Journal of Integer Sequences, Vol. 10 (2007),

Direct and Elementary Approach to Enumerate Topologies on a Finite Set

Messaoud Kolli
Faculty of Science
Department of Mathematics
King Khaled University
Abha
Saudi Arabia
kmessaud@kku.edu.sa

Abstract

Let \mathbb{E} be a set with n elements, and let $\tau(n, k)$ be the set of all labelled topologies on \mathbb{E}, having k open sets, and $T(n, k)=|\tau(n, k)|$. In this paper, we use a direct approach to compute $T(n, k)$ for all $n \geq 4$ and $k \geq 6 \cdot 2^{n-4}$.

1 Introduction

Let \mathbb{E} be a set with n elements. The problem of determining the total number of labelled topologies $T(n)$ one can define on \mathbb{E} is still an open question. Sharp [3], and Stephen [6] had shown that every topology which is not discrete contains $k \leq 3 \cdot 2^{n-2}$ open sets, and that this bound is optimal. Stanley [5] computed all labelled topologies on \mathbb{E}, with $k \geq 7 \cdot 2^{n-4}$ open sets. In the opposite sense, Benoumhani [1] computed, for all n, the total number of labelled topologies with $k \leq 12$ open sets. In the other hand, Erné and Stege [2] computed the total number of topologies, for $n \leq 14$. In this paper, we use a direct approach to compute all labelled topologies on \mathbb{E} having $k \geq 6 \cdot 2^{n-4}$ open sets. Furthermore, we confirm the results in $[3,5,6]$. This work is a continuation of the results of $[1,5]$. Here is our approach. The set $\tau(n, k)$ is partitioned into two disjoint parts as follows:

$$
\tau(n, k)=\tau_{1}(n, k) \cup \tau_{2}(n, k),
$$

where

$$
\begin{aligned}
& \tau_{1}(n, k)=\left\{\tau=\left\{\varnothing, A_{1}, \ldots, A_{k-2}, \mathbb{E}\right\} \in \tau(n, k), \text { such that } \bigcap_{i=1}^{k-2} A_{i} \neq \varnothing\right\}, \\
& \tau_{2}(n, k)=\tau(n, k)-\tau_{1}(n, k) .
\end{aligned}
$$

In Theorem 2.1, we prove that the cardinal $T_{1}(n, k)=\left|\tau_{1}(n, k)\right|$ satisfies

$$
T_{1}(n, k)=\sum_{l=1}^{n-1}\binom{n}{l} T(l, k-1), \quad \forall n \geq 1 .
$$

This relation enables us to compute $T_{1}(n, k)$ for $k>5 \cdot 2^{n-4}$. For the determination of the cardinal $T_{2}(n, k)=\left|\tau_{2}(n, k)\right|$, we introduce the notion of minimal open set (Definition 2.2), and we designate by $\tau_{2}(n, k, \alpha)$ the labelled topologies in $\tau_{2}(n, k)$ having $\alpha \geq 2$ minimal open sets. In Lemma 2.2, it is proved that if $k>5 \cdot 2^{n-4}$ such that $k \neq 6 \cdot 2^{n-4}$, and $k \neq 2^{n-1}$, then all the minimal open sets of τ are necessarily singletons. So, we can compute the numbers $T_{2}(n, k, \alpha)$ for all $n \geq 4, \quad k \geq 6 \cdot 2^{n-4}$, and $\alpha \geq 2$.

2 Basic Results

Theorem 2.1. For every integer $n>1$, and $2 \leq k \leq 2^{n}$, we have

$$
T_{1}(n, k)=\sum_{l=1}^{n-1}\binom{n}{l} T(l, k-1)
$$

with the convention that $T(l, 1)=0$.
Proof. Let $A \subset \mathbb{E}$, with $|A|=l \leq n-1$, and let τ^{\prime} be a topology on A, and having $k-1$ open sets. To this topology we associate the following one

$$
\Phi_{A}\left(\tau^{\prime}\right)=\tau=\left\{O \cup A^{c}, \quad O \in \tau^{\prime}\right\} \cup\{\varnothing\} .
$$

