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Abstract

We use two methods to obtain a formula relating the total number of inversions
of all permutations and the corresponding order of symmetric, alternating, and dihe-
dral groups. First, we define an equivalence relation on the symmetric group Sn and
consider each element in each equivalence class as a permutation of a proper subset
of {1, 2, . . . , n}. Second, we look at certain properties of a backward permutation, a
permutation obtained by reversing the row images of a given permutation. Lastly, we
employ the first method to obtain a recursive formula corresponding to the number of
permutations with k inversions.

1 Introduction

Let n be a positive integer and A be the finite set {1, 2, . . . , n}. The group of all permutations
of A is the symmetric group on n elements and it is denoted by Sn. A permutation σ ∈ Sn

can be represented by

σ =

(

1 2 · · · n
σ(1) σ(2) · · · σ(n)

)

.

Note that Sn has n! elements and the identity element is given by ι(i) = i for all i ∈ A.
An inversion induced by a permutation σ is an ordered pair (σ(i), σ(j)) such that i < j

and σ(i) > σ(j). For purposes of computations later, we represent an inversion (σ(i), σ(j))
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just by the ordered pair (i, j). The number of inversions of a permutation is a way to measure
the extent to which the permutation is “out of order”. Inversions are important in sorting
algorithms and have applications in computational molecular biology (see [1] for example).

If we let I(σ) be the set of all inversions of a permutation σ ∈ Sn, then

I(σ) = {(i, j) : σ(i) > σ(j), 1 ≤ i < j ≤ n}. (1)

It now follows from Eq. (1) that if N(σ) is the number of all inversions induced by σ ∈ Sn,
then N(σ) = |I(σ)|. Observe that the only permutation with no inversion is the identity
permutation and so, N(σ) = 0 if and only if σ = ι. Further, the number of inversions of a
permutation and its inverse are equal.

In general, to determine the total number of inversions of a permutation σ ∈ Sn, we
count the number of j’s such σ(1) > σ(j) for 1 < j ≤ n, then the number of j’s such
that σ(2) > σ(j) for 2 < j ≤ n, up to the number of j’s such that σ(n − 1) > σ(j) for
n − 1 < j ≤ n, and thus, a formula for N(σ) is given by

N(σ) =
n−1
∑

i=1

|{j : σ(i) > σ(j), i < j ≤ n}| . (2)

Let β ∈ Sn be the permutation defined by

β =

(

1 2 · · · n
n n − 1 · · · 1

)

. (3)

Note that for 1 ≤ i ≤ n we have β(i) = n − i + 1. Thus, i < j implies that β(i) > β(j). It
now follows that (i, j) ∈ I(β) for 1 ≤ i < j ≤ n and the permutation β defined by Eq. (3)
gives the maximum number of inversions in any permutation. Hence,

max
σ∈Sn

N(σ) = N(β) =
n−1
∑

i=1

(n − i) =

(

n

2

)

.

For each positive integer n, if we let Sn be the total number of inversions of all permutations
σ ∈ Sn then

Sn =
∑

σ∈Sn

N(σ). (4)

Using formulas (2) and (4) to determine Sn would take at most
(

n
2

)

n! steps and thus inefficient
for large values of n. This paper introduces two methods to determine Sn and eventually
use these methods to generate explicit formulas for the total number of inversions of all
permutations to two specific subgroups of Sn, namely the alternating group An and the
dihedral group Dn.

2 Partitioning the symmetric group

Let {aj}
n
j=1 be an increasing sequence of n distinct positive integers, that is, for j < k,

we have aj < ak, and S({aj}
n
j=1) be the group of all permutations of {aj}

n
j=1. Notice
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that S({aj}
n
j=1) ≃ Sn and in particular S({aj}

n
j=1) = Sn if {aj}

n
j=1 = {1, 2, . . . , n}. As a

consequence,

Sn =
∑

σ∈S({aj}n
j=1

)

N(σ).

