Minimal r-Complete Partitions

Øystein J. Rødseth
Department of Mathematics
University of Bergen
Johs. Brunsgt. 12
N-5008 Bergen
Norway
rodseth@math.uib.no

Abstract

A minimal r-complete partition of an integer m is a partition of m with as few parts as possible, such that all the numbers $1, \ldots, r m$ can be written as a sum of parts taken from the partition, each part being used at most r times. This is a generalization of M-partitions (minimal 1-complete partitions). The number of M-partitions of m was recently connected to the binary partition function and two related arithmetic functions. In this paper we study the case $r \geq 2$, and connect the number of minimal r-complete partitions to the $(r+1)$-ary partition function and a related arithmetic function.

1 Introduction

Let $\lambda=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right)$ be a partition of the natural number m into $n+1$ parts λ_{i} arranged in non-decreasing order,

$$
m=\lambda_{0}+\lambda_{1}+\cdots+\lambda_{n}, \quad 1 \leqslant \lambda_{0} \leqslant \lambda_{1} \leqslant \cdots \leqslant \lambda_{n}
$$

The sum of the parts is called the weight of the partition and is denoted by $|\lambda|$, while $n+1$ is the length of the partition.

MacMahon [3], [4, pp. 217-223] calls the partition λ of weight m perfect if each positive integer less than m can be written in a unique way as a sum of distinct parts λ_{i}. Park [6] calls λ a complete partition of m if the representation property is maintained, while the uniqueness constraint is dropped. (O'Shea [5] calls this a weak M-partition.) Prior to Park's paper, infinite complete sequences had been introduced by Hoggatt and King [2], and studied by Brown [1].

Park [7] generalized the notion of a complete partition to r-complete partitions for a positive integer r. The partition $\lambda=\left(\lambda_{0}, \ldots, \lambda_{n}\right)$ of m is r-complete if each integer w in the interval $0 \leqslant w \leqslant r m$ can be written as

$$
\begin{equation*}
w=\alpha_{0} \lambda_{0}+\cdots+\alpha_{n} \lambda_{n} \quad \text { with } \quad 0 \leqslant \alpha_{i} \leqslant r . \tag{1}
\end{equation*}
$$

Clearly, "complete" is the same as "1-complete". An r-complete partition is also $(r+1)$ complete.

We call an r-complete partition of m of minimal length a minimal r-complete partition of m. O'Shea [5] uses the term M-partition in place of minimal complete partition. He showed that for half the numbers m, the number of M-partitions of m is equal to the number of binary partitions of $2^{n+1}-1-m$, where $n=\left\lfloor\log _{2} m\right\rfloor$. (In a binary partition, all parts are powers of 2.) O'Shea's partial enumeration formula was completed by us in [8].

In this paper we connect the minimal r-complete partition function (for $r \geqslant 2$) to the $(r+1)$-ary partition function and a related arithmetic function. (In an $(r+1)$-ary partition, all parts are powers of $r+1$.) In Section 2 we state our results. In Section 3 we consider a characterization of minimal r-partitions, and in Section 4 we prove our main result using (truncated) polynomials and formal power series.

2 Statement of Results

Let $f(k)$ be the $(r+1)$-ary partition function, that is, the number of partitions of k into powers of $r+1$. For the generating function $F(x)$ we have

$$
F(x)=\sum_{k=0}^{\infty} f(k) x^{k}=\prod_{i=0}^{\infty} \frac{1}{1-x^{(r+1)^{i}}} .
$$

We also define the auxiliary arithmetic function $g(k)$ as follows:

$$
G(x)=\sum_{k=0}^{\infty} g(k) x^{k}=\sum_{j=0}^{\infty} \frac{x^{(r+1)^{j}-1}}{1-x^{2(r+1)^{j}}} F\left(x^{(2 r+1)(r+1)^{j}}\right) \prod_{i=0}^{j} \frac{1}{1-x^{(r+1)^{i}}} .
$$

A straightforward verification shows that the following functional equations hold:

$$
\begin{align*}
& F(x)=\frac{1}{1-x} F\left(x^{r+1}\right) \tag{2}\\
& G(x)=\frac{x^{r}}{1-x} G\left(x^{r+1}\right)+\frac{1}{(1-x)\left(1-x^{2}\right)} F\left(x^{2 r+1}\right) . \tag{3}
\end{align*}
$$