Obviously Φ_{A} is an injective mapping on $\tau(l, k-1)$ into $\tau_{1}(n, k)$. In the other hand, if $|A|=|B|=l \leq n-1$ and $A \neq B$, then

$$
R\left(\Phi_{A}\right) \cap R\left(\Phi_{B}\right)=\varnothing,
$$

where $R\left(\Phi_{A}\right)$ is the image of Φ_{A}. This shows that

$$
T_{1}(n, k) \geq \sum_{l=1}^{n-1}\binom{n}{l} T(l, k-1) .
$$

Conversely, if $\tau=\left\{\varnothing, A_{1}, \ldots, A_{k-2}, \mathbb{E}\right\} \in \tau_{1}(n, k)$, with $A_{1}=\bigcap_{i=1}^{k-2} A_{i}$, then $\tau^{\prime}=\left\{O-A_{1}, \quad O \in \tau\right\}$ is a topology on A_{1}^{c}, having $k-1$ open sets, and $\Phi_{A_{1}^{c}}\left(\tau^{\prime}\right)=\tau$. This shows the other inequality, and completes the proof.

The following definition will be needed in the sequel.
Definition 2.2. Let $\tau=\left\{\varnothing, A_{1}, \ldots, A_{k-2}, \mathbb{E}\right\} \in \tau(n, k)$. The element A_{i} is called a minimal open set, if it satisfies:

$$
A_{i} \cap A_{j}=A_{i} \quad \text { or } \quad \varnothing, \quad \forall j=1, \ldots, k-2 .
$$

Remark 2.3. i) A topology on \mathbb{E} is a bounded lattice with $(1=\mathbb{E}, 0=\varnothing)$. A minimal open set is in fact an atom. Recall that an atom in a partially ordered set is an element which covers 0 . So, every topology has at least one minimal open set, and $\tau_{1}(n, k)$ is the subset of topologies having exactly one minimal open set.
ii) If $\tau \in \tau_{2}(n, k)$, then τ has at least two minimal open sets.
iii) The space \mathbb{E} is a union of α minimal open sets for the topology $\tau \in \tau(n, k)$ if and only if $k=2^{\alpha}$.
iv) If τ has α minimal open sets, then $k \geq 2^{\alpha}$.

Definition 2.4. For $\alpha \geq 2$, we define

$$
\tau_{2}(n, k, \alpha)=\left\{\tau \in \tau_{2}(n, k), \quad \tau \text { has } \alpha \text { minimal open sets }\right\} .
$$

Note that if $\alpha_{1} \neq \alpha_{2}$, then $\tau_{2}\left(n, k, \alpha_{1}\right) \cap \tau_{2}\left(n, k, \alpha_{2}\right)=\varnothing$. So

$$
T_{2}(n, k)=\sum_{\alpha \geq 2, \quad 2^{\alpha} \leq k} T_{2}(n, k, \alpha) .
$$

The computation of $T_{2}(n, k)$ is then equivalent to the computation of $T_{2}(n, k, \alpha)$, for $\alpha \geq 2$, under the condition $2^{\alpha} \leq k$. If $k=2^{\alpha}$, then

$$
T_{2}\left(n, 2^{\alpha}, \alpha\right)=S(n, \alpha),
$$

where $S(n, \alpha)$ is the Stirling number of the second kind.

Lemma 2.1. Let $n \geq 1, \alpha \geq 2$. Then $\tau_{2}(n, k, \alpha)$ is empty, for $k>2^{n-1}+2^{\alpha-1}$. In addition, this bound is optimal:

$$
\tau_{2}\left(n, 2^{n-1}+2^{\alpha-1}, \alpha\right) \neq \varnothing .
$$

Proof. We argue by contradiction. Suppose that $\tau \in \tau_{2}(n, k, \alpha)$, and write it as

$$
\tau=\left\{\varnothing, A_{1}, \ldots, A_{\alpha}, \ldots, \mathbb{E}\right\}
$$

where $A_{1}, \ldots, A_{\alpha}$ are the α minimal open sets of τ. Put $A=\bigcup_{i=1}^{\alpha} A_{i}$, the topology $\tau^{\prime}=$ $\{O-A, \quad O \in \tau\}$ on A^{c} has at least $\left\lceil k 2^{1-\alpha}-1\right\rceil$ open sets. In the other hand, $\left|A^{c}\right| \leq n-\alpha$, and since τ^{\prime} is at most the discrete topology, we obtain

$$
k 2^{1-\alpha}-1 \leq\left|\tau^{\prime}\right| \leq 2^{n-\alpha}
$$

This contradiction proves that $\tau_{2}(n, k, \alpha)$ is empty. The second assertion will be proved in the next section.

