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Abstract

We study the problem of finding all integer solutions of the Diophantine equations
x2 − 5Fnxy − 5 (−1)n

y2 = ±L2
n, x2 − Lnxy + (−1)n

y2 = ±5F 2
n , and x2 − Lnxy +

(−1)n
y2 = ±F 2

n . Using these equations, we also explore all integer solutions of some
other Diophantine equations.

1 Introduction

In this paper we study some Diophantine equations involving the well-known Fibonacci and
Lucas sequences, which are defined as follows; F0 = 0, F1 = F2 = 1 and Fn = Fn−1 + Fn−2

for n ≥ 2, L0 = 2, L1 = 1 and Ln = Ln−1 + Ln−2 for n ≥ 2.
Both the Fibonacci and Lucas sequences may be extended backwards, i.e., F

−1 = F1−F0,
F
−2 = F0 −F

−1,. . . , L
−1 = L1 −L0, L

−2 = L0 −L
−1 and so on. In general for n > 0, we set

F
−n = (−1)n+1 Fn and L

−n = (−1)n Ln [2, 12].
Fibonacci and Lucas numbers possess many interesting and important properties. To

begin with, we shall give some of them. Perhaps the most important one is Binet’s formula,
which allows one to compute Fn directly without computing the previous Fibonacci numbers.
Binet’s formula is obtained by solving the following quadratic equation for x:

x2 − x − 1 = 0. (1)

The two solutions of (1) are α =
(

1 +
√

5
)

/2 and β =
(

1 −
√

5
)

/2. Clearly α + β = 1,

α − β =
√

5 and αβ = −1. So, for Fibonacci numbers Binet’s formula is given by Fn =

1
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(αn − βn) / (α − β) with n ∈ Z. Also the corresponding formula for Lucas numbers is given
by Ln = αn + βn with n ∈ Z. In addition to the above formulas, αn = αFn + Fn−1 and
βn = βFn + Fn−1 for all n ∈ Z.

Now we compile some identities and basic theorems involving Fibonacci and Lucas num-
bers from various sources to use in the following theorems [2, 6, 11].

The first identity is

F 2
n − FnFn−1 − F 2

n−1 = (−1)n+1 for all n ∈ Z (2)

and is known as Cassini’s identity. A similar identity is given for Lucas numbers as

L2
n − LnLn−1 − L2

n−1 = (−1)n 5 for all n ∈ Z. (3)

The other identities can be listed as follows:

LmFn − FmLn = 2 (−1)m Fn−m (4)

LmLn − 5FmFn = 2 (−1)m Ln−m (5)

Fm+1Ln + Ln−1Fm = Ln+m (6)

LmLn + 5FmFn = 2Ln+m (7)

LmFn + FmLn = 2Fn+m (8)

Fn−1 + Fn+1 = Ln (9)

Ln−1 + Ln+1 = 5Fn (10)

L2
n − 5F 2

n = (−1)n 4 (11)

for all m, n ∈ Z.
We will give the following theorem without proof since it can be found in [3].

Theorem 1. The set of units of the ring Z[α] = {aα + b : a, b ∈ Z} is

{±αn : n ∈ Z} .

The proof of the following theorem can be found in [11], but for the sake of completeness
we will give its proof.

Theorem 2. All integer solutions of the equation x2 − xy − y2 = ±1 are given by (x, y) =
± (Fn, Fn−1) with n ∈ Z.
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Proof. If (x, y) = ± (Fn, Fn−1), it is clear from (2) that x2 − xy − y2 = ±1. Assume that
x2−xy−y2 = ±1 for some integer x and y. Then it is seen that ±1 = αβx2+(α + β) xy+y2 =
(αx + y) (βx + y). Hence, it follows that αx + y is a unit in Z[α]. Thus from Theorem 1, we
have αx+y = ±αn for some n ∈ Z. Since αn = αFn+Fn−1, we get αx+y = ± (αFn + Fn−1).
Therefore it is seen that (x, y) = ± (Fn, Fn−1).

Corollary 3. All integer solutions of the equations x2 − xy − y2 = −1 and x2 − xy − y2 = 1
are given by (x, y) = ± (F2n, F2n−1) and (x, y) = ± (F2n+1, F2n) with n ∈ Z, respectively.

Since the proof of the following theorem can be seen easily we omit its proof.

Theorem 4. All nonnegative integer solutions of the equation x2 − xy − y2 = ±1 are given

by (x, y) = (Fn, Fn−1) with n ≥ 0.

