Journal of Integer Sequences, Vol. 10 (2007),

Partial Sums of Powers of Prime Factors

Jean-Marie De Koninck
Département de Mathématiques et de Statistique
Université Laval
Québec G1K 7P4
Canada
jmdk@mat.ulaval.ca
Florian Luca
Mathematical Institute, UNAM
Ap. Postal 61-3 (Xangari)
CP 58089
Morelia, Michoacán
Mexico
fluca@matmor.unam.mx

Abstract

Given integers $k \geq 2$ and $\ell \geq 3$, let $S_{k, \ell}^{*}$ stand for the set of those positive integers n which can be written as $n=p_{1}^{k}+p_{2}^{k}+\ldots+p_{\ell}^{k}$, where $p_{1}, p_{2}, \ldots, p_{\ell}$ are distinct prime factors of n. We study the properties of the sets $S_{k, \ell}^{*}$ and we show in particular that, given any odd $\ell \geq 3, \# \bigcup_{k=2}^{\infty} S_{k, \ell}^{*}=+\infty$.

1 Introduction

In [1], we studied those numbers with at least two distinct prime factors which can be expressed as the sum of a fixed power $k \geq 2$ of their prime factors. For instance, given an integer $k \geq 2$, and letting

$$
S_{k}:=\left\{n: \omega(n) \geq 2 \text { and } n=\sum_{p \mid n} p^{k}\right\},
$$

where $\omega(n)$ stands for the number of distinct prime factors of n, one can check that the following 8 numbers belong to S_{3} :

$$
\begin{aligned}
378 & =2 \cdot 3^{3} \cdot 7=2^{3}+3^{3}+7^{3}, \\
2548 & =2^{2} \cdot 7^{2} \cdot 13=2^{3}+7^{3}+13^{3}, \\
2836295 & =5 \cdot 7 \cdot 11 \cdot 53 \cdot 139=5^{3}+7^{3}+11^{3}+53^{3}+139^{3}, \\
4473671462 & =2 \cdot 13 \cdot 179 \cdot 593 \cdot 1621=2^{3}+13^{3}+179^{3}+593^{3}+1621^{3}, \\
23040925705 & =5 \cdot 7 \cdot 167 \cdot 1453 \cdot 2713=5^{3}+7^{3}+167^{3}+1453^{3}+2713^{3}, \\
13579716377989 & =19 \cdot 157 \cdot 173 \cdot 1103 \cdot 23857=19^{3}+157^{3}+173^{3}+1103^{3}+23857^{3}, \\
21467102506955 & =5 \cdot 7^{3} \cdot 313 \cdot 1439 \cdot 27791=5^{3}+7^{3}+313^{3}+1439^{3}+27791^{3} \\
119429556097859 & =7 \cdot 53 \cdot 937 \cdot 6983 \cdot 49199=7^{3}+53^{3}+937^{3}+6983^{3}+49199^{3} .
\end{aligned}
$$

In particular, we showed that 378 and 2548 are the only numbers in S_{3} with exactly three distinct prime factors.

We did not find any number belonging to S_{k} for $k=2$ or $k \geq 4$, although each of these sets may very well be infinite.

In this paper, we examine the sets

$$
S_{k}^{*}:=\left\{n: \omega(n) \geq 2 \text { and } n=\sum_{p \mid n}^{*} p^{k}\right\} \quad(k=2,3, \ldots),
$$

where the star next to the sum indicates that it runs over some subset of primes dividing n. For instance, $870 \in S_{2}^{*}$, because

$$
870=2 \cdot 3 \cdot 5 \cdot 29=2^{2}+5^{2}+29^{2}
$$

Clearly, for each $k \geq 2$, we have $S_{k}^{*} \supseteq S_{k}$. Moreover, given integers $k \geq 2$ and $\ell \geq 3$, let $S_{k, \ell}^{*}$ stand for the set of those positive integers n which can be written as $n=p_{1}^{k}+p_{2}^{k}+\ldots+p_{\ell}^{k}$, where $p_{1}, p_{2}, \ldots, p_{\ell}$ are distinct prime factors of n, so that for each integer $k \geq 2$,

$$
S_{k}^{*}=\bigcup_{\ell=3}^{\infty} S_{k, \ell}^{*}
$$

We study the properties of the sets $S_{k, \ell}^{*}$ and we show in particular that, given any odd $\ell \geq 3$, the set $\bigcup_{k=2}^{\infty} S_{k, \ell}^{*}$ is infinite. We treat separately the cases $\ell=3$ and $\ell \geq 5$, the latter case being our main result.