These functional equations give simple recurring relations for fast computation of $f(k)$ and $g(k)$. We adopt the convention that $g(k)=0$ if k is not a non-negative integer.
Theorem 2.1. Let $r \geqslant 2$, and let $a_{r}(m)$ be the number of minimal r-complete partitions of m. Then

$$
a_{r}(m)=f\left(\frac{1}{r}\left((r+1)^{n+1}-1\right)-m\right)-g\left(\frac{1}{r}\left((2 r+1)(r+1)^{n-1}-1\right)-1-m\right),
$$

where $n=\left\lfloor\log _{r+1}(r m)\right\rfloor$.

Corollary 2.1. We have

$$
a_{r}(m)=f\left(\frac{1}{r}\left((r+1)^{n+1}-1\right)-m\right)
$$

if $\frac{1}{r}\left((2 r+1)(r+1)^{n-1}-1\right) \leqslant m \leqslant \frac{1}{r}\left((r+1)^{n+1}-1\right)$.
The case $r=1$ is not covered by Theorem 2.1. This case is slightly different from $r \geqslant 2$, as an additional arithmetic function is required in the description of $a_{1}(m)$; see [8, Theorem 2]. The expression for $a_{r}(m)$ in Theorem 2.1 is, however, valid for $r=1$ if $2^{n}+2^{n-3}-4 \leqslant m \leqslant 2^{n+1}-1$. In particular, Corollary 2.1 remains valid if $r=1$, a result due to O'Shea [5].

Some of the sequences appearing above can be found in Sloane's On-Line Encyclopedia of Integer Sequences [9]. For perfect partitions, see sequence A002033; for $a_{1}(m)$, see A100529. The sequences $\mathbf{A 0 0 0 1 2 3}$, A018819, A0005704, A0005705, A0005706 give the first several values of $f(k)$ for $r=1,1,2,3$, and 4 , respectively. In addition, sequence A117115 gives the 53 first values of $g(k)$ for $r=1$, and A117117 gives the 53 first values of the additional arithmetic function required in the description of $a_{1}(m)$.

3 Completeness

The following lemma is due to Park [7], with partial results by Brown [1] and Park [6].
Lemma 3.1. The partition $\lambda=\left(\lambda_{0}, \ldots, \lambda_{n}\right)$ is r-complete if and only if $\lambda_{0}=1$ and

$$
\begin{equation*}
\lambda_{i} \leqslant 1+r\left(\lambda_{0}+\cdots+\lambda_{i-1}\right) \quad \text { for } \quad i=1,2, \ldots, n \tag{4}
\end{equation*}
$$

The necessity of the conditions $\lambda_{0}=1$ and (4) is clear, and the sufficiency follows by induction on n; see the proof of Theorem 2.2 in [7].

Suppose that $\lambda=\left(\lambda_{0}, \ldots, \lambda_{n}\right)$ is an r-complete partition of m. Then (1) must be solvable for $r m+1$ values of w. Since the right hand side attains at most $(r+1)^{n+1}$ distinct values, we have $r m+1 \leqslant(r+1)^{n+1}$. Alternatively, by Lemma 3.1, $\lambda_{i} \leqslant(r+1)^{i}$ for $i=0,1, \ldots, n$, so that $r m \leqslant(r+1)^{n+1}-1$. In any case, we have $\left\lfloor\log _{r+1}(r m)\right\rfloor \leqslant n$, cf. [7, Proposition 2.4].

On the other hand, for a given m, let $n=\left\lfloor\log _{r+1}(r m)\right\rfloor$. Order the $n+1$ positive integers $1, r+1,(r+1)^{2}, \ldots,(r+1)^{n-1}, k=m-\frac{1}{r}\left((r+1)^{n}-1\right)$ in increasing order $1=\lambda_{0} \leqslant \lambda_{1} \leqslant$ $\cdots \leqslant \lambda_{n}$. We have $1 \leqslant k \leqslant(r+1)^{n}$, and it follows that λ is a minimal r-complete partition of m.

