha = n - i$, $0 \le i \le n - 2$, and $A = \bigcup_{i=1}^{\alpha} A_i$. The topology $\tau' = \{O - A, O \in \tau\}$ (on A^c), can be written as follows:

$$\tau' = \{ \emptyset, \ C_1, \dots, C_m \}, \quad m \in \{ 0, 1, 2, \dots, 5 \cdot 2^{i-3} - 1, \ 3 \cdot 2^{i-2} - 1, \ 2^i - 1 \}.$$

To reconstruct τ from τ' , we remark that every C_j , if it exists, generates 2^{i_j} open sets in τ , with $i_j \leq n - i - 1$. So, the number k has necessarily the form:

$$k = 2^{n-i} + 2^{i_1} + 2^{i_2} + \dots + 2^{i_m}$$

where the integers i_j , $1 \le j \le m$ can be dependent. Our approach is that for all α , $2 \le \alpha \le n$, we determine all possibilities of the number k, and next the number of all these topologies.

For $\underline{\alpha = n}$. $A^c = \emptyset$; so m = 0, $k = 2^n$ and $T_2(n, 2^n, n) = 1$. This case corresponds to the discrete topology.

For $\underline{\alpha = n - 1}$. $A^c = \{x\}$; so m = 1, and $\tau' = \{\emptyset, C_1 = \{x\}\}$. All the possibilities of k are given by

$$k = 2^{n-1} + 2^{n-1-j}, \quad 1 \le j \le n-1.$$

The number of these topologies is

$$T_2(n, 2^{n-1} + 2^{n-1-j}, n-1) = n \binom{n-1}{j} = \frac{(n)_{j+1}}{j!}, \quad 1 \le j \le n-1$$

For $\underline{\alpha = n - 2}$. $A^c = \{x, y\}, \tau' = \{\emptyset, C_1, \dots, C_m\}$, with m = 1, 2 or 3.

If m = 1, $\tau' = \{\emptyset, C_1 = \{x, y\}\}$. Since we are supposing $k \ge 6 \cdot 2^{n-4}$, the unique possibility is that C_1 generates 2^{n-3} open sets. So, $k = 2^{n-2} + 2^{n-3} = 6 \cdot 2^{n-4}$, and the number of these topologies is

$$\binom{n}{n-2}\binom{n-2}{1} = \frac{(n)_3}{2}.$$

If m = 2, $\tau' = \{\emptyset, C_1 = \{x\}, C_2 = \{x, y\}\}$ or $\tau' = \{\emptyset, C_1 = \{y\}, C_2 = \{x, y\}\}$. Here we have two categories of solutions:

a) C_1 generates 2^{n-3} open sets, and C_2 generates $2^{n-3-j}, 0 \le j \le n-3$, open sets. Hence

$$k = 2^{n-2} + 2^{n-3} + 2^{n-3-j} = 6 \cdot 2^{n-4} + 2^{n-3-j}, \quad 0 \le j \le n-3.$$

The number of such topologies is

$$2(j+1)\binom{n}{n-2}\binom{n-2}{j+1} = \frac{(n)_{j+3}}{j!}.$$

b) C_1 generates 2^{n-4} open sets and also C_2 generates 2^{n-4} . So, $k = 2^{n-2} + 2^{n-4} + 2^{n-4} = 6 \cdot 2^{n-4}$, and the number in this case is

$$2\binom{n}{n-2}\binom{n-2}{2} = \frac{(n)_3}{2}.$$

If m = 3, $\tau' = \{ \emptyset, C_1 = \{x\}, C_2 = \{y\}, C_3 = \{x, y\} \}$. There are 8 categories of solutions:

a) Each C_j , j = 1, 2, 3 generates 2^{n-3} open sets. So, $k = 2^{n-2} + 2^{n-3} + 2^{n-3} + 2^{n-3} = 10 \cdot 2^{n-4}$, and the wanted number is

$$\binom{n}{n-2}\binom{n-2}{1} = \frac{(n)_3}{2}$$

b) C_1 generates 2^{n-3} open sets, C_2 and C_3 each one generates 2^{n-3-j} open sets, with $1 \le j \le n-3$. So, $k = 2^{n-2} + 2^{n-3} + 2^{n-3-j} + 2^{n-3-j} = 6 \cdot 2^{n-4} + 2^{n-2-j}$, $1 \le j \le n-3$, and the number of these topologies is

