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Stéphane Legendre
Team of Mathematical Eco-Evolution

Ecole Normale Supérieure
75005 Paris

France
legendre@ens.fr

Abstract

The regular drawing of the complete bipartite graph Kn,n produces a striking pat-
tern comprising simple and multiple crossings. We compute the number c(n) of cross-
ings and give an asymptotic estimate for this sequence.

1 Introduction

A regular drawing of the complete bipartite graph Kn,n is obtained in the following way.
Draw vertically n uniformly spaced nodes on the left, draw vertically n uniformly spaced
nodes on the right, and join by straight lines the left and right nodes in all possible manners.
A striking pattern appears, as in Figure 1.

This combinatorial pattern is one of many devised by ancient scholars — Ramon Lull
(circa 1235–1316), Giordano Bruno (1548–1600) and Wilhem Leibniz (1646–1716) among
others — who aimed at explaining phenomena in terms of extensive combinations of primor-
dial entities. Athanasius Kircher (1601–1680) uses the Kn,m pattern in several instances in
his book Ars Magna Sciendi [1]. His drawing of K18,18 is reproduced in the novel Foucault’s
Pendulum by Umberto Eco [2]. As the protagonists of the novel delve into esoteric matters,
the Kn,n pattern suggests to them that the Map would be reconstructed, provided that a
device could compute all combinations.

Here we look more prosaically for a formula giving the number c(n) of crossings in a
regular drawing of Kn,n. Figure 1 displays the first values of c(n).
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c(10)=1143

c(2)=1 c(3)=7 c(4)=27 c(5)=65

Figure 1: Regular drawing of Kn,n for n = 2, 3, 4, 5 and 10, with the corresponding number
c(n) of crossings.

2 Simple and multiple crossings

Let us assume that nodes on the left have integer coordinates (0, i), 1 ≤ i ≤ n, and nodes
on the right have integer coordinates (1, j), 1 ≤ j ≤ n.

We define an (a, b)-crossing as the intersection point of two lines, each joining a left node
to a right, where a is the distance between left nodes, 1 ≤ a ≤ n − 1, and b is the distance
between right nodes, 1 ≤ b ≤ n − 1.

Let 〈i, a|j, b〉 denote the (a, b)-crossing whose nodes have ordinates i, i + a on the left,
1 ≤ i < i + a ≤ n, and j − b, j on the right, 1 ≤ j − b < j ≤ n, as in Figure 2. When a, b, i,
j are understood from context, we shall abbreviate 〈i, a|j, b〉 as C.

A crossing has multiplicity m if it is the intersection of m + 1 lines. It is simple if m = 1
(two lines intersect), multiple if m ≥ 2.

Proposition 1. For given a and b, the (a, b)-crossings 〈i, a|j, b〉 have the same abscissa
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i

i + a

j − b

j

Figure 2: An (a, b)-crossing.

x = a
a+b

when a ≤ b, and x = b
a+b

when a > b, and ordinates y = aj+bi

a+b
with 1 ≤ i ≤ n − a

and b ≤ j ≤ n.

Proof. By the theorem of Thales, x
a

= 1−x
b

gives the abscissa x, and (i+a)−(j−b)
1

= y−(j−b)
b

a+b

gives the ordinate y.

Corollary 2. The (a, b)-crossing C with gcd(a, b) = 1 and the (a′, b′)-crossing C′ have the
same abscissa if and only if there exists d ≥ 1 such that a′ = da and b′ = db.

Proof. If a
a+b

= a′

a′+b′
then ab′ = ba′. As gcd(a, b) = 1, a divides a′ and b divides b′, so that

there exist d ≥ 1 and e ≥ 1 such that a′ = da, b′ = eb. As ab′ = ba′, we get d = e. The
converse is obvious.

Corollary 3. When disregarding superimposition, the number of (a, b)-crossings is (n −
a)(n − b).

Proof. From Proposition 1, i can take n − a values and j can take n − b values.

Proposition 4. Let C = 〈i, a|j, b〉 be an (a, b)-crossing with gcd(a, b) = 1, and C ′ =
〈i′, da|j′, db〉 a (da, db)-crossing with d ≥ 1. Then C and C ′ are superimposed if and only
if there exists k ∈ Z such that i′ = i + ka and j′ = j − kb.

Proof. Crossings C and C′ have the same abscissa by Corollary 2. By Proposition 1, they
have the same ordinate if and only if aj + bi = aj′ + bi′, or a(j − j′) = b(i′ − i). As
gcd(a, b) = 1, the latter condition is equivalent to the existence of k ∈ Z such that i′− i = ka
and j′ − j = −kb.