In what follows, the letter p, with or without subscripts, always denotes a prime number.

2 Preliminary results

We shall first consider the set S_{2}^{*}. Note that if $n \in S_{2}^{*}$, then $P(n)$, the largest prime divisor of n, must be part of the partial sum of primes which allows n to belong to S_{2}^{*}. Indeed, assume the contrary, namely that, for some primes $p_{1}<p_{2}<\ldots<p_{r}$,

$$
n=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}=p_{i_{1}}^{2}+\ldots+p_{i_{\ell}}^{2} \quad \in S_{2}^{*}
$$

where $i_{1}<i_{2}<\ldots<i_{\ell} \leq r-1$, with $r \geq 3$. Then

$$
p_{1} \ldots p_{r-2} p_{r-1} p_{r} \leq n<\ell p_{i_{\ell}}^{2} \leq r p_{r-1}^{2}
$$

so that $p_{1} \ldots p_{r-2} p_{r}<r p_{r-1}<r p_{r}$, which implies that $p_{1} \ldots p_{r-2}<r$, which is impossible for $r \geq 3$.

While by a parity argument one can easily see that each element of S_{k} (for any $k \geq 2$) must have an odd number of prime factors, one can observe that elements of S_{k}^{*} can on the contrary be written as a sum of an even number of prime powers, as can be seen with $298995972 \in S_{2}^{*}$ (see below).

We can show that if Schinzel's Hypothesis is true (see Schinzel [2]), then the set S_{3}^{*} is infinite. We shall even prove more.

Theorem 1. If Schinzel's Hypothesis is true, then $\# S_{3,3}^{*}=+\infty$.
Proof. Assume that k is an even integer such that $r=k^{2}-9 k+21$ and $p=k^{2}-7 k+13$ are both primes, then $n=2 r p(r+k) \in S_{3,3}^{*}$. Indeed, in this case, one can see that

$$
\begin{equation*}
n=2 r p(r+k)=2^{3}+r^{3}+p^{3}, \tag{1}
\end{equation*}
$$

since both sides of (1) are equal to $2 k^{6}-48 k^{5}+492 k^{4}-2752 k^{3}+8844 k^{2}-15456 k+11466$. Now Schinzel's Hypothesis guarantees that there exist infinitely many even k 's such that the corresponding numbers r and p are both primes.

Note that the first such values of k are $k=2,6,10,82$ and 94 . These yield the following four elements of $S_{3,3}^{*}$ (observing that $k=2$ and $k=6$ provide the same number, namely $n=378$):

$$
\begin{aligned}
378 & =2 \cdot 3^{3} \cdot 7=2^{3}+3^{3}+7^{3}, \\
109306 & =2 \cdot 31 \cdot 41 \cdot 43=2^{3}+31^{3}+43^{3}, \\
450843455098 & =2 \cdot 6007 \cdot 6089 \cdot 6163=2^{3}+6007^{3}+6163^{3}, \\
1063669417210 & =2 \cdot 8011 \cdot 8105 \cdot 8191=2^{3}+8011^{3}+8191^{3} .
\end{aligned}
$$

Not all elements of S_{3}^{*} are generated in this way. For instance, the following numbers also belong to S_{3}^{*} :

$$
\begin{aligned}
23391460 & =2^{2} \cdot 5 \cdot 23 \cdot 211 \cdot 241=2^{3}+211^{3}+241^{3}, \\
173871316 & =2^{2} \cdot 223 \cdot 421 \cdot 463=2^{3}+421^{3}+463^{3}, \\
126548475909264420 & =2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 83 \cdot 101 \cdot 45569 \cdot 501931 \\
& =2^{3}+5^{3}+83^{3}+45569^{3}+501931^{3},
\end{aligned}
$$

as well as all those elements of S_{3} mentioned in Section 1.
Theorem 2. \# $\bigcup_{k=2}^{\infty} S_{k, 3}^{*}=+\infty$.

