
23 11

Article 07.3.1
Journal of Integer Sequences, Vol. 10 (2007),2

3

6

1

47

Direct and Elementary Approach to

Enumerate Topologies on a Finite Set

Messaoud Kolli
Faculty of Science

Department of Mathematics
King Khaled University

Abha
Saudi Arabia

kmessaud@kku.edu.sa

Abstract

Let E be a set with n elements, and let τ(n, k) be the set of all labelled topologies on
E, having k open sets, and T (n, k) = |τ(n, k)|. In this paper, we use a direct approach
to compute T (n, k) for all n ≥ 4 and k ≥ 6 · 2n−4.

1 Introduction

Let E be a set with n elements. The problem of determining the total number of labelled
topologies T (n) one can define on E is still an open question. Sharp [3], and Stephen [6] had
shown that every topology which is not discrete contains k ≤ 3 ·2n−2 open sets, and that this
bound is optimal. Stanley [5] computed all labelled topologies on E, with k ≥ 7 · 2n−4 open
sets. In the opposite sense, Benoumhani [1] computed, for all n, the total number of labelled
topologies with k ≤ 12 open sets. In the other hand, Erné and Stege [2] computed the total
number of topologies, for n ≤ 14. In this paper, we use a direct approach to compute all
labelled topologies on E having k ≥ 6 · 2n−4 open sets. Furthermore, we confirm the results
in [3, 5, 6]. This work is a continuation of the results of [1, 5]. Here is our approach. The
set τ(n, k) is partitioned into two disjoint parts as follows:

τ(n, k) = τ1(n, k) ∪ τ2(n, k),
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where

τ1(n, k) =

{

τ = {∅, A1, . . . , Ak−2, E} ∈ τ(n, k), such that
k−2
⋂

i=1

Ai 6= ∅

}

,

τ2(n, k) = τ(n, k) − τ1(n, k).

In Theorem 2.1, we prove that the cardinal T1(n, k) = |τ1(n, k)| satisfies

T1(n, k) =
n−1
∑

l=1

(

n

l

)

T (l, k − 1), ∀ n ≥ 1.

This relation enables us to compute T1(n, k) for k > 5 · 2n−4. For the determination of the
cardinal T2(n, k) = |τ2(n, k)| , we introduce the notion of minimal open set (Definition 2.2),
and we designate by τ2(n, k, α) the labelled topologies in τ2(n, k) having α ≥ 2 minimal open
sets. In Lemma 2.2, it is proved that if k > 5 ·2n−4 such that k 6= 6 ·2n−4, and k 6= 2n−1, then
all the minimal open sets of τ are necessarily singletons. So, we can compute the numbers
T2(n, k, α) for all n ≥ 4, k ≥ 6 · 2n−4, and α ≥ 2.

2 Basic Results

Theorem 2.1. For every integer n > 1, and 2 ≤ k ≤ 2n, we have

T1(n, k) =
n−1
∑

l=1

(

n

l

)

T (l, k − 1),

with the convention that T (l, 1) = 0.

Proof. Let A ⊂ E, with |A| = l ≤ n − 1, and let τ ′ be a topology on A, and having k − 1
open sets. To this topology we associate the following one

ΦA(τ ′) = τ = {O ∪ Ac, O ∈ τ ′} ∪ {∅}.

Obviously ΦA is an injective mapping on τ(l, k − 1) into τ1(n, k). In the other hand, if
|A| = |B| = l ≤ n − 1 and A 6= B, then

R(ΦA) ∩ R(ΦB) = ∅,

where R(ΦA) is the image of ΦA. This shows that

T1(n, k) ≥
n−1
∑

l=1

(

n

l

)

T (l, k − 1).

Conversely, if τ = {∅, A1, . . . , Ak−2, E} ∈ τ1(n, k), with A1 =
k−2
⋂

i=1

Ai, then τ ′ = {O − A1, O ∈ τ}

is a topology on Ac
1, having k−1 open sets, and ΦAc

1
(τ ′) = τ . This shows the other inequality,

and completes the proof.

2



The following definition will be needed in the sequel.

Definition 2.2. Let τ = {∅, A1, . . . , Ak−2, E} ∈ τ(n, k). The element Ai is called a min-

imal open set, if it satisfies:

Ai ∩ Aj = Ai or ∅, ∀ j = 1, . . . , k − 2.