$$2(j+1)\binom{n}{n-2}\binom{n-2}{j+1} = \frac{(n)_{j+3}}{j!}.$$

c) C_1 and C_2 each one generates 2^{n-3} open sets, but C_3 generates 2^{n-4} open sets. So, $k = 2^{n-2} + 2^{n-3} + 2^{n-3} + 2^{n-4} = 9 \cdot 2^{n-4}$, and the number of these topologies is

$$2\binom{n}{n-2}\binom{n-2}{2} = \frac{(n)_4}{2}.$$

d) C_1 generates 2^{n-3} open sets, C_2 generates 2^{n-2-j} , $2 \leq j \leq n-3$ open sets. So, C_3 generates 2^{n-3-j} open sets, and $k = 2^{n-2} + 2^{n-3} + 2^{n-2-j} + 2^{n-3-j} = 6 \cdot 2^{n-4} + 3 \cdot 2^{n-3-j}$, $2 \leq j \leq n-3$. The number of these topologies is

$$2(j+1)\binom{n}{n-2}\binom{n-2}{j+1} = \frac{(n)_{j+3}}{j!}.$$

e) C_1 , C_2 and C_3 each one generates 2^{n-4} open sets. So, $k = 2^{n-2} + 2^{n-4} + 2^{n-4} + 2^{n-4} = 7 \cdot 2^{n-4}$, and the number of these topologies is

$$\binom{n}{n-2}\binom{n-2}{2} = \frac{(n)_4}{4}.$$

f) C_1 and C_2 , each one generates 2^{n-4} open sets, but C_3 generates 2^{n-5} open sets. In this case $k = 2^{n-2} + 2^{n-4} + 2^{n-4} + 2^{n-5} = 13 \cdot 2^{n-5}$, and the number of these topologies is

$$6\binom{n}{n-2}\binom{n-2}{3} = \frac{(n)_5}{2}.$$

g) C_1 generates 2^{n-4} open sets, and each one of C_2 , C_3 generates 2^{n-5} . So, $k = 2^{n-2} + 2^{n-4} + 2^{n-5} + 2^{n-5} = 6 \cdot 2^{n-4}$, and the number of these topologies is

$$6\binom{n}{n-2}\binom{n-2}{3} = \frac{(n)_5}{2}.$$

h) Each one of C_1 , C_2 generates 2^{n-4} open sets, but C_3 generates 2^{n-6} . So, $k = 2^{n-2} + 2^{n-4} + 2^{n-4} + 2^{n-6} = 25 \cdot 2^{n-6}$, and the number of these topologies is

$$6\binom{n}{n-2}\binom{n-2}{4} = \frac{(n)_6}{8}$$

All the other cases give $k < 6 \cdot 2^{n-4}$. We resume all these results in the next statement. **Theorem 3.1.** Let $n \ge 4$, and $\alpha = n - 2$. Then we have

k	$T_2(n,k,n-2)$
$6 \cdot 2^{n-4}$	$(n-1)(n)_3 + \frac{1}{2}(n)_5$
$6 \cdot 2^{n-4} + 1$	$(n)_3$
$6 \cdot 2^{n-4} + 2^{n-3-j}, \qquad 4 \le j \le n-4$	$\frac{(n-2) (n)_{j+3}}{(j+1)!}$
$6 \cdot 2^{n-4} + 3 \cdot 2^{n-3-j}, 5 \le j \le n-3$	$\frac{(n)_{j+3}}{j!}$
$25 \cdot 2^{n-6}$	$\frac{7}{24}(n)_6 + \frac{1}{24}(n)_7$
$51 \cdot 2^{n-7}$	$\frac{1}{24}(n)_7$
$13 \cdot 2^{n-5}$	$(n)_5 + \frac{1}{6}(n)_6$
$27 \cdot 2^{n-6}$	$\frac{1}{6}(n)_6$
$7 \cdot 2^{n-4}$	$\frac{5}{4}(n)_4 + \frac{1}{2}(n)_5$
$15 \cdot 2^{n-5}$	$\frac{1}{2}(n)_5$
2^{n-1}	$(n)_3 + (n)_4$
$9 \cdot 2^{n-4}$	$\frac{1}{2}(n)_4$
$10 \cdot 2^{n-4}$	$\frac{1}{2}(n)_3$

All other topologies in $\tau_2(n,k,n-2)$ have $k < 6 \cdot 2^{n-4}$ open sets.

We use the same reasoning as above, to show the following theorem.