Proof. This follows immediately from the fact that for each element $n \in S_{k, 3}^{*}$, one can find a corresponding element $n^{\prime} \in S_{k(2 r+1), 3}^{*}$ for $r=1,2, \ldots$. Indeed, if $n \in S_{k, 3}^{*}$, then it means that

$$
n=p_{1}^{k}+p_{2}^{k}+p_{3}^{k}
$$

for some distinct primes divisors p_{1}, p_{2}, p_{3} of n. In particular, it means that $p_{a} \mid\left(p_{b}^{k}+p_{c}^{k}\right)$ for each permutation (a, b, c) of the integers 1,2 and 3 . We claim that, given any positive integer r, the number

$$
n^{\prime}:=p_{1}^{k(2 r+1)}+p_{2}^{k(2 r+1)}+p_{3}^{k(2 r+1)}
$$

belongs to $S_{k(2 r+1), 3}^{*}$. Indeed, we only need to show that $p_{a} \mid\left(p_{b}^{k(2 r+1)}+p_{c}^{k(2 r+1)}\right)$ for each permutation (a, b, c) of the integers 1,2 and 3 . But this follows from the fact that $\left(p_{b}^{k}+p_{c}^{k}\right)$ divides $\left(p_{b}^{k(2 r+1)}+p_{c}^{k(2 r+1)}\right)$; but since p_{a} divides $\left(p_{b}^{k}+p_{c}^{k}\right)$, we have that p_{a} divides $\left(p_{b}^{k(2 r+1)}+\right.$ $\left.p_{c}^{k(2 r+1)}\right)$ and therefore that $n^{\prime} \in S_{k(2 r+1), 3}^{*}$. Since $378 \in S_{3,3}^{*}$, the proof is complete.

Remark. It clearly follows from Theorems 1 and 2 that $\# S_{3(2 r+1), 3}^{*}=+\infty$ for any $r \geq 1$.

3 Proof of the main result

Theorem 3. Given any odd integer $\ell \geq 5$,

$$
\# \bigcup_{k=2}^{\infty} S_{k, \ell}^{*}=+\infty
$$

This is an immediate consequence of the following two lemmas.
Lemma 3.1. Let $t=2 s \geq 2$ be an even integer and p_{1}, \ldots, p_{t} be primes such that
(i) $p_{i} \equiv 3(\bmod 4)$ for all $i=1, \ldots, t$.
(ii) $\operatorname{gcd}\left(p_{i}, p_{j}-1\right)=1$ for all i, j in $\{1, \ldots, t\}$.
(iii) $\operatorname{gcd}\left(p_{i}-1, p_{j}-1\right)=2$ for all $i \neq j$ in $\{1, \ldots, t\}$.

Assume furthermore that a_{1}, \ldots, a_{t} are integers and n_{1}, \ldots, n_{t} are odd positive integers such that
(iv) $\operatorname{gcd}\left(2 n_{i}+1, p_{i}-1\right)=1$ for all $i=1, \ldots, t$.
(v) $p_{i} \mid \sum_{j=1}^{t} p_{j}^{n_{i}}+a_{i}^{n_{i}}$ for all $i=1, \ldots, t$.
(vi) $s=t / 2$ of the t numbers $\left(\frac{a_{i}}{p_{i}}\right)$ for $i=1, \ldots, t$ are equal to 1 and the other s are equal to -1 .

Then there exist infinitely many primes p such that $S_{\frac{p-1}{2}, t+1}^{*}$ contains at least one element.