Remark 2.3. i) A topology on E is a bounded lattice with (1 = E, 0 = ∅). A minimal open
set is in fact an atom. Recall that an atom in a partially ordered set is an element which
covers 0. So, every topology has at least one minimal open set, and τ1(n, k) is the subset of
topologies having exactly one minimal open set.

ii) If τ ∈ τ2(n, k), then τ has at least two minimal open sets.

iii) The space E is a union of α minimal open sets for the topology τ ∈ τ(n, k) if and
only if k = 2α.

iv) If τ has α minimal open sets, then k ≥ 2α.

Definition 2.4. For α ≥ 2, we define

τ2(n, k, α) = {τ ∈ τ2(n, k), τ has α minimal open sets } .

Note that if α1 6= α2, then τ2(n, k, α1) ∩ τ2(n, k, α2) = ∅. So

T2(n, k) =
∑

α≥2, 2α≤ k

T2(n, k, α).

The computation of T2(n, k) is then equivalent to the computation of T2(n, k, α), for α ≥ 2,
under the condition 2α ≤ k . If k = 2α, then

T2(n, 2α, α) = S(n, α),

where S(n, α) is the Stirling number of the second kind.

Lemma 2.1. Let n ≥ 1, α ≥ 2. Then τ2(n, k, α) is empty, for k > 2n−1 + 2α−1. In addition,

this bound is optimal:

τ2(n, 2n−1 + 2α−1, α) 6= ∅.

Proof. We argue by contradiction. Suppose that τ ∈ τ2(n, k, α), and write it as

τ = {∅, A1, . . . , Aα, . . . , E} ,

where A1, ..., Aα are the α minimal open sets of τ . Put A =
α
⋃

i=1

Ai, the topology τ ′ =

{O − A, O ∈ τ} on Ac has at least ⌈k 21−α − 1⌉ open sets. In the other hand, |Ac| ≤ n−α,
and since τ ′ is at most the discrete topology, we obtain

k 21−α − 1 ≤ |τ ′| ≤ 2n−α.

This contradiction proves that τ2(n, k, α) is empty. The second assertion will be proved in
the next section.
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Lemma 2.2. Let τ ∈ τ2(n, k, α), with k > 5 · 2n−4, k 6= 6 · 2n−4, and k 6= 2n−1. Then, all

the minimal open sets of τ are singletons.

Proof. Let τ = {∅, A1, . . . , Aα, . . . , E} ∈ τ2(n, k, α), where A1, . . . , Aα are its minimal open

sets, and suppose that A =
α
⋃

i=1

Ai has more than α + 1 elements. The same argument used

in the previous Lemma gives 5 · 2n−4 < k ≤ 2n−2 + 2α−1. This last inequality is possible only
for α = n − 1 or α = n − 2. In the first case, E is a union of n − 1 minimal open sets, so
k = 2n−1, which is excluded. In the second, necessarily k = 6 · 2n−4, which is also excluded.
So, all the minimal open sets of τ are singletons.

3 Computation

Firstly, we compute T2(n, k, α), for k ≥ 6 · 2n−4 and α ≥ 2. We use the notation

(n)l = n(n − 1) · · · (n − l + 1),

and we convenient that if l > n, then (n)l = 0. We start by the number of topologies
τ ∈ τ2(n, k, α), such that τ has at least one minimal open set, which is not a singleton. For
this, the previous Lemma gives k = 2n−1 or k = 6 · 2n−4. If k = 2n−1, then α = n − 1 and
the number of these topologies is

S(n, n − 1) =
(n)2

2
.

If k = 6 · 2n−4, we have α = n − 2, and the number of these topologies is

2(n − 2)

(

n

n − 2

)(

n − 2

1

)

= (n − 2) (n)3.

The remaining topologies of τ2(n, k, α) have the property that all their minimal open sets
are singletons. For this, let τ ∈ τ2(n, k, α)

τ = {∅, A1, . . . , Aα, . . . , E} .

Put α = n − i, 0 ≤ i ≤ n − 2, and A = ∪α
i=1Ai . The topology τ ′ = {O − A, O ∈ τ} (on

Ac), can be written as follows:

τ ′ = {∅, C1, . . . , Cm} , m ∈
{

0, 1, 2, . . . , 5 · 2i−3 − 1, 3 · 2i−2 − 1, 2i − 1
}

.