Theorem 3.2. Let $n \ge 5$, and $\alpha = n - i$, $3 \le i \le n - 2$. Then, the following results hold. For $\alpha = n - 3$, if n = 5, we have

k	12	13	14	15	18
$T_2(5,k,2)$	360	60	180	60	20

If $n \ge 6$, we have

k	$6 \cdot 2^{n-4}$	$25 \cdot 2^{n-6}$	$13 \cdot 2^{n-5}$	$27 \cdot 2^{n-6}$	$7 \cdot 2^{n-4}$	$15 \cdot 2^{n-5}$	$9 \cdot 2^{n-4}$
$T_2(n,k,n-3)$	$ \begin{array}{c} (n)_4 + \frac{5}{2}(n)_5 \\ + \frac{5}{4}(n)_6 \end{array} $	$\frac{1}{4}(n)_{6}$	$\frac{1}{2}(n)_{5}$	$\frac{1}{6}(n)_{6}$	$(n)_4 + \frac{1}{2}(n)_5$	$\frac{1}{2}(n)_{5}$	$\frac{1}{6}(n)_4$

For $\alpha = n - 4$, and $n \ge 6$

k	$25 \cdot 2^{n-6}$	$13 \cdot 2^{n-5}$	$27 \cdot 2^{n-6}$	$17 \cdot 2^{n-5}$
$T_2(n,k,n-4)$	$\frac{1}{8}(n)_{6}$	$\frac{1}{2}(n)_5 + \frac{1}{6}(n)_6$	$\frac{1}{6}(n)_{6}$	$\frac{1}{24}(n)_{5}$

For $\alpha = n - i$, $5 \le i \le n - 2$, and $n \ge 7$

k	$6 \cdot 2^{n-4} + 2^{n-i-1}$	$6 \cdot 2^{n-4} + 3 \cdot 2^{n-i-2}$	$2^{n-1} + 2^{n-i-1}$
$T_2(n,k,n-i)$	$\frac{(n-2)}{(i-1)!} (n)_{i+1}$	$\frac{1}{(i-1)!} (n)_{i+2}$	$\frac{(n)_{i+1}}{i!}$

All other topologies in $\tau_2(n, k, n-i)$, $3 \le i \le n-2$, have $k < 6 \cdot 2^{n-4}$ open sets.

Now, we compute $T_1(n,k)$, for $k > 5 \cdot 2^{n-4}$.

Theorem 3.3. For all $n \ge 5$, and $k > 5 \cdot 2^{n-4}$, we have:

 $T_1(n, 2^{n-1} + 1) = n,$ $T_1(n, 3 \cdot 2^{n-3} + 1) = (n)_3,$ $T_1(n, 5 \cdot 2^{n-4} + 1) = (n)_4,$ $T_1(n, k) = 0, otherwise.$

Proof. Obviously, we have $T_1(n, 2^{n-1} + 1) = nT(n - 1, 2^{n-1}) = n$, $T_1(n, 3 \cdot 2^{n-3} + 1) = nT(n - 1, 3 \cdot 2^{n-3}) = n(n - 1)_2 = (n)_3$, and $T_1(n, 5 \cdot 2^{n-4} + 1) = nT(n - 1, 5 \cdot 2^{n-4}) = n(n - 1)_3 = (n)_4$. If $k > 2^{n-1} + 1$, we have T(l, k - 1) = 0, for $1 \le l \le n - 1$, so $T_1(n, k) = 0$. If $5 \cdot 2^{n-4} + 1 < k < 2^{n-1} + 1$, and $k \ne 3 \cdot 2^{n-3} + 1$, the Theorem 2.1 yields $T_1(n, k) = nT(n - 1, k - 1)$. But we know that T(n - 1, k - 1) = 0, for $5 \cdot 2^{n-4} < k - 1 < 2^{n-1}$, and $k \ne 3 \cdot 2^{n-3} + 1$; so we deduce $T_1(n, k) = 0$, and the proof is complete.

Now, we can give the number of all labelled topologies with $k \ge 6 \cdot 2^{n-4}$ open sets.

Theorem 3.4. Suppose that $n \ge 7$, then the total number of labelled topologies, with $k \ge 6 \cdot 2^{n-4}$ open sets, is given by