Corollary 5. All nonnegative integer solutions of the equations x2 − xy − y2 = −1 and

x2 − xy − y2 = 1 are given by (x, y) = (F2n, F2n−1) and (x, y) = (F2n+1, F2n) with n ≥ 0,
respectively.

Theorem 6. All nonnegative integer solutions of the equation u2 − 5v2 = ±4 are given by

(u, v) = (Ln, Fn) with n ≥ 0.

Proof. It is clear that if (u, v) = (Ln, Fn) , then by (11) we get u2 − 5v2 = ±4. Assume that
u2 − 5v2 = ±4. Then u and v have the same parity. Let x = (u + v) /2 and y = v. Then it
follows that

x2 − xy − y2 = ((u + v) /2)2 − ((u + v) /2) v − v2 =
(

u2 − 5v2
)

/4 = ±1.

From Theorem 4, it is seen that (x, y) = (Fn+1, Fn) for some n ≥ 0. Thus, (u + v) /2 = Fn+1

and y = Fn. Therefore we get (u, v) = (Ln, Fn).

Corollary 7. All nonnegative integer solutions of the equations u2−5v2 = −4 and u2−5v2 =
4 are given by (u, v) = (L2n+1, F2n+1) and (u, v) = (L2n, F2n) with n ≥ 0, respectively.

2 Identities And Solutions of Some Diophantine Equa-

tions

There are various methods for deriving identities for Fibonacci and Lucas numbers, such as
the use of Binet’s formula, induction, matrices, etc. The usage of matrices enables us to
obtain easily a large number of new identities [6].

In this section we introduce three kinds of matrices including Fibonacci and Lucas num-
bers. Also using the identities given in section 1, we derive some new identities for Fibonacci
and Lucas numbers. Let us give them in the following theorems.

Theorem 8. Let k,m, n ∈ Z. Then

L2
n+m − 5(−1)n+k+1Fk−nLn+mFm+k − 5 (−1)n+k F 2

m+k = (−1)m+k L2
k−n.
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Proof. For the proof of the theorem, by using (7) and (8) we can consider the matrix multi-
plication given below. That is,

[

Ln/2 5Fn/2
Fk/2 Lk/2

] [

Lm

Fm

]

=

[

Ln+m

Fm+k

]

.

By (5),
∣

∣

∣

∣

Ln/2 5Fn/2
Fk/2 Lk/2

∣

∣

∣

∣

=
LnLk − 5FnFk

4
=

(−1)n Lk−n

2
6= 0,

and therefore we can write,

[

Lm

Fm

]

=

[

Ln/2 5Fn/2
Fk/2 Lk/2

]

−1 [

Ln+m

Fm+k

]

.

From here we get,

Lm =
(−1)n (LkLn+m − 5FnFm+k)

Lk−n

Fm =
(−1)n (LnFm+k − FkLn+m)

Lk−n

.

Since L2
m − 5F 2

m = (−1)m 4, we get

(LkLn+m − 5FnFm+k)
2 − 5 (LnFm+k − FkLn+m)2 = (−1)m 4L2

k−n.

By using (4) and (11), we obtain

L2
n+m − 5(−1)n+k+1Fk−nLn+mFm+k − 5 (−1)n+k F 2

m+k = (−1)m+k L2
k−n. (12)

Theorem 9. Let k,m, n ∈ Z and k 6= n. Then

L2
n+m − (−1)k+n Lk−nLn+mLm+k + (−1)n+k L2

m+k = (−1)m+k+1 5F 2
k−n.

Proof. By using (7) we can consider the following matrix multiplication for the proof of the
theorem. That is,

[

Ln/2 5Fn/2
Lk/2 5Fk/2

] [

Lm

Fm

]

=

[

Ln+m

Lm+k

]

.

By (4),
∣

∣

∣

∣

Ln/2 5Fn/2
Lk/2 5Fk/2

∣

∣

∣

∣

=
5 (LnFk − LkFn)

4
=

5 (−1)n Fk−n

2

and therefore for k 6= n, we get

[

Lm

Fm

]

=

[

Ln/2 5Fn/2
Lk/2 5Fk/2

]

−1 [

Ln+m

Lm+k

]

.
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Hence we have

Lm =
(−1)n (FkLn+m − FnLm+k)

Fk−n

Fm =
(−1)n (LnLm+k − LkLn+m)

5Fk−n

.

Since L2
m − 5F 2

m = (−1)m 4, we get

5 (FkLn+m − FnLm+k)
2 − (LnLm+k − LkLn+m)2 = (−1)m 20F 2

k−n.