Lemma 2.2. Let $\tau \in \tau_{2}(n, k, \alpha)$, with $k>5 \cdot 2^{n-4}, k \neq 6 \cdot 2^{n-4}$, and $k \neq 2^{n-1}$. Then, all the minimal open sets of τ are singletons.

Proof. Let $\tau=\left\{\varnothing, A_{1}, \ldots, A_{\alpha}, \ldots, \mathbb{E}\right\} \in \tau_{2}(n, k, \alpha)$, where $A_{1}, \ldots, A_{\alpha}$ are its minimal open sets, and suppose that $A=\bigcup_{i=1}^{\alpha} A_{i}$ has more than $\alpha+1$ elements. The same argument used in the previous Lemma gives $5 \cdot 2^{n-4}<k \leq 2^{n-2}+2^{\alpha-1}$. This last inequality is possible only for $\alpha=n-1$ or $\alpha=n-2$. In the first case, \mathbb{E} is a union of $n-1$ minimal open sets, so $k=2^{n-1}$, which is excluded. In the second, necessarily $k=6 \cdot 2^{n-4}$, which is also excluded. So, all the minimal open sets of τ are singletons.

3 Computation

Firstly, we compute $T_{2}(n, k, \alpha)$, for $k \geq 6 \cdot 2^{n-4}$ and $\alpha \geq 2$. We use the notation

$$
(n)_{l}=n(n-1) \cdots(n-l+1),
$$

and we convenient that if $l>n$, then $(n)_{l}=0$. We start by the number of topologies $\tau \in \tau_{2}(n, k, \alpha)$, such that τ has at least one minimal open set, which is not a singleton. For this, the previous Lemma gives $k=2^{n-1}$ or $k=6 \cdot 2^{n-4}$. If $k=2^{n-1}$, then $\alpha=n-1$ and the number of these topologies is

$$
S(n, n-1)=\frac{(n)_{2}}{2}
$$

If $k=6 \cdot 2^{n-4}$, we have $\alpha=n-2$, and the number of these topologies is

$$
2(n-2)\binom{n}{n-2}\binom{n-2}{1}=(n-2)(n)_{3} .
$$

The remaining topologies of $\tau_{2}(n, k, \alpha)$ have the property that all their minimal open sets are singletons. For this, let $\tau \in \tau_{2}(n, k, \alpha)$

$$
\tau=\left\{\varnothing, A_{1}, \ldots, A_{\alpha}, \ldots, \mathbb{E}\right\}
$$

Put $\alpha=n-i, \quad 0 \leq i \leq n-2$, and $A=\cup_{i=1}^{\alpha} A_{i}$. The topology $\tau^{\prime}=\{O-A, \quad O \in \tau\}$ (on A^{c}), can be written as follows:

$$
\tau^{\prime}=\left\{\varnothing, C_{1}, \ldots, C_{m}\right\}, \quad m \in\left\{0,1,2, \ldots, 5 \cdot 2^{i-3}-1,3 \cdot 2^{i-2}-1,2^{i}-1\right\} .
$$

To reconstruct τ from τ^{\prime}, we remark that every C_{j}, if it exists, generates $2^{i_{j}}$ open sets in τ, with $i_{j} \leq n-i-1$. So, the number k has necessarily the form:

$$
k=2^{n-i}+2^{i_{1}}+2^{i_{2}}+\ldots+2^{i_{m}}
$$

where the integers $i_{j}, 1 \leq j \leq m$ can be dependant. Our approach is that for all $\alpha, 2 \leq$ $\alpha \leq n$, we determine all possibilities of the number k, and next the number of all these topologies.

For $\underline{\alpha=n .} A^{c}=\varnothing$; so $m=0, k=2^{n}$ and $T_{2}\left(n, 2^{n}, n\right)=1$. This case corresponds to the discrete topology.