Two permutations σ1 and σ2 in Sn are related, written as σ1 ∼ σ2, if and only if σ1(1) =
σ2(1). It can be verified that ∼ is an equivalence relation on Sn. The equivalence relation
∼ induces equivalence classes Oj = {σ ∈ Sn : σ(1) = j}, j = 1, . . . , n, of Sn. It follows that
Oi ∩ Oj = ∅ for i 6= j and Sn =

⋃n
j=1 Oj and thus, the total number of inversions of all

permutations in Sn is the same as the sum of the number of inversions of all permutations
in each equivalence classes Oj. In symbols, we have

Sn =
n

∑

j=1

∑

σ∈Oj

N(σ). (5)

Let σ ∈ Oj and {ak}
n−1
k=1 be an arrangement in increasing order of elements of A− {j}. The

permutation τ defined by

τ =

(

a1 a2 · · · an−1

σ(2) σ(3) · · · σ(n)

)

is an element of S(A − {j}). If we define the permutation στ,j by

στ,j =

(

1 2 · · · n
j τ(a1) · · · τ(an−1)

)

,

then σ = στ,j and
N(στ,j) = (j − 1) + N(τ). (6)

Equations (5) and (6) give us a recursive formula for Sn and we state it as a lemma.

Lemma 1. We have S1 = 0 and

Sn =
n!(n − 1)

2
+ nSn−1, n ≥ 2.

Proof. Since S1 = {ι}, then S1 = N(ι) = 0. Now suppose n ≥ 2. Note that for each
j = 1, . . . , n

∑

σ∈Oj

N(σ) =
∑

τ∈S(A−{j})

N(στ,j)

=
∑

τ∈S(A−{j})

[(j − 1) + N(τ)]

= (j − 1)|S(A − {j})| +
∑

τ∈S(A−{j})

N(τ)

= (j − 1)(n − 1)! + Sn−1.
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From Eq. (5), we get

Sn =
n

∑

j=1

[(j − 1)(n − 1)! + Sn−1]

= (n − 1)!
n

∑

j=1

(j − 1) + nSn−1

=
n!(n − 1)

2
+ nSn−1.

Theorem 2. For n ≥ 1, we have

Sn =
|Sn|

2

(

n

2

)

=
n!

2

(

n

2

)

.

Proof. The case where n = 1 is trivial. Assuming that the formula holds for some fixed
integer k, we go on to show that it must hold for k + 1 too. Using Lemma 1 and the
induction hypothesis,

Sk+1 =
(k + 1)!k

2
+ (k + 1)Sk

=
(k + 1)!k

2
+ (k + 1)

k!

2

(

k

2

)

=
(k + 1)!

2

(

k +
k(k − 1)

2

)

=
(k + 1)!

2

(

k + 1

2

)

,

which is the formula in the case n = k + 1. This establishes the theorem.

A permutation σ is said to be even if N(σ) is even, otherwise it is said to be odd. Let
An be the set of all even permutations in Sn. Note that An is a subgroup of index 2 of Sn

called the alternating group of degree n. Similarly, we let A({aj}
n
j=1) be the corresponding

alternating group of all even permutations of {aj}
n
j=1. If we denote An to be the number of

inversions of all permutations in An then

An =
∑

σ∈An

N(σ) =
∑

σ∈A({aj}
n
j=1

)

N(σ) (7)

For small values of n, An can easily be determined using Eq. (7). Indeed, A1 = A2 = 0 and
A3 = 4. A drawback of counting, however, occurs when n is large.

Because An is a subset of Sn, if σ ∈ An, then σ ∈ Oj for some j. Thus, the method used
to determine Sn can as well be extended to determine An. It should be noted, however, that
if an even permutation σ is an element of Oj, it is not true that all other permutations in
Oj are also even. Thus, some minor modifications in counting are necessary.
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Theorem 3. For all n ≥ 4 we have

An =
|An|

2

(

n

2

)

=
n!

4

(

n

2

)

.