Using (5) and (11), we obtain

L2
n+m − (−1)k+n Lk−nLn+mLm+k + (−1)n+k L2

m+k = (−1)m+k+1 5F 2
k−n. (13)

Using
[

Fn/2 Ln/2
Fk/2 Lk/2

] [

Lm

Fm

]

=

[

Fn+m

Fm+k

]

and (11) we can give the following theorem.

Theorem 10. Let k,m, n ∈ Z and k 6= n. Then

F 2
n+m − Ln−kFn+mFm+k + (−1)n+k F 2

m+k = (−1)m+k F 2
n−k. (14)

The equations given in Theorem 8, Theorem 9, and Theorem 10 induced us to explore
the solutions of Diophantine equations;

x2 − 5Fnxy − 5 (−1)n y2 = ±L2
n

x2 − Lnxy + (−1)n y2 = ±5F 2
n

x2 − Lnxy + (−1)n y2 = ±F 2
n ,

where n ≥ 1 is an integer. Our aim is to show that, the solutions of these equations are pairs
of Fibonacci or Lucas numbers. Let us give the solutions of these equations in the following
theorems. From now on we will assume that n is an integer greater than zero.

Theorem 11. All integer solutions of the equations x2 − 5Fnxy − 5 (−1)n y2 = −L2
n and

x2 − 5Fnxy − 5 (−1)n y2 = L2
n are given by (x, y) = ± (Ln+m, Fm) for some odd integer m

and for some even integer m, respectively.
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Proof. Assume that x2 − 5Fnxy − 5 (−1)n y2 = −L2
n. Then

(2x − 5Fny)2 −
(

25F 2
n + 20 (−1)n) y2 = −4L2

n.

Using (11) we get (2x − 5Fny)2 − 5L2
ny

2 = −4L2
n. From here it follows that Ln|2x − 5Fny.

Therefore taking

u = (((2x − 5Fny) /Ln) + y) /2 = (x − Ln−1y) /Ln and v = y

we get,

u2 − uv − v2 = ((x − Ln−1y) /Ln)2 − ((x − Ln−1y) /Ln) y − y2

=
(

x2 − (Ln−1 + Ln+1)xy − y2
(

L2
n − LnLn−1 − L2

n−1

))

/L2
n

and using the identities (3) and (11), we obtain

u2 − uv − v2 =
(

x2 − 5Fnxy − 5 (−1)n y2
)

/L2
n = −L2

n/L
2
n = −1.

Then from Corollary 3, it follows that (u, v) = ± (Fm+1, Fm) for some odd integer m. Hence
we get

(x − Ln−1y) /Ln = ±Fm+1 and y = ±Fm.

Then we have x = ± (Fm+1Ln + Ln−1Fm) and y = ±Fm. Using (6) we get

(x, y) = ± (Ln+m, Fm)

for some odd integer m.
Now assume that x2 − 5Fnxy − 5 (−1)n y2 = L2

n. Then similarly, taking

u = (x − Ln−1y) /Ln and v = y,

we get u2 − uv − v2 = 1. From Corollary 3, it follows that (u, v) = ± (Fm+1, Fm) for some
even integer m. Hence we get (x − Ln−1y) /Ln = ±Fm+1 and y = ±Fm. Using (6) we get
(x, y) = ± (Ln+m, Fm) for some even integer m.

Conversely, if (x, y) = ± (Ln+m, Fm) for some odd integer m, then by (12) it follows that
x2 − 5Fnxy − 5(−1)ny2 = −L2

n and if (x, y) = ± (Ln+m, Fm) for some even integer m, then
by (12) it follows that x2 − 5Fnxy − 5(−1)ny2 = L2

n.

Theorem 12. All integer solutions of both equations x2 − Lnxy + (−1)n y2 = −5F 2
n and

x2 − Lnxy + (−1)n y2 = 5F 2
n are given by (x, y) = ± (Ln+m, Lm) for some even integer m

and for some odd integer m, respectively.