For $\underline{\alpha=n-1 .} A^{c}=\{x\}$; so $m=1$, and $\tau^{\prime}=\left\{\varnothing, C_{1}=\{x\}\right\}$. All the possibilities of k are given by

$$
k=2^{n-1}+2^{n-1-j}, \quad 1 \leq j \leq n-1 .
$$

The number of these topologies is

$$
T_{2}\left(n, 2^{n-1}+2^{n-1-j}, n-1\right)=n\binom{n-1}{j}=\frac{(n)_{j+1}}{j!}, \quad 1 \leq j \leq n-1
$$

For $\alpha=n-2 . A^{c}=\{x, y\}, \tau^{\prime}=\left\{\varnothing, C_{1}, \ldots, C_{m}\right\}$, with $m=1,2$ or 3 .
If $m=1, \tau^{\prime}=\left\{\varnothing, C_{1}=\{x, y\}\right\}$. Since we are supposing $k \geq 6 \cdot 2^{n-4}$, the unique possibility is that C_{1} generates 2^{n-3} open sets. So, $k=2^{n-2}+2^{n-3}=6 \cdot 2^{n-4}$, and the number of these topologies is

$$
\binom{n}{n-2}\binom{n-2}{1}=\frac{(n)_{3}}{2} .
$$

If $m=2, \tau^{\prime}=\left\{\varnothing, C_{1}=\{x\}, C_{2}=\{x, y\}\right\} \quad$ or $\quad \tau^{\prime}=\left\{\varnothing, C_{1}=\{y\}, C_{2}=\{x, y\}\right\}$. Here we have two categories of solutions:
a) C_{1} generates 2^{n-3} open sets, and C_{2} generates $2^{n-3-j}, 0 \leq j \leq n-3$, open sets. Hence

$$
k=2^{n-2}+2^{n-3}+2^{n-3-j}=6 \cdot 2^{n-4}+2^{n-3-j}, \quad 0 \leq j \leq n-3 .
$$

The number of such topologies is

$$
2(j+1)\binom{n}{n-2}\binom{n-2}{j+1}=\frac{(n)_{j+3}}{j!} .
$$

b) C_{1} generates 2^{n-4} open sets and also C_{2} generates 2^{n-4}. So, $k=2^{n-2}+2^{n-4}+2^{n-4}=$ $6 \cdot 2^{n-4}$, and the number in this case is

$$
2\binom{n}{n-2}\binom{n-2}{2}=\frac{(n)_{3}}{2}
$$

If $m=3, \quad \tau^{\prime}=\left\{\varnothing, C_{1}=\{x\}, C_{2}=\{y\}, C_{3}=\{x, y\}\right\}$. There are 8 categories of solutions:
a) Each $C_{j}, j=1,2,3$ generates 2^{n-3} open sets. So, $k=2^{n-2}+2^{n-3}+2^{n-3}+2^{n-3}=$ $10 \cdot 2^{n-4}$, and the wanted number is

$$
\binom{n}{n-2}\binom{n-2}{1}=\frac{(n)_{3}}{2} .
$$

b) C_{1} generates 2^{n-3} open sets, C_{2} and C_{3} each one generates 2^{n-3-j} open sets, with $1 \leq j \leq n-3$. So, $k=2^{n-2}+2^{n-3}+2^{n-3-j}+2^{n-3-j}=6 \cdot 2^{n-4}+2^{n-2-j}, \quad 1 \leq j \leq n-3$, and the number of these topologies is

$$
2(j+1)\binom{n}{n-2}\binom{n-2}{j+1}=\frac{(n)_{j+3}}{j!} .
$$

c) C_{1} and C_{2} each one generates 2^{n-3} open sets, but C_{3} generates 2^{n-4} open sets. So, $k=2^{n-2}+2^{n-3}+2^{n-3}+2^{n-4}=9 \cdot 2^{n-4}$, and the number of these topologies is

$$
2\binom{n}{n-2}\binom{n-2}{2}=\frac{(n)_{4}}{2} .
$$

d) C_{1} generates 2^{n-3} open sets, C_{2} generates $2^{n-2-j}, 2 \leq j \leq n-3$ open sets. So, C_{3} generates 2^{n-3-j} open sets, and $k=2^{n-2}+2^{n-3}+2^{n-2-j}+2^{n-3-j}=6 \cdot 2^{n-4}+3 \cdot 2^{n-3-j}, \quad 2 \leq$ $j \leq n-3$. The number of these topologies is

$$
2(j+1)\binom{n}{n-2}\binom{n-2}{j+1}=\frac{(n)_{j+3}}{j!} .
$$

e) C_{1}, C_{2} and C_{3} each one generates 2^{n-4} open sets. So, $k=2^{n-2}+2^{n-4}+2^{n-4}+2^{n-4}=$ $7 \cdot 2^{n-4}$, and the number of these topologies is