To reconstruct τ from τ ′, we remark that every Cj, if it exists, generates 2ij open sets in τ ,
with ij ≤ n − i − 1. So, the number k has necessarily the form:

k = 2n−i + 2i1 + 2i2 + ... + 2im ,
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where the integers ij , 1 ≤ j ≤ m can be dependant. Our approach is that for all α, 2 ≤
α ≤ n, we determine all possibilities of the number k, and next the number of all these
topologies.

For α = n. Ac = ∅; so m = 0, k = 2n and T2(n, 2n, n) = 1. This case corresponds to the
discrete topology.

For α = n − 1. Ac = {x}; so m = 1, and τ ′ = {∅, C1 = {x}}. All the possibilities of k

are given by
k = 2n−1 + 2n−1−j, 1 ≤ j ≤ n − 1.

The number of these topologies is

T2(n, 2n−1 + 2n−1−j, n − 1) = n

(

n − 1

j

)

=
(n)j+1

j!
, 1 ≤ j ≤ n − 1.

For α = n − 2. Ac = {x, y} , τ ′ = {∅, C1, . . . , Cm} , with m = 1, 2 or 3.
If m = 1, τ ′ = {∅, C1 = {x, y}}. Since we are supposing k ≥ 6 · 2n−4, the unique

possibility is that C1 generates 2n−3 open sets. So, k = 2n−2 + 2n−3 = 6 · 2n−4, and the
number of these topologies is

(

n

n − 2

)(

n − 2

1

)

=
(n)3

2
.

If m = 2, τ ′ = {∅, C1 = {x} , C2 = {x, y}} or τ ′ = {∅, C1 = {y} , C2 = {x, y}} . Here
we have two categories of solutions:

a) C1 generates 2n−3 open sets, and C2 generates 2n−3−j, 0 ≤ j ≤ n−3, open sets. Hence

k = 2n−2 + 2n−3 + 2n−3−j = 6 · 2n−4 + 2n−3−j, 0 ≤ j ≤ n − 3.

The number of such topologies is

2(j + 1)

(

n

n − 2

)(

n − 2

j + 1

)

=
(n)j+3

j!
.

b) C1 generates 2n−4 open sets and also C2 generates 2n−4. So, k = 2n−2 +2n−4 +2n−4 =
6 · 2n−4, and the number in this case is

2

(

n

n − 2

)(

n − 2

2

)

=
(n)3

2
.

If m = 3, τ ′ = {∅, C1 = {x} , C2 = {y} , C3 = {x, y}}. There are 8 categories of solutions:

a) Each Cj, j = 1, 2, 3 generates 2n−3 open sets. So, k = 2n−2 + 2n−3 + 2n−3 + 2n−3 =
10 · 2n−4, and the wanted number is

(

n

n − 2

)(

n − 2

1

)

=
(n)3

2
.
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b) C1 generates 2n−3 open sets, C2 and C3 each one generates 2n−3−j open sets, with
1 ≤ j ≤ n− 3. So, k = 2n−2 + 2n−3 + 2n−3−j + 2n−3−j = 6 · 2n−4 + 2n−2−j, 1 ≤ j ≤ n− 3,
and the number of these topologies is

2(j + 1)

(

n

n − 2

)(

n − 2

j + 1

)

=
(n)j+3

j!
.

c) C1 and C2 each one generates 2n−3 open sets, but C3 generates 2n−4 open sets. So,
k = 2n−2 + 2n−3 + 2n−3 + 2n−4 = 9 · 2n−4, and the number of these topologies is

2

(

n

n − 2

)(

n − 2

2

)

=
(n)4

2
.

d) C1 generates 2n−3 open sets, C2 generates 2n−2−j, 2 ≤ j ≤ n − 3 open sets. So, C3

generates 2n−3−j open sets, and k = 2n−2+2n−3+2n−2−j +2n−3−j = 6·2n−4+3·2n−3−j, 2 ≤
j ≤ n − 3. The number of these topologies is

2(j + 1)

(

n

n − 2

)(

n − 2

j + 1

)

=
(n)j+3

j!
.