Proof. Let a be such that

$$
\begin{equation*}
a \equiv 2 n_{i}+1 \quad\left(\bmod \left(p_{i}-1\right) / 2\right), \quad a \equiv 3 \quad(\bmod 4), \quad a \equiv a_{i} \quad\left(\bmod p_{i}\right) \tag{2}
\end{equation*}
$$

for all $i=1, \ldots, t$. The fact that the above integer a exists is a consequence of the Chinese Remainder Theorem and conditions (i)-(iii) above. Since n_{i} is odd, $\left(p_{i}-1\right) / 2$ is also odd and $a \equiv 3(\bmod 4)$, we conclude that the congruence $a \equiv 2 n_{i}+1\left(\bmod \left(p_{i}-1\right) / 2\right)$ implies $a \equiv 2 n_{i}+1\left(\bmod 2\left(p_{i}-1\right)\right)$.

Now let $M=4 \prod_{i=1}^{t} \frac{p_{i}\left(p_{i}-1\right)}{2}$. Note that the number a is coprime to M by conditions (i)-(iv). Thus, by Dirichlet's Theorem on primes in arithmetic progressions, it follows that there exist infinitely many prime numbers p such that $p \equiv a(\bmod M)$. It is clear that these primes satisfy the same congruences (2) as a does. Let p be such a prime and set

$$
n=\sum_{i=1}^{t} p_{i}^{(p-1) / 2}+p^{(p-1) / 2}
$$

Note that since $p \equiv 2 n_{i}+1\left(\bmod 2\left(p_{i}-1\right)\right)$, we get that $(p-1) / 2 \equiv n_{i}\left(\bmod p_{i}-1\right)$. Therefore by Fermat's Little Theorem and condition (v) we get

$$
n \equiv \sum_{j=1}^{t} p_{j}^{n_{i}}+p^{n_{i}} \equiv \sum_{j=1}^{t} p_{j}^{n_{i}}+a_{i}^{n_{i}} \equiv 0 \quad\left(\bmod p_{i}\right)
$$

for all $i=1, \ldots, t$. Finally, conditions (i), (v) and the Quadratic Reciprocity Law show that from the $t=2 s$ numbers

$$
\left(\frac{p_{i}}{p}\right)=-\left(\frac{p}{p_{i}}\right)=-\left(\frac{a_{i}}{p_{i}}\right),
$$

exactly half of them are 1 and the other half are -1 . Thus, half of the numbers $p_{i}^{(p-1) / 2}$ are congruent to 1 modulo p and the other half are congruent to -1 modulo p which shows that n is a multiple of p. Hence, n is a multiple of p_{i} for $i=1, \ldots, t$ and of p as well, which implies that $n \in S_{\frac{p-1}{2}, t+1}^{*}$.

Lemma 3.2. If $s \geq 2$ then there exist primes p_{i} and integers a_{i}, n_{i} for $i=1, \ldots, t$ satisfying the conditions of Lemma 3.1.