Proof. Recall that every permutation σ ∈ Sn can be uniquely represented by στ,j for some
τ ∈ S(A − {j}), where 1 ≤ j ≤ n. It follows from Eq. (6) that στ,j is even if and only if j
and N(τ) have different parity. For simplicity, we let A(j) = A(A − {j}) and (A(j))c be
the complement of A(A − {j}) with respect to S(A − {j}), in other words, it is the set of
permutations of A − {j} with an odd number of inversions.

First, consider the case where n ≥ 4 is even, and so

An =

n/2
∑

j=1

∑

τ∈A(2j−1)

[(2j − 2) + N(τ)] +

n/2
∑

j=1

∑

τ∈(A(2j))c

[(2j − 1) + N(τ)]

=

n/2
∑

j=1

[

(2j − 2)|An−1| +
∑

σ∈An−1

N(σ) + (2j − 1)|Ac
n−1| +

∑

σ∈Ac
n−1

N(σ)

]

=

n/2
∑

j=1

[

(4j − 3)(n − 1)!

2
+ An−1 + (Sn−1 − An−1)

]

=
(n − 1)!

2

n/2
∑

j=1

[

(4j − 3) +

(

n − 1

2

)]

=
n!

4

(

n

2

)

.

Now suppose n ≥ 5 is odd so that n − 1 is even. From the previous result, we have

An−1 =
(n − 1)!

4

(

n − 1

2

)

.

Similarly, we compute as follows

An =

(n−1)/2
∑

j=1

∑

τ∈A(2j−1)

[(2j − 2) + N(τ)] +
∑

τ∈A(n)

[(n − 1) + N(τ)]

+

(n−1)/2
∑

j=1

∑

τ∈(A(2j))c

[(2j − 1) + N(τ)]

=

(n−1)/2
∑

j=1

[

(4j − 3)(n − 1)!

2
+ Sn−1

]

+
(n − 1)(n − 1)!

2
+ An−1

=
(n − 1)!

2

(n−1)/2
∑

j=1

[

(4j − 3) +

(

n − 1

2

)]

+
(n − 1)!

2

[

(n − 1) +
(n − 1)(n − 2)

4

]

=
n!

4

(

n

2

)

.
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The following corollary, which relates Sn and An, follows immediately from the previous
theorems.

Corollary 4. If n ≥ 1, then An = ⌊Sn/2⌋.

3 Backward permutations

A backward inversion of a permutation σ ∈ Sn is a pair (σ(i), σ(j)) such that 1 ≤ i < j ≤ n
and σ(i) < σ(j). Again, for computation purposes, we represent a backward inversion
(σ(i), σ(j)) just by the ordered pair (i, j). If we let M(σ) denotes the total number of
backward inversions of a permutation σ, then

M(σ) = |{(i, j) : σ(i) < σ(j) , 1 ≤ i < j ≤ n}|

= |{(i, j) : 1 ≤ i < j ≤ n}| − |{(i, j) : σ(i) > σ(j) , 1 ≤ i < j ≤ n }|

=

(

n

2

)

− N(σ).

Therefore, for any permutation σ ∈ Sn, the sum of the total number of inversions and
backward inversions is

(

n
2

)

, that is,

N(σ) + M(σ) =

(

n

2

)

. (8)

An immediate consequence of Eq. (8) is stated as a theorem which characterizes a permuta-
tion in terms of backward inversions.

Theorem 5. Let σ ∈ Sn.

(i) If n ≡ 0, 1 (mod 4), then σ ∈ An if and only if M(σ) is even.

(ii) If n ≡ 2, 3 (mod 4), then σ ∈ An if and only if M(σ) is odd.

Proof. If n ≡ 0, 1 (mod 4) then
(

n
2

)

is even, and it follows from Eq. (8) that M(σ) is even
if and only if N(σ) is even. If n ≡ 2, 3 (mod 4) then

(

n
2

)

is odd, and so M(σ) is odd if and
only if N(σ) is even.