Proof. Assume that x2 − Lnxy + (−1)n y2 = −5F 2
n . Then multiplying both sides of the

equation by 4 and using the identity (11) we get (2x − Lny)2 − 5F 2
ny2 = −20F 2

n . From
here it follows that 5Fn|2x − Lny. Similarly it is seen that 5Fn|x + Ln−1y. Then taking
u = (x + Ln−1y) /5Fn and v = (2x − Lny) /5Fn, we see that

u2 − uv − v2 = −5
(

x2 − Lnxy + (−1)n y2
)

/25F 2
n = 1.
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Then it follows from Corollary 3 that (u, v) = ± (Fm+1, Fm) for some even integer m. Thus,
(x + Ln−1y) /5Fn = ±Fm+1 and (2x − Lny) /5Fn = ±Fm. Using (6), (9), and (10), we get
(x, y) = ± (Ln+m, Lm) for some even integer m.

Assume that x2 −Lnxy + (−1)n y2 = 5F 2
n . Then, in a similar way it is seen that (x, y) =

± (Ln+m, Lm) for some odd integer m.
Conversely, if (x, y) = ± (Ln+m, Lm) for some even integer m, then by (13) it follows that

x2 −Lnxy + (−1)n y2 = −5F 2
n and if (x, y) = ± (Ln+m, Lm) for some odd integer m, then by

(13) it follows that x2 − Lnxy + (−1)n y2 = 5F 2
n .

Theorem 13. All integer solutions of the equations x2 − Lnxy + (−1)n y2 = −F 2
n and

x2 −Lnxy + (−1)n y2 = F 2
n are given by (x, y) = ± (Fn+m, Fm) for some odd integer m and

for some even integer m, respectively.

Proof. Assume that x2−Lnxy+(−1)n y2 = −F 2
n . Then we get (2x − Lny)2−5F 2

ny2 = −4F 2
n .

It is seen that Fn|2x − Lny. It follows that ((2x − Lny) /Fn)2 − 5y2 = −4. Thus taking
u = (((2x − Lny) /Fn) + y) /2 = (x − Fn−1) y/Fn and v = y we get u2 − uv − v2 = −1.
Therefore from Corollary 3 we have (u, v) = ± (Fm+1, Fm) for some odd integer m. Then it
follows that (x, y) = ± (Fn+m, Fm) for some odd integer m.

Assume that x2 − Lnxy + (−1)n y2 = F 2
n . Following the same process with the solution

of the above equation it can be seen that (x, y) = ± (Fn+m, Fm) for some even integer m.
Conversely, if (x, y) = ± (Fn+m, Fm) for some odd integer m, then by (14) it follows that

x2 − Lnxy + (−1)n y2 = −F 2
n and if (x, y) = ± (Fn+m, Fm) for some even integer m, then by

(14) it follows that x2 − Lnxy + (−1)n y2 = F 2
n .

Now we recall some divisibility properties of Fibonacci and Lucas numbers in our in-
terjection of solutions of Diophantine equations. These divisibility properties are given in
several sources such as [1, 6, 11]. Also we gave different proofs of the following theorems in
[5]. So, now we give them without proof.

Theorem 14. Let m,n ∈ Z and n ≥ 3. Then Fn|Fm if and only if n|m.

Theorem 15. Let m,n ∈ Z and n ≥ 2. Then Ln|Fm if and only if n|m and m/n is an even

integer.

Theorem 16. Let m,n ∈ Z and n ≥ 2. Then Ln|Lm if and only if n|m and m/n is an odd

integer.

By these theorems the following identities can be obtained easily;

2|Ln if and only if 3|n (15)

3|Ln if and only if n = 4k + 2 for some k ∈ Z. (16)

Now we turn to our problem of finding the solutions of different Diophantine equations
benefiting from Theorem 11, Theorem 12, and Theorem 13.
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Theorem 17. If n ≥ 3 is an odd integer, then all integer solutions of the equations x2 −
Lnxy−y2 = −1 and x2−Lnxy−y2 = 1 are given by (x, y) = ±

(

F(2k+2)n/Fn, F(2k+1)n/Fn

)

and

(x, y) = ±
(

F(2k+1)n/Fn, F2kn/Fn

)

with k ∈ Z, respectively. If n is an even integer, then all in-

teger solutions of the equation x2−Lnxy+y2 = 1 are given by (x, y) = ±
(

F(k+1)n/Fn, Fkn/Fn

)

with k ∈ Z.

Proof. Assume that x2 −Lnxy− y2 = −1. Multiplying both sides of the equation by F 2
n , we

get
(Fnx)2 − Ln (Fnx) (Fny) − (Fny)2 = −F 2

n .

From Theorem 13, we obtain Fnx = ±Fn+m and Fny = ±Fm for some odd integer m. Then
it follows that x = ±Fn+m/Fn and y = ±Fm/Fn for some odd integer m. By Theorem 14,
it is known that for n ≥ 3, Fn|Fm if and only if n|m. Since n|m and m is an odd integer we
get m = (2k + 1) n, for some k ∈ Z. Thus we obtain

(x, y) = ±
(

F(2k+2)n/Fn, F(2k+1)n/Fn

)

.