e) C1, C2 and C3 each one generates 2n−4 open sets. So, k = 2n−2 +2n−4 +2n−4 +2n−4 =
7 · 2n−4, and the number of these topologies is

(

n

n − 2

)(

n − 2

2

)

=
(n)4

4
.

f) C1 and C2, each one generates 2n−4 open sets, but C3 generates 2n−5 open sets. In this
case k = 2n−2 + 2n−4 + 2n−4 + 2n−5 = 13 · 2n−5, and the number of these topologies is

6

(

n

n − 2

)(

n − 2

3

)

=
(n)5

2
.

g) C1 generates 2n−4 open sets, and each one of C2, C3 generates 2n−5. So, k = 2n−2 +
2n−4 + 2n−5 + 2n−5 = 6 · 2n−4, and the number of these topologies is

6

(

n

n − 2

)(

n − 2

3

)

=
(n)5

2
.

h) Each one of C1, C2 generates 2n−4 open sets, but C3 generates 2n−6 . So, k =
2n−2 + 2n−4 + 2n−4 + 2n−6 = 25 · 2n−6, and the number of these topologies is

6

(

n

n − 2

)(

n − 2

4

)

=
(n)6

8
.

All the other cases give k < 6 · 2n−4. We resume all these results in the next statement.

Theorem 3.1. Let n ≥ 4, and α = n − 2. Then we have
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k T2(n, k, n − 2)

6 · 2n−4 (n − 1)(n)3 +
1

2
(n)5

6 · 2n−4 + 1 (n)3

6 · 2n−4 + 2n−3−j, 4 ≤ j ≤ n − 4
(n − 2) (n)j+3

(j + 1)!

6 · 2n−4 + 3 · 2n−3−j, 5 ≤ j ≤ n − 3
(n)j+3

j!

25 · 2n−6
7

24
(n)6 +

1

24
(n)7

51 · 2n−7
1

24
(n)7

13 · 2n−5 (n)5 +
1

6
(n)6

27 · 2n−6
1

6
(n)6

7 · 2n−4
5

4
(n)4 +

1

2
(n)5

15 · 2n−5
1

2
(n)5

2n−1 (n)3 + (n)4

9 · 2n−4
1

2
(n)4

10 · 2n−4
1

2
(n)3

All other topologies in τ2(n, k, n − 2) have k < 6 · 2n−4 open sets.

We use the same reasoning as above, to show the following theorem.

Theorem 3.2. Let n ≥ 5, and α = n− i, 3 ≤ i ≤ n− 2. Then, the following results hold.

For α = n − 3, if n = 5, we have

k 12 13 14 15 18
T2(5, k, 2) 360 60 180 60 20

If n ≥ 6, we have

k 6 · 2n−4 25 · 2n−6 13 · 2n−5 27 · 2n−6 7 · 2n−4 15 · 2n−5 9 · 2n−4

T2(n, k, n − 3) (n)4 + 5

2
(n)5

1

4
(n)6

1

2
(n)5

1

6
(n)6 (n)4 + 1

2
(n)5

1

2
(n)5

1

6
(n)4

+5

4
(n)6

For α = n − 4, and n ≥ 6

k 25 · 2n−6 13 · 2n−5 27 · 2n−6 17 · 2n−5

T2(n, k, n − 4) 1

8
(n)6

1

2
(n)5 + 1

6
(n)6

1

6
(n)6

1

24
(n)5
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For α = n − i, 5 ≤ i ≤ n − 2, and n ≥ 7

k 6 · 2n−4 + 2n−i−1 6 · 2n−4 + 3 · 2n−i−2 2n−1 + 2n−i−1

T2(n, k, n − i)
(n − 2)

(i − 1)!
(n)i+1

1

(i − 1)!
(n)i+2

(n)i+1

i!

All other topologies in τ2(n, k, n − i), 3 ≤ i ≤ n − 2, have k < 6 · 2n−4 open sets.

Now, we compute T1(n, k), for k > 5 · 2n−4.

Theorem 3.3. For all n ≥ 5, and k > 5 · 2n−4, we have:

T1(n, 2n−1 + 1) = n,

T1(n, 3 · 2n−3 + 1) = (n)3,

T1(n, 5 · 2n−4 + 1) = (n)4,

T1(n, k) = 0, otherwise.