$$
\binom{n}{n-2}\binom{n-2}{2}=\frac{(n)_{4}}{4}
$$

f) C_{1} and C_{2}, each one generates 2^{n-4} open sets, but C_{3} generates 2^{n-5} open sets. In this case $k=2^{n-2}+2^{n-4}+2^{n-4}+2^{n-5}=13 \cdot 2^{n-5}$, and the number of these topologies is

$$
6\binom{n}{n-2}\binom{n-2}{3}=\frac{(n)_{5}}{2} .
$$

g) C_{1} generates 2^{n-4} open sets, and each one of C_{2}, C_{3} generates 2^{n-5}. So, $k=2^{n-2}+$ $2^{n-4}+2^{n-5}+2^{n-5}=6 \cdot 2^{n-4}$, and the number of these topologies is

$$
6\binom{n}{n-2}\binom{n-2}{3}=\frac{(n)_{5}}{2} .
$$

h) Each one of C_{1}, C_{2} generates 2^{n-4} open sets, but C_{3} generates 2^{n-6}. So, $k=$ $2^{n-2}+2^{n-4}+2^{n-4}+2^{n-6}=25 \cdot 2^{n-6}$, and the number of these topologies is

$$
6\binom{n}{n-2}\binom{n-2}{4}=\frac{(n)_{6}}{8} .
$$

All the other cases give $k<6 \cdot 2^{n-4}$. We resume all these results in the next statement.
Theorem 3.1. Let $n \geq 4$, and $\alpha=n-2$. Then we have

k	$T_{2}(n, k, n-2)$
$6 \cdot 2^{n-4}$	$(n-1)(n)_{3}+\frac{1}{2}(n)_{5}$
$6 \cdot 2^{n-4}+1$	$(n)_{3}$
$6 \cdot 2^{n-4}+2^{n-3-j}, \quad 4 \leq j \leq n-4$	$\frac{(n-2)(n)_{j+3}}{(j+1)!}$
$6 \cdot 2^{n-4}+3 \cdot 2^{n-3-j}, \quad 5 \leq j \leq n-3$	$\frac{(n)_{j+3}}{j!}$
$25 \cdot 2^{n-6}$	$\frac{7}{24}(n)_{6}+\frac{1}{24}(n)_{7}$
$51 \cdot 2^{n-7}$	$\frac{1}{24}(n)_{7}$
$13 \cdot 2^{n-5}$	$(n)_{5}+\frac{1}{6}(n)_{6}$
$27 \cdot 2^{n-6}$	$\frac{1}{6}(n)_{6}$
$7 \cdot 2^{n-4}$	$\frac{5}{4}(n)_{4}+\frac{1}{2}(n)_{5}$
$15 \cdot 2^{n-5}$	$\frac{1}{2}(n)_{5}$
2^{n-1}	$(n)_{3}+(n)_{4}$
$9 \cdot 2^{n-4}$	$\frac{1}{2}(n)_{4}$
$10 \cdot 2^{n-4}$	$\frac{1}{2}(n)_{3}$

All other topologies in $\tau_{2}(n, k, n-2)$ have $k<6 \cdot 2^{n-4}$ open sets.

We use the same reasoning as above, to show the following theorem.
Theorem 3.2. Let $n \geq 5$, and $\alpha=n-i, \quad 3 \leq i \leq n-2$. Then, the following results hold.
For $\alpha=n-3$, if $n=5$, we have

k	12	13	14	15	18
$T_{2}(5, k, 2)$	360	60	180	60	20

If $n \geq 6$, we have

k	$6 \cdot 2^{n-4}$	$25 \cdot 2^{n-6}$	$13 \cdot 2^{n-5}$	$27 \cdot 2^{n-6}$	$7 \cdot 2^{n-4}$	$15 \cdot 2^{n-5}$	$9 \cdot 2^{n-4}$
$T_{2}(n, k, n-3)$	$(n)_{4}+\frac{5}{2}(n)_{5}$ $+\frac{5}{4}(n)_{6}$	$\frac{1}{4}(n)_{6}$	$\frac{1}{2}(n)_{5}$	$\frac{1}{6}(n)_{6}$	$(n)_{4}+\frac{1}{2}(n)_{5}$	$\frac{1}{2}(n)_{5}$	$\frac{1}{6}(n)_{4}$