Lemma 3.2. Let λ be an r-complete partition of weight m and length $n+1$. Then λ is minimal if and only if

$$
\begin{equation*}
n=\left\lfloor\log _{r+1}(r m)\right\rfloor . \tag{5}
\end{equation*}
$$

We have shown that if $\lambda=\left(\lambda_{0}, \ldots, \lambda_{n}\right)$ is a partition of weight m with $\lambda_{0}=1$, then λ is a minimal r-complete partition if and only if (4) and (5) hold.

4 Generating functions

In order to determine the number $a_{r}(m)$ of minimal r-complete partitions of weight m, we first consider the number $q_{n}(m)$ of r-complete partitions of weight m and length $n+1$. By Lemma 3.2, we know that such an r-complete partition is minimal if and only if $\frac{1}{r}\left((r+1)^{n}-\right.$ $1)+1 \leqslant m \leqslant \frac{1}{r}\left((r+1)^{n+1}-1\right)$. Thus

$$
\begin{equation*}
a_{r}(m)=q_{n}(m) \quad \text { if } \quad \frac{1}{r}\left((r+1)^{n}-1\right)+1 \leqslant m \leqslant \frac{1}{r}\left((r+1)^{n+1}-1\right) . \tag{6}
\end{equation*}
$$

For the generating function $Q_{n}(x)$ of $q_{n}(m)$, we have

$$
\begin{equation*}
Q_{n}(x)=\sum_{m=n+1}^{(1 / r)\left((r+1)^{n+1}-1\right)} q_{n}(m) x^{m}=\sum_{\lambda} x^{|\lambda|}, \tag{7}
\end{equation*}
$$

where we sum over the λ satisfying $1=\lambda_{0} \leqslant \lambda_{1} \leqslant \cdots \leqslant \lambda_{n}$ and (4).
We change parameters by setting $\mu_{i}=(r+1)^{i}-\lambda_{i}$ for $i=0,1, \ldots, n$. Then the constraints, necessary for λ being r-complete, become $\mu_{0}=0$, and

$$
\begin{equation*}
r\left(\mu_{0}+\cdots+\mu_{i-1}\right) \leqslant \mu_{i} \leqslant r(r+1)^{i-1}+\mu_{i-1} \quad \text { for } i=1, \ldots, n \text {. } \tag{8}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
|\lambda|=\frac{1}{r}\left((r+1)^{n+1}-1\right)-|\mu|, \tag{9}
\end{equation*}
$$

for $|\mu|=\mu_{0}+\cdots+\mu_{n}$. For a fixed n, we are interested in the number of solutions λ of $|\lambda|=m$ for each m in the interval $\frac{1}{r}\left((r+1)^{n}-1\right)+1 \leqslant m \leqslant \frac{1}{r}\left((r+1)^{n+1}-1\right)$, that is, the number of solutions μ of $|\mu|=k$ for each k in the interval $0 \leqslant k \leqslant(r+1)^{n}-1$.

We write

$$
\begin{equation*}
R_{n}(x)=\sum_{k \geqslant 0} r_{n}(k) x^{k}=\sum_{\mu} x^{|\mu|} \tag{10}
\end{equation*}
$$

where we sum over the μ satisfying $\mu_{0}=0$ and (8). We are interested in the coefficients $r_{n}(k)$ for $k<(r+1)^{n}$. Therefore we shall on some occasions truncate polynomials and formal power series under consideration. We shall use the order symbol $O\left(x^{N}\right)$ for truncation of order N. Thus, if we write

$$
\sum_{k} b(k) x^{k}=\sum_{k} c(k) x^{k}+O\left(x^{N}\right),
$$

then $b(k)=c(k)$ for all $k<N$.
Let $n \geqslant 2$. It simplifies notations to "sum" over $\mu_{0}=0$. We have

$$
R_{n}(x)=\sum_{\mu_{0}} \cdots \sum_{\mu_{n}} x^{\mu_{0}+\cdots+\mu_{n}},
$$

where the innermost sum is

$$
\sum_{\mu_{n}=r\left(\mu_{0}+\cdots+\mu_{n-1}\right)}^{r(r+1)^{n-1}+\mu_{n-1}} x^{\mu_{0}+\cdots+\mu_{n}}=x^{(r+1)\left(\mu_{0}+\cdots+\mu_{n-1}\right)} \frac{1-x^{r(r+1)^{n-1}+1-r\left(\mu_{0}+\cdots+\mu_{n-1}\right)+\mu_{n-1}}}{1-x} .
$$