Proof. Obviously, we have T1(n, 2n−1 + 1) = nT (n − 1, 2n−1) = n, T1(n, 3 · 2n−3 + 1) =
nT (n − 1, 3 · 2n−3) = n (n − 1)

2
= (n)3, and T1(n, 5 · 2n−4 + 1) = nT (n − 1, 5 · 2n−4) =

n(n − 1)3 = (n)4. If k > 2n−1 + 1, we have T (l, k − 1) = 0, for 1 ≤ l ≤ n − 1, so
T1(n, k) = 0. If 5 · 2n−4 + 1 < k < 2n−1 + 1, and k 6= 3 · 2n−3 + 1, the Theorem 2.1 yields
T1(n, k) = nT (n−1, k−1). But we know that T (n−1, k−1) = 0, for 5 ·2n−4 < k−1 < 2n−1,
and k 6= 3 · 2n−3 + 1; so we deduce T1(n, k) = 0, and the proof is complete.

Now, we can give the number of all labelled topologies with k ≥ 6 · 2n−4 open sets.

Theorem 3.4. Suppose that n ≥ 7, then the total number of labelled topologies, with k ≥
6 · 2n−4 open sets, is given by
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k T2(n, k) T1(n, k) T (n, k)
6 · 2n−4 (n − 1)(n)3 + (n)4+ 0 (n − 1)(n)3 + (n)4

3 (n)5 +
5

4
(n)6 +3 (n)5 +

5

4
(n)6

6 · 2n−4 + 1 (n)3 (n)3 2 (n)3

6 · 2n−4 + 2n−3−j, 4 ≤ j ≤ n − 4
2 (n − 2) (n)j+3

(j + 1)!
0

2 (n − 2)(n)j+3

(j + 1)!

6 · 2n−4 + 3 · 2n−3−j, 5 ≤ j ≤ n − 3
2

j!
(n)j+3 0

2 (n)j+3

j!

25 · 2n−6
n + 14

24
(n)6 +

1

24
(n)7 0

(n + 14) (n)6

24
+

(n)7

24

51 · 2n−7
1

12
(n)7 0

1

12
(n)7

13 · 2n−5 2 (n)5 +
1

3
(n)6 0 2 (n)5 +

1

3
(n)6

27 · 2n−6
1

2
(n)6 0

1

2
(n)6

7 · 2n−4
9

4
(n)4 + (n)5 0

9

4
(n)4 + (n)5

15 · 2n−5 (n)5 0 (n)5

2n−1
1

2
(n)2 + (n)3 + (n)4 0

1

2
(n)2 + (n)3 + (n)4

2n−1 + 1 n n 2 n

2n−1 + 2n−j−1, 5 ≤ j ≤ n − 2
2

j!
(n)j+1 0

2

j!
(n)j+1

17 · 2n−5
1

12
(n)5 0

1

12
(n)5

9 · 2n−4
5

6
(n)4 0

5

6
(n)4

10 · 2n−4 (n)3 0 (n)3

3 · 2n−2 (n)2 0 (n)2

2n 1 0 1

For n = 6, the total number of labelled topologies having k ≥ 24 open sets is given by
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k |τ2(6, k)| |τ1(6, k)| |τ(6, k)|
24 4020 0 4020
25 480 120 600
26 1680 0 1680
27 360 0 360
28 1530 0 1530
30 720 0 720
32 495 0 495
33 6 6 12
34 60 0 60
36 300 0 300
40 120 0 120
48 30 0 30
64 1 0 1

For n = 5, the total number of labelled topologies having k ≥ 12 open sets is given by

k |τ2(5, k)| |τ1(5, k)| |τ(5, k)|
12 660 0 660
13 180 60 240
14 390 0 390
15 120 0 120
16 190 0 190
17 5 5 10
18 100 0 100
20 60 0 60
24 20 0 20
32 1 0 1

For n = 4, the total number of labelled topologies having k ≥ 6 open sets is given by

k = 6 7 8 9 10 12 16
|τ2(4, k)| 72 30 54 16 24 12 1
|τ1(4, k)| 0 24 0 4 0 0 0
|τ(4, k)| 72 54 54 20 24 12 1

All the others topologies on E have k < 6 · 2n−4 open sets.
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