If n is an odd integer, then similarly it can be seen that all integer solutions of the
equation x2 − Lnxy − y2 = 1 are given by (x, y) = ±

(

F(2k+1)n/Fn, F2kn/Fn

)

with k ∈ Z.
Assume that x2 − Lnxy + y2 = 1 and n is an even integer. From Theorem 13, we obtain

(x, y) = ± (Fn+m/Fn, Fm/Fn) for some even integer m. If n = 2, then F2 = 1 and by Theorem
13 we get (x, y) = ± (Fm+2, Fm) for some even integer m. If n > 2, then by Theorem 14,
it follows that n|m. Since n and m are even, we get m = kn for some k ∈ Z. Therefore we
obtain

(x, y) = ±
(

F(k+1)n/Fn, Fkn/Fn

)

.

Conversely, if n ≥ 3 is an odd integer and (x, y) = ±
(

F(2k+2)n/Fn, F(2k+1)n/Fn

)

for some
k ∈ Z, then by (14) it follows that x2−Lnxy−y2 = −1 and if n is an odd integer and (x, y) =
±

(

F(2k+1)n/Fn, F2kn/Fn

)

for some k ∈ Z, then by (14) it follows that x2 − Lnxy − y2 = 1.
Furthermore, if n > 2 is an even integer and (x, y) = ±

(

F(k+1)n/Fn, Fkn/Fn

)

for some k ∈ Z,
then by (14) it follows that x2 − Lnxy + y2 = 1.

Corollary 18. If n is an even integer greater than 2, then the equation x2−Lnxy+y2 = −1
has no integer solutions.

Proof. Let x2 − Lnxy + y2 = −1. Then we get (x, y) = ± (Fn+m/Fn, Fm/Fn) for some odd
integer m. Using Theorem 14, it can be seen that (x, y) is a pair of integer if and only if n|m.
But the fact that n is even and m is odd gives a contradiction. Therefore x2−Lnxy+y2 = −1
has no integer solutions.

Theorem 19. All integer solutions of the equation x2 − 5Fnxy − 5 (−1)n y2 = 1 are given

by (x, y) = ±
(

L(2k+1)n/Ln, F2kn/Ln

)

with k ∈ Z.

Proof. Assume that x2 − 5Fnxy − 5 (−1)n y2 = 1. Multiplying both sides of the equation by
L2

n, we get
(Lnx)2 − 5Fn (Lnx) (Lny) − 5 (−1)n (Lny)2 = L2

n.

From Theorem 11, it is seen that Lnx = ±Ln+m and Lny = ±Fm for some even integer
m. That is, (x, y) = ± (Ln+m/Ln, Fm/Ln) . By Theorem 15 and Theorem 16, it follows
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that m/n is an even integer. So that, m = 2kn, for some k ∈ Z. Therefore we obtain
(x, y) = ±

(

L(2k+1)n/Ln, F2kn/Ln

)

.
Conversely, if (x, y) = ±

(

L(2k+1)n/Ln, F2kn/Ln

)

for some k ∈ Z, then by (12) it follows
that x2 − 5Fnxy − 5 (−1)n y2 = 1.

Corollary 20. If n > 1, then the equation x2 − 5Fnxy − 5 (−1)n y2 = −1 has no integer

solutions.

Theorem 21. All integer solutions of the equation x2 − Lnxy + (−1)n y2 = −5 and x2 −
Lnxy + (−1)n y2 = 5 are given by (x, y) = ± (Ln+m/Fn, Lm/Fn) with even integer m and

(x, y) = ± (Ln+m/Fn, Lm/Fn) with odd integer m, respectively, where Fn | Lm. In particular,

Fn | Lm if and only if n = 1, Fn = 1, m = k; n = 2, Fn = 1, m = k; n = 3, Fn = 2, m = 3k;

n = 4, Fn = 3, m = 4k + 2, where k is an integer.

Proof. The results concerning when Fn | Lm are given in Theorem 1 of [4]. Assume that
x2 − Lnxy + (−1)n y2 = −5 for some integer x and y. Multiplying this equation by F 2

n , we
get

(Fnx)2 − Ln (Fnx) (Fny) + (−1)n (Fny)2 = −5F 2
n .