Now, we have

$$
R_{n}(x)=\frac{1}{1-x} R_{n-1}\left(x^{r+1}\right)-\frac{x^{r(r+1)^{n-1}+1}}{1-x} \sum_{\mu_{0}} \cdots \sum_{\mu_{n-1}} x^{\mu_{0}+\cdots+\mu_{n-2}+2 \mu_{n-1}} .
$$

We repeat this process once, and obtain

$$
\begin{aligned}
& R_{n}(x)=\frac{1}{1-x} R_{n-1}\left(x^{r+1}\right)-\frac{x^{r(r+1)^{n-1}+1}}{(1-x)\left(1-x^{2}\right)} R_{n-2}\left(x^{2 r+1}\right) \\
&+\frac{x^{r(r+3)(r+1)^{n-2}+3}}{(1-x)\left(1-x^{2}\right)} \sum_{\mu_{0}} \cdots \sum_{\mu_{n-2}} x^{\mu_{0}+\cdots+\mu_{n-3}+3 \mu_{n-2}},
\end{aligned}
$$

so that

$$
\begin{equation*}
R_{n}(x)=\frac{1}{1-x} R_{n-1}\left(x^{r+1}\right)-\frac{x^{r(r+1)^{n-1}+1}}{(1-x)\left(1-x^{2}\right)} R_{n-2}\left(x^{2 r+1}\right)+O\left(x^{(r+1)^{n}}\right) \tag{11}
\end{equation*}
$$

for $n \geqslant 2$.
By (2) and (3), we have

$$
\begin{align*}
& F(x)=\frac{1}{1-x}+O\left(x^{r+1}\right) \\
& G(x)=\frac{1}{(1-x)\left(1-x^{2}\right)}+O\left(x^{r}\right) \tag{12}
\end{align*}
$$

Moreover, $R_{0}(x)=1$, and

$$
R_{1}(x)=1+x+\cdots+x^{r}=\frac{1-x^{r+1}}{1-x}=F(x)+O\left(x^{r+1}\right)
$$

so we may write

$$
\begin{equation*}
R_{1}(x)=F(x)-x^{r+1} G(x)+O\left(x^{r+1}\right) . \tag{13}
\end{equation*}
$$

Putting $n=2$ in (11), we get

$$
R_{2}(x)=\frac{1}{1-x} R_{1}\left(x^{r+1}\right)-\frac{x^{r(r+1)+1}}{(1-x)\left(1-x^{2}\right)} R_{0}\left(x^{2 r+1}\right)+O\left(x^{(r+1)^{2}}\right)
$$

and using (13), we obtain

$$
R_{2}(x)=\frac{1}{1-x} F\left(x^{r+1}\right)-\frac{x^{r(r+1)+1}}{(1-x)\left(1-x^{2}\right)}+O\left(x^{(r+1)^{2}}\right) .
$$

Hence, by (2) and (12), we have

$$
R_{2}(x)=F(x)-x^{r(r+1)+1} G(x)+O\left(x^{(r+1)^{2}}\right) .
$$

We claim that if $r \geqslant 2$ and $n \geqslant 1$, then

$$
\begin{equation*}
R_{n}(x)=F(x)-x^{r(r+1)^{n-1}+1} G(x)+O\left(x^{(r+1)^{n}}\right) . \tag{14}
\end{equation*}
$$

To prove this, we use induction on n. We have just seen that the claim is valid for $n=1$ and $n=2$. Suppose that (14) holds for n replaced by $n-1$ and by $n-2$ for some $n \geqslant 3$. Using (11) and the induction hypotheses, we obtain

$$
\begin{aligned}
R_{n}(x) & =\frac{1}{1-x}\left(F\left(x^{r+1}\right)-x^{r(r+1)^{n-1}+r+1} G\left(x^{r+1}\right)+O\left(x^{(r+1)^{n}}\right)\right) \\
& -\frac{x^{r(r+1)^{n-1}+1}}{(1-x)\left(1-x^{2}\right)}\left(F\left(x^{2 r+1}\right)-x^{(2 r+1)\left(r(r+1)^{n-3}+1\right)} G\left(x^{2 r+1}\right)+O\left(x^{(2 r+1)(r+1)^{n-2}}\right)\right) \\
& +O\left(x^{(r+1)^{n}}\right) .
\end{aligned}
$$