Given a permutation σ ∈ Sn, the backward permutation of σ, denoted by σ, is defined as

σ =

(

1 2 · · · n − 1 n
σ(n) σ(n − 1) · · · σ(2) σ(1)

)

. (9)

It is clear from the definition that any backward permutation σ is also in Sn.
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Let B be the bijective mapping B : Sn → Sn that sends every permutation onto its
backward permutation, that is, B(σ) = σ. Thus, Sn = {σ : σ ∈ Sn} and B(σ) = σ = σ. It
now follows that N(σ) = M(σ) and from Eq. (8), we have

N(σ) + N(σ) =

(

n

2

)

. (10)

The power of backward permutations and backward inversions can be best illustrated by
offering an alternative proof of Theorem 2. Because Sn = {σ : σ ∈ Sn}, we have

2Sn = 2
∑

σ∈Sn

N(σ) =
∑

σ∈Sn

N(σ) +
∑

σ∈Sn

N(σ)

=
∑

σ∈Sn

[N(σ) + N(σ)]

=
∑

σ∈Sn

(

n

2

)

= n!

(

n

2

)

,

and the result follows.
Using Theorem 5, one can check that if n ≡ 0, 1 (mod 4) then B[An] = An and if

n ≡ 2, 3 (mod 4) then B[An] = Ac
n. Thus, the concept of backward permutations seems

inappropriate for computing An for any values of n. It will, however, be most useful in the
next section.

4 Backward permutations in dihedral groups

Consider the regular n-gon, with n ≥ 3. Label successive vertices of the n-gon by 1, 2, . . . , n.
The Dihedral group Dn of isometries of the plane which map a regular n-gon onto itself can
be considered as a subgroup of Sn. To see this, first let us represent the elements of Dn as
permutations. A (360/n)o clockwise rotation (about the center of the n-gon) is represented
by the permutation

ρ =

(

1 2 · · · n − 1 n
2 3 · · · n 1

)

.

Thus, for each 1 ≤ k < n, a (360k/n)o clockwise rotation can be represented as the permu-
tation ρk given by

ρk =

(

1 2 · · · n − k n − k + 1 · · · n
k + 1 k + 2 · · · n 1 · · · k

)

, (11)

and ρn = ι. Note that 〈ρ〉 is the subgroup of Dn consisting of all rotations. Further, for each
k = 1, . . . , n, one can see from Eq. (11) that N(ρk) = k(n − k) and so

∑

σ∈〈ρ〉

N(σ) =
n

∑

k=1

N(ρk) =
n

∑

k=1

k(n − k) =
n + 1

3

(

n

2

)

.
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If n is odd, for each 1 ≤ k ≤ n, let µk be the mirror reflection whose axis bisects the
angle corresponding to the vertex k of the n-gon.
Case 1. If 2k − 1 ≤ n then

µk =

(

1 2 · · · k · · · 2k − 2 2k − 1 2k · · · n
2k − 1 2k − 2 · · · k · · · 2 1 n · · · 2k

)

.

It follows that

µk =

(

1 2 · · · n − 2k + 1 n − 2k + 2 n − 2k + 3 · · · n
2k 2k + 1 · · · n 1 2 · · · 2k − 1

)

,

and so µk = ρ2k−1.
Case 2. If 2k − 1 > n then

µk =

(

1 · · · 2k − n − 1 2k − n · · · k k + 1 · · · n
2k − n − 1 · · · 1 n · · · k k − 1 · · · 2k − n

)

and

µk =

(

1 2 · · · 2n − 2k + 1 2n − 2k + 2 · · · n
2k − n 2k − n + 1 · · · n 1 · · · 2k − n − 1

)

.

and thus, µk = ρ2k−n−1.
Suppose now that n is even. For 1 ≤ k ≤ n, we have µk = µk+n/2 and thus we only need

to consider those reflections µk for 1 ≤ k ≤ n/2. Similarly, it can be shown that µk = ρ2k−1

for all 1 ≤ k ≤ n/2.
Aside from the mirror reflection µk defined above, there are mirror reflections whose axis

bisects two parallel sides of the n-gon, when n is even. For each k = 1, 2, . . . , n/2, denote
µk,k+1 be the mirror reflection whose axis bisects the two sides of the n-gon, one having
vertices k and k + 1. Then

µk,k+1 =

(

1 · · · 2k 2k + 1 · · · n
2k · · · 1 n · · · 2k + 1

)

.