For $\alpha=n-4$, and $n \geq 6$

k	$25 \cdot 2^{n-6}$	$13 \cdot 2^{n-5}$	$27 \cdot 2^{n-6}$	$17 \cdot 2^{n-5}$
$T_{2}(n, k, n-4)$	$\frac{1}{8}(n)_{6}$	$\frac{1}{2}(n)_{5}+\frac{1}{6}(n)_{6}$	$\frac{1}{6}(n)_{6}$	$\frac{1}{24}(n)_{5}$

For $\alpha=n-i, \quad 5 \leq i \leq n-2$, and $n \geq 7$

k	$6 \cdot 2^{n-4}+2^{n-i-1}$	$6 \cdot 2^{n-4}+3 \cdot 2^{n-i-2}$	$2^{n-1}+2^{n-i-1}$
$T_{2}(n, k, n-i)$	$\frac{(n-2)}{(i-1)!}(n)_{i+1}$	$\frac{1}{(i-1)!}(n)_{i+2}$	$\frac{(n)_{i+1}}{i!}$

All other topologies in $\tau_{2}(n, k, n-i), \quad 3 \leq i \leq n-2$, have $k<6 \cdot 2^{n-4}$ open sets.
Now, we compute $T_{1}(n, k)$, for $k>5 \cdot 2^{n-4}$.
Theorem 3.3. For all $n \geq 5$, and $k>5 \cdot 2^{n-4}$, we have:

$$
\begin{aligned}
T_{1}\left(n, 2^{n-1}+1\right) & =n, \\
T_{1}\left(n, 3 \cdot 2^{n-3}+1\right) & =(n)_{3} \\
T_{1}\left(n, 5 \cdot 2^{n-4}+1\right) & =(n)_{4} \\
T_{1}(n, k) & =0, \text { otherwise. }
\end{aligned}
$$

Proof. Obviously, we have $T_{1}\left(n, 2^{n-1}+1\right)=n T\left(n-1,2^{n-1}\right)=n, T_{1}\left(n, 3 \cdot 2^{n-3}+1\right)=$ $n T\left(n-1,3 \cdot 2^{n-3}\right)=n(n-1)_{2}=(n)_{3}$, and $T_{1}\left(n, 5 \cdot 2^{n-4}+1\right)=n T\left(n-1,5 \cdot 2^{n-4}\right)=$ $n(n-1)_{3}=(n)_{4}$. If $k>2^{n-1}+1$, we have $T(l, k-1)=0$, for $1 \leq l \leq n-1$, so $T_{1}(n, k)=0$. If $5 \cdot 2^{n-4}+1<k<2^{n-1}+1$, and $k \neq 3 \cdot 2^{n-3}+1$, the Theorem 2.1 yields $T_{1}(n, k)=n T(n-1, k-1)$. But we know that $T(n-1, k-1)=0$, for $5 \cdot 2^{n-4}<k-1<2^{n-1}$, and $k \neq 3 \cdot 2^{n-3}+1$; so we deduce $T_{1}(n, k)=0$, and the proof is complete.

Now, we can give the number of all labelled topologies with $k \geq 6 \cdot 2^{n-4}$ open sets.
Theorem 3.4. Suppose that $n \geq 7$, then the total number of labelled topologies, with $k \geq$ $6 \cdot 2^{n-4}$ open sets, is given by