k	$T_2(n,k)$	$T_1(n,k)$	T(n,k)
$6 \cdot 2^{n-4}$	$(n-1)(n)_3 + (n)_4 +$	0	$(n-1)(n)_3 + (n)_4$
	$3 (n)_5 + \frac{5}{4}(n)_6$		$+3 (n)_5 + \frac{5}{4}(n)_6$
$6 \cdot 2^{n-4} + 1$	$(n)_3$	$(n)_3$	$2 (n)_3$
$6 \cdot 2^{n-4} + 2^{n-3-j}, \ 4 \le j \le n-4$	$\frac{2 (n-2) (n)_{j+3}}{(j+1)!}$	0	$\frac{2 (n-2)(n)_{j+3}}{(j+1)!}$
$6 \cdot 2^{n-4} + 3 \cdot 2^{n-3-j}, \ 5 \le j \le n-3$	$\frac{2}{j!}(n)_{j+3}$	0	$\frac{2 (n)_{j+3}}{j!}$
$25 \cdot 2^{n-6}$	$\frac{n+14}{24}(n)_6 + \frac{1}{24}(n)_7$	0	$\frac{(n+14)(n)_6}{24} + \frac{(n)_7}{24}$
$51 \cdot 2^{n-7}$	$\frac{1}{12}(n)_7$	0	$\frac{1}{12}(n)_7$
$13 \cdot 2^{n-5}$	$2 (n)_5 + \frac{1}{3}(n)_6$	0	$2 (n)_5 + \frac{1}{3}(n)_6$
$27 \cdot 2^{n-6}$	$\frac{1}{2}(n)_6$	0	$\frac{1}{2}(n)_6$
$7 \cdot 2^{n-4}$	$\frac{9}{4}(n)_4 + (n)_5$	0	$\frac{9}{4}(n)_4 + (n)_5$
$15 \cdot 2^{n-5}$	$(n)_5$	0	$(n)_5$
2^{n-1}	$\frac{1}{2}(n)_2 + (n)_3 + (n)_4$	0	$\frac{1}{2}(n)_2 + (n)_3 + (n)_4$
$2^{n-1}+1$	n	n	2 n
$2^{n-1} + 2^{n-j-1}, \ 5 \le j \le n-2$	$\frac{2}{j!}(n)_{j+1}$	0	$\frac{2}{j!}(n)_{j+1}$
$17 \cdot 2^{n-5}$	$\frac{1}{12}(n)_5$	0	$\frac{1}{12}(n)_5$
$9 \cdot 2^{n-4}$	$\frac{5}{6}(n)_4$	0	$\frac{5}{6}(n)_4$
$10 \cdot 2^{n-4}$	$(n)_3$	0	$(n)_3$
$3 \cdot 2^{n-2}$	$(n)_2$	0	$(n)_2$
2^n	1	0	1

For n = 6, the total number of labelled topologies having $k \ge 24$ open sets is given by

k	$ \tau_2(6,k) $	$ \tau_1(6,k) $	$ \tau(6,k) $
24	4020	0	4020
25	480	120	600
26	1680	0	1680
27	360	0	360
28	1530	0	1530
30	720	0	720
32	495	0	495
33	6	6	12
34	60	0	60
36	300	0	300
40	120	0	120
48	30	0	30
64	1	0	1

For n = 5, the total number of labelled topologies having $k \ge 12$ open sets is given by

k	$ \tau_2(5,k) $	$ \tau_1(5,k) $	$ \tau(5,k) $
12	660	0	660
13	180	60	240
14	390	0	390
15	120	0	120
16	190	0	190
17	5	5	10
18	100	0	100
20	60	0	60
24	20	0	20
32	1	0	1

For n = 4, the total number of labelled topologies having $k \ge 6$ open sets is given by

k =	6	7	8	9	10	12	16
$ \tau_2(4,k) $	72	30	54	16	24	12	1
$ \tau_1(4,k) $	0	24	0	4	0	0	0
$ \tau(4,k) $	72	54	54	20	24	12	1

All the others topologies on \mathbb{E} have $k < 6 \cdot 2^{n-4}$ open sets.

References

- M. Benoumhani, The number of topologies on a finite set, *Journal of Integer sequences* 9 (2006).
- [2] M. Erne, K. Stege, Counting finite posets and topologies, Order 8 (1991), 247–265.
- [3] H. Sharp. Jr, Cardinality of finite topologies, J. Combinatorial Theory 5 (1968), 82–86.
- [4] N. J. A. Sloane, Online Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/index.html.
- [5] R. P. Stanley, On the number of open sets of finite topologies, J. Combinatorial Theory 10 (1971), 74–79.
- [6] D. Stephen, Topology on finite sets, Amer. Math. Monthly 75 (1968), 739–741.

2000 *Mathematics Subject Classification*: Primary 05A15; Secondary 06A07, 06A99. *Keywords:* binary relation, enumeration, finite set, finite topology, partial order, posets.

(Concerned with sequences $\underline{A000798}$, $\underline{A001930}$, and $\underline{A008277}$.)

Received April 19 2006; revised version received February 28 2007. Published in *Journal of Integer Sequences*, March 19 2007.

Return to Journal of Integer Sequences home page.