Taking the backward permutation yields

µk,k+1 =

(

1 · · · n − 2k n − 2k + 1 · · · n
2k + 1 · · · n 1 · · · 2k

)

.

and thus µk,k+1 = ρ2k.
Hence, the backward permutation of any mirror reflection is a rotation. If M be the set

of all mirror reflections in Dn, it follows that B[M ] is the set of all rotations in Dn. We state
these results as a theorem.

Theorem 6. If n ≥ 3 and M is the set of all mirror reflections in Dn, then {M,B[M ]}
partitions Dn.
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Similarly, we define

Dn =
∑

σ∈Dn

N(σ)

and the following theorem gives an explicit formula for Dn.

Theorem 7. For all n ≥ 3 we have

Dn =
|Dn|

2

(

n

2

)

= n

(

n

2

)

.

Proof. Using the previous theorem, we get

Dn =
∑

σ∈Dn

N(σ) =
∑

σ∈M

N(σ) +
∑

σ∈B[M ]

N(σ)

=
∑

σ∈M

N(σ) +
∑

σ∈M

N(σ)

=
∑

σ∈M

[N(σ) + N(σ)]

= |M |

(

n

2

)

= n

(

n

2

)

.

Corollary 8. If tn denotes the nth triangular number, then for all n ≥ 3 we have

Dn =
∑

tn−1<i<tn

i.

Using Theorems 2, 3 and 7, we can generate the following table :

n 1 2 3 4 5 6 7 8 9

Sn 0 1 9 72 600 5400 52920 564480 6531840

An 0 0 4 36 300 2700 26460 282240 3265920

Dn 9 24 50 90 147 224 324

5 Number of permutations with k inversions

Let In(k) denotes the number of permutations in Sn having k inversions. It was shown that
the sequence {In(k) : 0 ≤ k ≤

(

n
2

)

} has the generating function

(n

2
)

∑

k=0

In(k)xk =
n

∏

j=1

1 − xj

1 − x
,
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and using this polynomial, one can find the value of In(k) for k = 0, 1, . . . ,
(

n
2

)

, (see [3]).
Also, asymptotic formulas of the sequence {In+k(n) : n ∈ N} for a fixed integer k ≥ 0 were
discussed in [2] and [3]. In this paper, we employ the partitioning method to provide a
recursive formula in finding these inversion numbers.

Lemma 9. For each 0 ≤ k ≤
(

n
2

)

, there exists σ ∈ Sn such that N(σ) = k.

Proof. If n = 1, 2, the statement clearly holds. Assume that the lemma is true for n − 1.
Let 0 ≤ k ≤

(

n
2

)

. For all 1 ≤ j ≤ n and 0 ≤ l ≤
(

n−1
2

)

there exists τ ∈ S(A − {j})
such that N(στ,j) = (j − 1) + N(τ) and N(τ) = l. Observe that the possible values of
(j − 1) + N(τ) are 0, 1, . . . ,

(

n
2

)

. Therefore, one can find a j and a τ such that στ,j ∈ Sn and
N(στ,j) = (j − 1) + N(τ) = k.

We note that Sn and An can be represented by the inversion numbers. Indeed, we have

Sn =

(n

2
)

∑

k=0

kIn(k) and An =

⌊ 1

2
(n

2
)⌋

∑

k=0

2kIn(2k).