Proof. Observe that $t-1 \geq 3$. Choose primes p_{1}, \ldots, p_{t-1} such that $p_{i} \equiv 11(\bmod 12)$ for all $i=1, \ldots, t-1, \operatorname{gcd}\left(p_{i}, p_{j}-1\right)=1$ for all i, j in $\{1, \ldots, t-1\}, \operatorname{gcd}\left(p_{i}-1, p_{j}-1\right)=2$ for all $i \neq j$ in $\{1, \ldots, t-1\}$ and finally $p_{1}+\cdots+p_{t-1}$ is coprime to $p_{1} \ldots p_{t-1}$. Note that $N=p_{1}+\cdots+p_{t-1}$ is an odd number. Such primes can be easily constructed starting with say $p_{1}=11$ and recursively defining p_{2}, \ldots, p_{t-1} as primes in suitable arithmetic progressions. Take $n_{i}=1$ for $i=1, \ldots, t$. Let q_{1}, \ldots, q_{ℓ} be all the primes dividing N. Pick some integers a_{1}, \ldots, a_{t-1} such that s of the numbers $\left(\frac{-a_{i}}{p_{i}}\right)$ are -1 and the other $s-1$ are 1 . Now choose a prime p_{t} such that $p_{t} \equiv 11(\bmod 12), p_{t}$ is coprime to $p_{i}-1$ for $i=1, \ldots, t-1$,
$p_{t} \equiv-a_{i}-N\left(\bmod p_{i}\right)$ for $i=1, \ldots, t-1$, and $\left(\frac{q_{i}}{p_{t}}\right)=1$ for all $i=1, \ldots, \ell$. For these last congruences to be fulfilled, we note that it is enough to choose $p_{t} \equiv 1\left(\bmod q_{u}\right)$ if $q_{u} \equiv 1$ $(\bmod 4)$ and $p_{t} \equiv-1\left(\bmod q_{u}\right)$ if $q_{u} \equiv 3(\bmod 4)$, where $u=1, \ldots, \ell$. Notice that this choice is consistent with the fact that $p_{t} \equiv 11(\bmod 12)$ if it happens that one of the q_{u} is 3 . So far, the primes p_{1}, \ldots, p_{t} satisfy conditions (i)-(iii) of Lemma 3.1. Finally, put $a_{t}=-N$. Note that $\left(\frac{-a_{t}}{p_{t}}\right)=\prod_{u=1}^{\ell}\left(\frac{q_{u}}{p_{t}}\right)^{\alpha_{u}}=1$. Here, α_{u} is the exact power of q_{u} in $-a_{t}$. Hence, exactly s of the numbers $\left(\frac{-a_{i}}{p_{i}}\right)$ are 1 and the others are -1 and since all primes p_{i} are congruent to 3 modulo 4 the same remains true if one replaces $-a_{i}$ by a_{i}. Thus, condition (vi) of Lemma 3.1 holds. Now one checks immediately that (v) holds with $n_{i}=1$ for all $i=1, \ldots, t$, because for all $i=1, \ldots, t-1$ we have

$$
\sum_{j=1}^{t} p_{j}^{n_{j}}+a_{i}^{n_{i}} \equiv N+p_{t}+a_{i} \quad\left(\bmod p_{i}\right) \equiv 0 \quad\left(\bmod p_{i}\right)
$$

while

$$
\sum_{j=1}^{t} p_{j}^{n_{j}}+a_{t}=N+p_{t}-N \equiv 0 \quad\left(\bmod p_{t}\right)
$$

and (iv) is obvious because $2 n_{i}+1=3$ and $p_{i}-1 \equiv 10(\bmod 12)$ is not a multiple of 3 for $i=1, \ldots, t$.

Remark. The above argument does not work for $s=1$. Indeed, in this case $t-1=1$, therefore $p_{1}+\cdots+p_{t-1}=p_{1}$ and this is not coprime to p_{1}.

4 Computational results and further remarks

To conduct a search for elements of S_{k}^{*}, one can proceed as follows. If $n \in S_{k, \ell}^{*}$, then there exists a positive number Q and primes $p_{1}, p_{2}, \ldots, p_{\ell}$ such that

$$
n=Q p_{1} \ldots p_{\ell-1} p_{\ell}=p_{1}^{k}+\ldots+p_{\ell-1}^{k}+p_{\ell}^{k}
$$

so that a necessary condition for n to be in $S_{k, \ell}^{*}$ is that $p_{\ell} \mid\left(p_{1}^{k}+\ldots+p_{\ell-1}^{k}\right)$. (Note that some of the p_{i} 's may also divide Q.)

For instance, in order to find $n \in S_{k, 3}^{*}$, we examine the prime factors p of $r^{k}+q^{k}$ as $2 \leq r<q$ run through the primes up to a given x, and we then check if $Q:=\frac{r^{k}+q^{k}+p^{k}}{r q p}$ is an integer. If this is so, then the integer $n=$ Qrqp belongs to $S_{k, 3}^{*}$.