From Theorem 12, it follows that (x, y) = ± (Ln+m/Fn, Lm/Fn) for some even integer m.
Similarly it can be seen that all integer solutions of the equation x2 − Lnxy + (−1)n y2 = 5
are given by (x, y) = ± (Ln+m/Fn, Lm/Fn) for some odd integer m.

Conversely, if (x, y) = ± (Ln+m/Fn, Lm/Fn) for some even integer m, then by (13) it
follows that x2 − Lnxy + (−1)n y2 = −5 and if (x, y) = ± (Ln+m/Fn, Lm/Fn) for some odd
integer m, then by (13) it follows that x2 − Lnxy + (−1)n y2 = 5.

Theorem 22. If n is an even integer, then all integer solutions of the equation x2−L2nxy+
y2 = −5F 2

n are given by (x, y) = ±
(

L(2k+3)n/Ln, L(2k+1)n/Ln

)

with k ∈ Z, if n is an odd

integer, then all integer solutions of the equation x2−L2nxy+y2 = 5F 2
n are given by (x, y) =

±
(

L(2k+3)n/Ln, L(2k+1)n/Ln

)

with k ∈ Z.

Proof. Assume that n is an even integer and x2−L2nxy +y2 = −5F 2
n for some integer x and

y. Then multiplying this equation by L2
n and using Theorem 12 and noting that F2n = FnLn,

we get Lnx = ±L2n+m and Lny = ±Lm, for some even integer m. Therefore it follows that
(x, y) = ± (L2n+m/Ln, Lm/Ln) for some even integer m. Furthermore by Theorem 16, it is
seen that Ln|Lm if and only if m/n is an odd integer. Therefore m = (2k + 1) n, for some
k ∈ Z. Thus (x, y) = ±

(

L(2k+3)n/Ln, L(2k+1)n/Ln

)

.
Assume that n is an odd integer and x2 − L2nxy + y2 = 5F 2

n for some integer x and
y. Then by Theorem 12, we get (x, y) = ± (L2n+m/Ln, Lm/Ln) for some odd integer m.
Also by Theorem 16 it follows that m = (2k + 1) n for some k ∈ Z. So that, (x, y) =
±

(

L(2k+3)n/Ln, L(2k+1)n/Ln

)

with k ∈ Z. If n = 1, then all integer solutions of the equation
x2 − 3xy + y2 = 5 are given by (x, y) = ± (Lm+2, Lm) with odd integer m.

Conversely, if n is an even integer and (x, y) = ±
(

L(2k+3)n/Ln, L(2k+1)n/Ln

)

for some
k ∈ Z, then by (13) it follows that x2 − L2nxy + y2 = −5F 2

n and if n > 1 is an odd
integer and (x, y) = ±

(

L(2k+3)n/Ln, L(2k+1)n/Ln

)

for some k ∈ Z, then by (13) it follows
that x2 − L2nxy + y2 = 5F 2

n .
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Corollary 23. If n > 1 is an odd integer, then the equation x2 − L2nxy + y2 = −5F 2
n has

no integer solutions and if n is an even integer, then the equation x2 − L2nxy + y2 = 5F 2
n

has no integer solutions.

Theorem 24. All integer solutions of the equation x2 − L2nxy + y2 = F 2
n are given by

(x, y) = ±
(

F(2k+2)n/Ln, F2kn/Ln

)

with k ∈ Z.

Proof. Assume that n ≥ 2 and x2 − L2nxy + y2 = F 2
n for some integer x and y. Multiplying

this equation by L2
n we get

(Lnx)2 − L2n (Lnx) (Lny) + (Lny)2 = F 2
2n.

Then by Theorem 13 it follows that (x, y) = ± (F2n+m/Ln, Fm/Ln) for some even integer m.
Hence using Theorem 15 it is seen that Ln|Fm if and only if m/n is an even integer. Then
we have m = 2kn for some k ∈ Z. Therefore (x, y) = ±

(

F(2k+2)n/Ln, F2kn/Ln

)

. If n = 1,
then it can be seen that all integer solutions of the equation x2 − 3xy + y2 = 1 are given by
(x, y) = ± (Fm+2, Fm) with even integer m.

Conversely, if (x, y) = ±
(

F(2k+2)n/Ln, F2kn/Ln

)

for some k ∈ Z, then by (14) it follows
that x2 − L2nxy + y2 = F 2

n .

Theorem 25. For all n ≥ 2, the equation x2 − L2nxy + y2 = −F 2
n has no integer solutions.