Theorem 10. For 0 ≤ k ≤
(

n
2

)

where n ≥ 2, we have the following recurrence relation

I1(0) = I2(0) = I2(1) = 1 (12)

and

In(k) =

min{k,(n−1

2
)}

∑

i=max{0,k−n+1}

In−1(i), n ≥ 3. (13)

Proof. Eq. (12) is clear. Now suppose n ≥ 3. Recall that N(στ,j) = (j − 1) + N(τ). Let
N(στ,j) = k and N(τ) = i then 0 ≤ i ≤

(

n−1
2

)

and 0 ≤ j − 1 ≤ n − 1. We find those i such
that given j, N(στ,j) = k and In(k) can be formed by adding In−1(i) for all values of i that
we found. We have j − 1 + i = k or equivalently i = k − j + 1 ≤ k. Because i ≤

(

n−1
2

)

, then

i ≤ min
{

k,
(

n−1
2

)}

. Now i = k − j + 1 ≥ k − n + 1. But i must be nonnegative and thus
i ≥ max {0, k − n + 1}. Hence, we have Eq. (13).

With the aid of the previous theorem, we can generate the following table:

In(k)

n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1

2 1 1

3 1 2 2 1

4 1 3 5 6 5 3 1

5 1 4 9 15 20 22 20 15 9 4 1

6 1 5 14 29 49 71 90 101 101 90 71 49 29 14 5 1
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Let n > 1. Using Theorem 10, if the value of In−1(k) for 0 ≤ k ≤
(

n−1
2

)

is known, then the
values of In(k) for 0 ≤ k ≤

(

n
2

)

can be determined by the following formula

In(k) =



















1, if k = 0;

In(k − 1) + In−1(k), if 1 ≤ k ≤ n − 1;

In(k − 1) + In−1(k) − In−1(k − n), if n ≤ k ≤
(

n−1
2

)

;

In(k − 1) − In−1(k − n), if
(

n−1
2

)

< k ≤
(

n
2

)

.

(14)

Theorem 11. For all 0 ≤ k ≤
(

n
2

)

we have In

((

n
2

)

− k
)

= In(k).

Proof. Let K1 = {σ ∈ Sn : N(σ) = k} and K2 =
{

σ ∈ Sn : N(σ) =
(

n
2

)

− k
}

, and by Lemma
5.1, K1 and K2 are both nonempty. The mapping B1 : K1 → K2 defined by B1(σ) = σ is
clearly bijective. Therefore |K1| = |K2| and so In

((

n
2

)

− k
)

= In(k).

Corollary 12. If n ≡ 2, 3 (mod 4) and C = 1
2

[(

n
2

)

− 1
]

then

C
∑

k=0

In(k) =
n!

2
.

As an application of Eq. (14), we will consider the sequence {In+k(k) : n ≥ 0}, where
k ≥ 1 is fixed. One can verify, using the second case in Eq. (14), that In+1(1) = n, In+2(2) =
n(n+3)/2 and In+3(3) = (n+3)(n2+6n+2)/6, for all n ≥ 0. Suppose In+k(k) =

∑k
i=0 akin

i,
where akk 6= 0 so that deg In+k(k) = k. Thus

In+k+1(k + 1) = Ik+1(k + 1) +
n

∑

j=1

Ij+1+k(k)

= Ck+1 +
n

∑

j=1

k
∑

i=0

aki(j + 1)i

= Ck+1 +
n

∑

j=1

k
∑

i=0

i
∑

h=0

(

i

h

)

akij
h

= Ck+1 +
k

∑

i=0

i
∑

h=0

(

i

h

)

akiPh+1(n),

for all n ≥ 0, where Ck+1 = Ik+1(k+1) and Ph+1(n) =
∑n

j=1 jh. It can be shown that Ph+1(n)
is a polynomial of degree h + 1. From these, it follows that In+k+1(k + 1) is a polynomial of
degree k + 1. Thus we have shown that, In+k(k) is a polynomial of degree k for all k ≥ 1.
This result implies that In(k) = O(nk) for all k ≥ 1.
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