Proceeding in this manner (with $\ell=3,4$), we found the following elements of S_{2}^{*} :

$$
\begin{aligned}
870 & =2 \cdot 3 \cdot 5 \cdot 29=2^{2}+5^{2}+29^{2}, \\
188355 & =3 \cdot 5 \cdot 29 \cdot 433=5^{2}+29^{2}+433^{2}, \\
298995972 & =2^{2} \cdot 3 \cdot 11 \cdot 131 \cdot 17291=3^{2}+11^{2}+131^{2}+17291^{2}, \\
1152597606 & =2 \cdot 3 \cdot 5741 \cdot 33461=2^{2}+5741^{2}+33461^{2}, \\
1879906755 & =3 \cdot 5 \cdot 2897 \cdot 43261=5^{2}+2897^{2}+43261^{2}, \\
5209105541772 & =2^{2} \cdot 3 \cdot 11 \cdot 17291 \cdot 2282281=3^{2}+11^{2}+17291^{2}+2282281^{2} .
\end{aligned}
$$

Although we could not find any elements of S_{4}, we did find some elements of S_{4}^{*}, but they are quite large. Here are six of them:

$$
\begin{aligned}
107827277891825604 & =2^{2} \cdot 3 \cdot 7 \cdot 31 \cdot 67 \cdot 18121 \cdot 34105993=3^{4}+31^{4}+67^{4}+18121^{4}, \\
48698490414981559698 & =2 \cdot 3^{4} \cdot 7 \cdot 13 \cdot 17 \cdot 157 \cdot 83537 \cdot 14816023=2^{4}+17^{4}+83537^{4},
\end{aligned}
$$

3137163227263018301981160710533087044

$$
\begin{aligned}
& =2^{2} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 191 \cdot 283 \cdot 7541 \cdot 1330865843 \cdot 2086223663996743 \\
& =3^{4}+7^{4}+191^{4}+1330865843^{4}
\end{aligned}
$$

129500871006614668230506335477000185618

$$
\begin{aligned}
& =2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \cdot 31 \cdot 241 \cdot 15331 \cdot 21613 \cdot 524149 \cdot 1389403 \cdot 3373402577 \\
& =2^{4}+241^{4}+3373402577^{4}
\end{aligned}
$$

225611412654969160905328479254197935523312771590

$$
=2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2} \cdot 37 \cdot 41 \cdot 109 \cdot 113 \cdot 127 \cdot 151 \cdot 541 \cdot 911 \cdot 5443
$$

$\cdot 3198662197 \cdot 689192061269$

$$
=5^{4}+7^{4}+113^{4}+127^{4}+911^{4}+689192061269^{4}
$$

17492998726637106830622386354099071096746866616980

$$
\begin{aligned}
& =2^{2} \cdot 5 \cdot 7 \cdot 23 \cdot 31 \cdot 97 \cdot 103 \cdot 373 \cdot 1193 \cdot 8689 \cdot 2045107145539 \cdot 2218209705651794191 \\
& =2^{4}+103^{4}+373^{4}+1193^{4}+2045107145539^{4}
\end{aligned}
$$

Note that these numbers provide elements of $S_{4,3}^{*}, S_{4,4}^{*}, S_{4,5}^{*}$ and $S_{4,6}^{*}$.
The smallest elements of $S_{2}^{*}, S_{3}^{*}, \ldots, S_{10}^{*}$ are the following:

$$
\begin{aligned}
870 & =2 \cdot 3 \cdot 5 \cdot 29=2^{2}+5^{2}+29^{2} \\
378 & =2 \cdot 3^{3} \cdot 7=2^{3}+3^{3}+7^{3} \\
107827277891825604 & =2^{2} \cdot 3 \cdot 7 \cdot 31 \cdot 67 \cdot 18121 \cdot 34105993=3^{4}+31^{4}+67^{4}+18121^{4} \\
178101 & =3^{2} \cdot 7 \cdot 11 \cdot 257=3^{5}+7^{5}+11^{5} \\
594839010 & =2 \cdot 3 \cdot 5 \cdot 17 \cdot 29 \cdot 37 \cdot 1087=2^{6}+5^{6}+29^{6} \\
275223438741 & =3 \cdot 23 \cdot 43 \cdot 92761523=3^{7}+23^{7}+43^{7} \\
26584448904822018 & =2 \cdot 3 \cdot 7 \cdot 17 \cdot 19 \cdot 113 \cdot 912733109=2^{8}+17^{8}+113^{8} \\
40373802 & =2 \cdot 3^{4} \cdot 7 \cdot 35603=2^{9}+3^{9}+7^{9} \\
420707243066850 & =2 \cdot 3^{2} \cdot 5^{2} \cdot 29 \cdot 32238102917=2^{10}+5^{10}+29^{10} .
\end{aligned}
$$

Below is a table of the smallest element $n \in S_{k, \ell}^{*}$ for $\ell=3,4,5,6,7$ (with a convenient k):

ℓ	n
3	$378=2 \cdot 3^{3} \cdot 7=2^{3}+3^{3}+7^{3}$
4	$298995972=2^{2} \cdot 3 \cdot 11 \cdot 131 \cdot 17291=3^{2}+11^{2}+131^{2}+17291^{2}$
5	$2836295=5 \cdot 7 \cdot 11 \cdot 53 \cdot 139=5^{3}+7^{3}+11^{3}+53^{3}+139^{3}$
6	$($ a 48 digit number $)=5^{4}+7^{4}+113^{4}+127^{4}+911^{4}+689192061269^{4}$
7	(a 145 digit number $)=2^{14}+3^{14}+5^{14}+11^{14}+29^{14}+149^{14}+19809551197^{14}$

Theorem 3 provides a way to construct infinitely many elements of $S_{k, \ell}^{*}$ given any fixed positive odd integer ℓ. However, in practice, the elements obtained are very large. Indeed, take the case $k=5$. With the notation of Lemma 1 , we have $t=4$; one can then choose $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}=\{11,47,59,227\}$. As suggested in Lemma 2, let $n_{i}=1$ for $i=1,2,3,4$. An appropriate set of integers a_{i} 's is given by $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}=\{8,32,10,110\}$, which gives $\left\{\left(\frac{a_{i}}{p_{i}}\right): i=1,2,3,4\right\}=\{-1,1,-1,1\}$. Looking for a solution a of the set of congruences

$$
\left\{\begin{array}{l}
a \equiv 3 \quad\left(\bmod \frac{p_{i}-1}{2}\right) \quad(i=1,2,3,4) \\
a \equiv 3 \quad(\bmod 4) \\
a \equiv a_{i} \quad\left(\bmod p_{i}\right) \quad(i=1,2,3,4)
\end{array}\right.
$$

we obtain $a=4619585064883$. With $M=4 \prod_{i=1}^{4} \frac{p_{i}\left(p_{i}-1\right)}{2}=10437648923020$, we notice that indeed $\operatorname{gcd}(a, M)=1$. As the smallest prime number $p \equiv a(\bmod M)$, we find $p=$ $10 M+a=108996074295083$. This means that the smallest integer $n \in S_{k, 5}^{*}$ constructed with our algorithm is given by

$$
n=\sum_{i=1}^{4} p_{i}^{\frac{p-1}{2}}+p^{\frac{p-1}{2}}
$$

which is quite a large integer since

$$
n \approx p^{\frac{p-1}{2}} \approx\left(10^{14}\right)^{\frac{1}{2} \cdot 10^{14}} \approx 10^{7 \cdot 10^{14}}
$$

References

[1] J. M. De Koninck and F. Luca, Integers representable as the sum of powers of their prime factors, Functiones et Approximatio 33 (2005), 57-72.
[2] A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), 185-208. Corrigendum: 5 (1959), 259.

2000 Mathematics Subject Classification: Primary 11A41; Secondary 11A25.
Keywords: prime factorization.

Received January 5 2006; revised version received December 30 2006. Published in Journal of Integer Sequences, December 302006.

Return to Journal of Integer Sequences home page.