Proof. Assume that x2 − L2nxy + y2 = −F 2
n for some integer x and y. Then by Theorem

13, we get (x, y) = ± (F2n+m/Ln, Fm/Ln) for some odd integer m. Using Theorem 15 it is
seen that Ln|Fm if and only if m = 2kn for some k ∈ Z. Since m is odd, this is impossible.
Therefore x2 − L2nxy + y2 = −F 2

n has no integer solutions.

Theorem 26. Let n ≥ 3 be an odd integer. Then all integer solutions of the equation

x2 − L2nxy + y2 = −L2
n are given by (x, y) = ±

(

F(2k+3)n/Fn, F(2k+1)n/Fn

)

with k ∈ Z.

Proof. Assume that x2−L2nxy+y2 = −L2
n for some integer x and y. Then by Theorem 13, it

is seen that (x, y) = ± (F2n+m/Fn, Fm/Fn) for some odd integer m. Furthermore by Theorem
14 it follows that Fn|Fm if and only if n|m. Since both m and n are odd integers it is seen that
m = (2k + 1) n for some k ∈ Z. Then this shows that (x, y) = ±

(

F(2k+3)n/Fn, F(2k+1)n/Fn

)

.
Conversely, if n ≥ 3 is an odd integer and (x, y) = ±

(

F(2k+3)n/Fn, F(2k+1)n/Fn

)

for some
k ∈ Z, then by (14) it follows that x2 − L2nxy + y2 = −L2

n.

We can give the following corollary easily.

Corollary 27. If n is an even integer, then the equation x2 − L2nxy + y2 = −L2
n has no

integer solutions.

Corollary 28. Let n be an even integer. Then all integer solutions of the equation x2 −
L2nxy + y2 = L2

n are given by (x, y) = ±
(

F(k+2)n/Fn, Fkn/Fn

)

with k ∈ Z. Let n be an

odd integer. Then all integer solutions of the equation x2 − L2nxy + y2 = L2
n are given by

(x, y) = ±
(

F(2k+2)n/Fn, F2kn/Fn

)

with k ∈ Z.

10



Proof. Assume that n is an even integer and x2 − L2nxy + y2 = L2
n for some integer x and

y. Then by Theorem 13, it is seen that (x, y) = ± (F2n+m/Fn, Fm/Fn) for some even integer
m. Also by Theorem 14 it follows that n|m. Since both m and n are even integers we have
m = kn for some k ∈ Z. Then it is seen that (x, y) = ±

(

F(k+2)n/Fn, Fkn/Fn

)

.
Now assume that n is an odd integer and x2 −L2nxy + y2 = L2

n for some integer x and y.
Then (x, y) = ± (F2n+m/Fn, Fm/Fn) for some even integer m and by Theorem 14, n|m. Thus
we get m = 2kn for some k ∈ Z. Hence it follows that (x, y) = ±

(

F(2k+2)n/Fn, F2kn/Fn

)

.

Theorem 29. All integer solutions of the equation x2 − L2nxy + y2 = −5L2
n and x2 −

L2nxy + y2 = 5L2
n are given by (x, y) = ± (L2n+m/Fn, Lm/Fn) with even integer m and

(x, y) = ± (L2n+m/Fn, Lm/Fn) with odd integer m, respectively, where Fn | Lm. In particular,

Fn | Lm if and only if n = 1, Fn = 1, m = k; n = 2, Fn = 1, m = k; n = 3, Fn = 2, m = 3k;

n = 4, Fn = 3, m = 4k + 2, where k is an integer.

Proof. The results concerning when Fn | Lm are given in Theorem 1 of [4]. Assume that
x2−L2nxy+y2 = −5L2

n. Then by Theorem 12, it is seen that (x, y) = ± (L2n+m/Fn, Lm/Fn)
for some even integer m.

Assume that x2 − L2nxy + y2 = 5L2
n. It follows that (x, y) = ± (L2n+m/Fn, Lm/Fn) for

some odd integer m, by Theorem 12.
Conversely, if (x, y) = ± (L2n+m/Fn, Lm/Fn) for some even integer m, then by (13) it

follows that x2 − L2nxy + y2 = −5L2
n and if (x, y) = ± (L2n+m/Fn, Lm/Fn) for some odd

integer m, then by (13) it follows that x2 − L2nxy + y2 = 5L2
n.

Furthermore we explore some Diophantine equations different from the previous ones.
Here are some of them.