We find that

$$
R_{n}(x)=\frac{1}{1-x} F\left(x^{r+1}\right)-\frac{x^{r(r+1)^{n-1}+r+1}}{1-x} G\left(x^{r+1}\right)-\frac{x^{r(r+1)^{n-1}+1}}{(1-x)\left(1-x^{2}\right)} F\left(x^{2 r+1}\right)+O\left(x^{(r+1)^{n}}\right),
$$

and, using the functional equations (2) and (3), (14) follows.
We are now ready to conclude the proof of Theorem 2.1. By (10) and (9), we have

$$
R_{n}(x)=\sum_{\mu} x^{|\mu|}=\sum_{\lambda} x^{(1 / r)\left((r+1)^{n+1}-1\right)-|\lambda|}
$$

Moreover, by (7),

$$
R_{n}(x)=x^{(1 / r)\left((r+1)^{n+1}-1\right)} Q_{n}\left(x^{-1}\right)=\sum_{m=n+1}^{(1 / r)\left((r+1)^{n+1}-1\right)} q_{n}(m) x^{(1 / r)\left((r+1)^{n+1}-1\right)-m}
$$

Hence,

$$
R_{n}(x)=\sum_{k \geqslant 0} r_{n}(k) x^{k}=\sum_{k=0}^{(1 / r)\left((r+1)^{n+1}-1\right)-n-1} q_{n}\left(\frac{1}{r}\left((r+1)^{n+1}-1\right)-k\right) x^{k} ;
$$

that is,

$$
\begin{equation*}
r_{n}(k)=q_{n}\left(\frac{1}{r}\left((r+1)^{n+1}-1\right)-k\right) . \tag{15}
\end{equation*}
$$

For $n \geqslant 1$, we have by (14),

$$
r_{n}(k)=f(k)-g\left(k-r(r+1)^{n-1}-1\right) \quad \text { for } \quad 0 \leqslant k \leqslant(r+1)^{n}-1
$$

Setting $k=\frac{1}{r}\left((r+1)^{n+1}-1\right)-m$ and using (15) and (6), we get Theorem 2.1. By inspection, the theorem also holds for $n=0$.

References

[1] J. L. Brown, Note on complete sequences of integers, Amer. Math. Monthly 68 (1961), 557-560.
[2] V. E. Hoggatt and C. King, Problem E 1424, Amer. Math. Monthly 67 (1960), 593.
[3] P. A. MacMahon, The theory of perfect partitions and the compositions of multipartite numbers, Messenger Math. 20 (1891), 103-119.
[4] P. A. MacMahon, Combinatory Analysis, vols. I and II, Cambridge University Press, 1915, 1916 (reprinted Chelsea 1960).
[5] E. O'Shea, M-partitions: optimal partitions of weight for one scale pan, Discrete Math. 289 (2004), 81-93.
[6] S. K. Park, Complete partitions, Fibonacci Quart. 36 (1998), 354-360.
[7] S. K. Park, The r-complete partitions, Discrete Math. 183 (1998), 293-297.
[8] Ø. J. Rødseth, Enumeration of M-partitions, Discrete Math. 306 (2006), 694-698.
[9] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://www.research.att.com/~njas/sequences/, 2007.

2000 Mathematics Subject Classification: Primary 11P81; Secondary 05A17.
Keywords: complete partitions, M-partitions, $(r+1)$-ary partitions.
(Concerned with sequences $\underline{A 000123}$, $\underline{\text { A002033, }}$ A0005704, A0005705, $\underline{\text { A0005706, }}$ A018819, A100529, A117115, and A117117.)

Received May 14 2007; revised version received July 30 2007. Published in Journal of Integer Sequences, August 32007.

Return to Journal of Integer Sequences home page.