k	$T_{2}(n, k)$	$T_{1}(n, k)$	$T(n, k)$
$6 \cdot 2^{n-4}$	$\begin{gathered} (n-1)(n)_{3}+(n)_{4}+ \\ 3(n)_{5}+\frac{5}{4}(n)_{6} \end{gathered}$	0	$\begin{gathered} (n-1)(n)_{3}+(n)_{4} \\ +3(n)_{5}+\frac{5}{4}(n)_{6} \end{gathered}$
$6 \cdot 2^{n-4}+1$	$(n){ }_{3}$	$(n){ }_{3}$	$2(n){ }_{3}$
$6 \cdot 2^{n-4}+2^{n-3-j}, 4 \leq j \leq n-4$	$\frac{2(n-2)(n)_{j+3}}{(j+1)!}$	0	$\frac{2(n-2)(n)_{j+3}}{(j+1)!}$
$6 \cdot 2^{n-4}+3 \cdot 2^{n-3-j}, 5 \leq j \leq n-3$	$\frac{2}{j!}(n){ }_{j+3}$	0	$\frac{2(n)_{j+3}}{j!}$
$25 \cdot 2^{n-6}$	$\frac{n+14}{24}(n)_{6}+\frac{1}{24}(n)_{7}$	0	$\frac{(n+14)(n)_{6}}{24}+\frac{(n)_{7}}{24}$
$51 \cdot 2^{n-7}$	$\frac{1}{12}(n)_{7}$	0	$\frac{1}{12}(n)_{7}$
$13 \cdot 2^{n-5}$	$2(n)_{5}+\frac{1}{3}(n)_{6}$	0	$2(n)_{5}+\frac{1}{3}(n)_{6}$
$27 \cdot 2^{n-6}$	$\frac{1}{2}(n)_{6}$	0	$\frac{1}{2}(n)_{6}$
$7 \cdot 2^{n-4}$	$\frac{9}{4}(n)_{4}+(n)_{5}$	0	$\frac{9}{4}(n)_{4}+(n)_{5}$
$15 \cdot 2^{n-5}$	$(n)_{5}$	0	$(n)_{5}$
2^{n-1}	$\frac{1}{2}(n)_{2}+(n)_{3}+(n)_{4}$	0	$\frac{1}{2}(n)_{2}+(n)_{3}+(n)_{4}$
$2^{n-1}+1$	n	n	$2 n$
$2^{n-1}+2^{n-j-1}, 5 \leq j \leq n-2$	$\frac{2}{j!}(n)_{j+1}$	0	$\frac{2}{j!}(n)_{j+1}$
$17 \cdot 2^{n-5}$	$\frac{1}{12}(n)_{5}$	0	$\frac{1}{12}(n)_{5}$
$9 \cdot 2^{n-4}$	$\frac{5}{6}(n){ }_{4}$	0	$\frac{5}{6}(n){ }_{4}$
$10 \cdot 2^{n-4}$	$(n){ }_{3}$	0	$(n){ }_{3}$
$3 \cdot 2^{n-2}$	$(n){ }_{2}$	0	$(n){ }_{2}$
2^{n}	1	0	1

For $n=6$, the total number of labelled topologies having $k \geq 24$ open sets is given by

k	$\left\|\tau_{2}(6, k)\right\|$	$\left\|\tau_{1}(6, k)\right\|$	$\|\tau(6, k)\|$
24	4020	0	4020
25	480	120	600
26	1680	0	1680
27	360	0	360
28	1530	0	1530
30	720	0	720
32	495	0	495
33	6	6	12
34	60	0	60
36	300	0	300
40	120	0	120
48	30	0	30
64	1	0	1

For $n=5$, the total number of labelled topologies having $k \geq 12$ open sets is given by

k	$\left\|\tau_{2}(5, k)\right\|$	$\left\|\tau_{1}(5, k)\right\|$	$\|\tau(5, k)\|$
12	660	0	660
13	180	60	240
14	390	0	390
15	120	0	120
16	190	0	190
17	5	5	10
18	100	0	100
20	60	0	60
24	20	0	20
32	1	0	1

For $n=4$, the total number of labelled topologies having $k \geq 6$ open sets is given by

$k=$	6	7	8	9	10	12	16
$\left\|\tau_{2}(4, k)\right\|$	72	30	54	16	24	12	1
$\left\|\tau_{1}(4, k)\right\|$	0	24	0	4	0	0	0
$\|\tau(4, k)\|$	72	54	54	20	24	12	1

All the others topologies on \mathbb{E} have $k<6 \cdot 2^{n-4}$ open sets.

References

[1] M. Benoumhani, The number of topologies on a finite set, Journal of Integer sequences 9 (2006).
[2] M. Erne, K. Stege, Counting finite posets and topologies, Order 8 (1991), 247-265.
[3] H. Sharp. Jr, Cardinality of finite topologies, J. Combinatorial Theory 5 (1968), 82-86.
[4] N. J. A. Sloane, Online Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/index.html.
[5] R. P. Stanley, On the number of open sets of finite topologies, J. Combinatorial Theory 10 (1971), 74-79.
[6] D. Stephen, Topology on finite sets, Amer. Math. Monthly 75 (1968), 739-741.

2000 Mathematics Subject Classification: Primary 05A15; Secondary 06A07, 06A99. Keywords: binary relation, enumeration, finite set, finite topology, partial order, posets.
(Concerned with sequences A000798, $\underline{\text { A001930, and A008277.) }}$

Received April 19 2006; revised version received February 28 2007. Published in Journal of Integer Sequences, March 192007.

Return to Journal of Integer Sequences home page.