Theorem 30. Let k ≥ 0. Then all nonnegative integer solutions of the equation u2−5v2 = 4k

are given by (u, v) =
(

2k−1L2m, 2k−1F2m

)

and all nonnegative integer solutions of the equation

u2 − 5v2 = −4k are given by (u, v) =
(

2k−1L2m+1, 2
k−1F2m+1

)

with m ≥ 0.

Proof. Since the proof is obvious from mathematical induction, we omit it.

Theorem 31. All nonnegative integer solutions of the equation u2 − 5v2 = 1 are given by

(u, v) = (L6m/2, F6m/2) with m ≥ 0 and all nonnegative integer solutions of the equation

u2 − 5v2 = −1 are given by (u, v) = (L6m+3/2, F6m+3/2) with m ≥ 0.

Proof. Assume that u2 − 5v2 = 1. Then
(

2ku
)2 − 5

(

2kv
)2

= 4k. From Theorem 30, it is seen
that 2ku = 2k−1L2n and 2kv = 2k−1F2n. Therefore we get u = L2n/2 and v = F2n/2. Using
Theorem 14, it is seen that 2|F2n if and only if 3|2n. So that, 3|n and that is n = 3m for
some m ∈ N. Hence we get (u, v) = (L6m/2, F6m/2) .

Now assume that u2 − 5v2 = −1. Then we get
(

2ku
)2 − 5

(

2kv
)2

= −4k. From Theorem
30, it follows that 2ku = 2k−1L2n+1 and 2kv = 2k−1F2n+1. Therefore we get u = L2n+1/2
and v = F2n+1/2. By Theorem 14, it follows that 2|F2n+1 if and only if 3|2n + 1. That is
n = 3m + 1 for some m ∈ N. Hence we get (u, v) = (L6m+3/2, F6m+3/2) .
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Theorem 32. Let k ≥ 0. Then all nonnegative integer solutions of the equation x2 − xy −
y2 = −4k are given by (x, y) =

(

2kF2m+2, 2
kF2m+1

)

and all integer solutions of the equation

x2 − xy − y2 = 4k are given by (x, y) =
(

2kF2m+1, 2
kF2m

)

with m ≥ 0.

Proof. Proof follows from mathematical induction.

Theorem 33. Let k ≥ 0. Then all nonnegative integer solutions of the equation u2 − 5v2 =
4 · 5k are given by

(u, v) =

{ (

5(k+1)/2F2m+1, 5
(k−1)/2L2m+1

)

, k is an odd integer;
(

5k/2L2m, 5k/2F2m

)

, k is an even integer

and all nonnegative integer solutions of the equation u2 − 5v2 = −4 · 5k are given by

(u, v) =

{ (

5(k+1)/2F2m, 5(k−1)/2L2m

)

, k is an odd integer;
(

5k/2L2m+1, 5
k/2F2m+1

)

, k is an even integer

where m ≥ 0.

Proof. Proof is obvious from mathematical induction.

Theorem 34. Let k ≥ 0. Then all nonnegative integer solutions of the equation x2−xy−y2 =
5k are given by

(x, y) =

{ (

5(k−1)/2L2m+2, 5
(k−1)/2L2m+1

)

, k is an odd integer;
(

5k/2F2m+1, 5
k/2F2m

)

, k is an even integer

and all nonnegative integer solutions of the equation x2 − xy − y2 = −5k are given by

(x, y) =

{ (

5(k−1)/2L2m+1, 5
(k−1)/2L2m

)

, k is an odd integer;
(

5k/2F2m+2, 5
k/2F2m+1

)

, k is an even integer

where m ≥ 0.

Proof. Assume that x2 − xy − y2 = 5k. Then x > y and we get (2x − y)2 − 5y2 = 4 · 5k. By
Theorem 33, we obtain

(2x − y, y) =

{ (

5(k+1)/2F2m+1, 5
(k−1)/2L2m+1

)

, k is an odd integer;
(

5k/2L2m, 5k/2F2m

)

, k is an even integer.

Thus it follows that

(x, y) =

{ (

5(k−1)/2L2m+2, 5
(k−1)/2L2m+1

)

, k is an odd integer;
(

5k/2F2m+1, 5
k/2F2m

)

, k is an even integer.

In a similar way, it can be shown that all nonnegative integer solutions of the equation
x2 − xy − y2 = −5k are given by

(x, y) =

{ (

5(k−1)/2L2m+1, 5
(k−1)/2L2m

)

, k is an odd integer;
(

5k/2F2m+2, 5
k/2F2m+1

)

, k is an even integer.
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