Corollary 5. If an (a, b)-crossings is simple then gcd(a, b) = 1. Every multiple crossing
contains an (a, b)-crossing such that gcd(a, b) = 1.
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Proof. Assume that C = 〈i, a|j, b〉 is simple and that there exist d ≥ 2 and a′, b′ such that
a = da′, b = db′. Then the (a′, b′)-crossing C′ = 〈i′, a′|j′, b′〉 with i′ = i and j′ = j is
superimposed on C by Proposition 4, contradicting simplicity. Hence gcd(a, b) = 1. Let
C′ = 〈i, a′|j, b′〉 be an (a′, b′)-crossing contained in a multiple crossing. We set d = gcd(a′, b′),
a = a′/d, and b = b′/d. Then the crossing C = 〈i, a|j, b〉 has the desired properties by
Proposition 4.

i

i + a

i + 2a

i + 3a

j − 3b

j − 2b

j − b

j

Figure 3: A multiple crossing.

Proposition 6. Suppose C is an (a, b)-crossing with gcd(a, b) = 1, superimposed to a multiple
crossing M of multiplicity m ≥ 2. Then 1 ≤ ma ≤ n−1 and 1 ≤ mb ≤ n−1. In particular,
2a ≤ n− 1 and 2b ≤ n− 1. Moreover, M is the superimposition of m (a, b)-crossings, m− 1
(2a, 2b)-crossings, m − 2 (3a, 3b)-crossings, . . . , and a single (ma,mb)-crossing.

Figure 3 displays a crossing of multiplicity m = 3. It is the superimposition of three
(2, 3)-crossings, two (4, 6)-crossings and one (6, 9)-crossing.

Proof. Among the (a, b)-crossings contained in M, we select 〈i, a|j, b〉 with i + a ≤ n and
1 ≤ j−b, such that i is minimum and j is maximum. For k = 1, . . . ,m, the m (a, b)-crossings
〈i+(k−1)a, a|j−(k−1)b, b〉 are superimposed to M by Proposition 4. For k = m, i+ma ≤ n
gives ma ≤ n − i ≤ n − 1, while 1 ≤ j − mb and j ≤ n give mb ≤ n − 1. Moreover, for
k = 1, . . . ,m−1, the m−1 (2a, 2b)-crossings 〈i+(k−1)a, 2a|j−(k−1)b, 2b〉 are superimposed
to M, . . . , and the (ma,mb)-crossing 〈i,ma|j,mb〉 is superimposed to M.

Corollary 7. The multiplicity of a (u, v)-crossing that is not superimposed to another (u, v)-
crossing, is the greatest common divisor of u and v.

Proof. This is a consequence of Corollary 5 and Proposition 6.

Proposition 8. The number of crossings of abscissa a
a+b

(or b
a+b

) with gcd(a, b) = 1 is

(n − a)(n − b) − (n − 2a)(n − 2b), if 2a ≤ n − 1 and 2b ≤ n − 1;

(n − a)(n − b), otherwise.
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Proof. The crossings of abscissa a
a+b

are simple or multiple. If they are all simple, their
number is (n − a)(n − b) by Corollary 3, and this occurs when 2a > n − 1 or 2b > n − 1 by
Proposition 6. If some crossings are simple and others are multiple, then 2a ≤ n − 1 and
2b ≤ n − 1 by Proposition 6. Each simple crossing is counted one time in the first term,
and 0 times in the second term. Indeed, the second term is the number of (2a, 2b)-crossings
(disregarding superimposition), and they are not simple by Corollary 5. By Proposition 6,
each multiple crossing of multiplicity m contributes m to the first term and m − 1 to the
second term, hence contributes m − (m − 1) = 1 to the tally.

3 Number of crossings

We now state our main result.

Proposition 9. The number c(n) of crossings in a regular drawing of the complete bipartite
graph Kn,n is

c(n) =
∑

1≤a,b≤n−1
gcd(a,b)=1

(n − a)(n − b) −
∑

1≤2a,2b≤n−1
gcd(a,b)=1

(n − 2a)(n − 2b).

Proof. As each crossing in the drawing contains an (a, b)-crossing with gcd(a, b) = 1 by
Corollary 5, we count the number of crossings using Proposition 8. Summing over all (a, b)
such that gcd(a, b) = 1, within the bounds of validity, gives the result.

An alternative expression for c(n) has been proposed by Philippe Paclet [3]:

Proposition 10. Let f(i, j) be the number of irreducible fractions p/q with 1 ≤ p ≤ i and
1 ≤ q ≤ j, and f ′(i, j) the number of rationals admitting at least one reducible form p/q with
1 ≤ p ≤ i and 1 ≤ q ≤ j. Then

c(n) =
∑

1≤i,j≤n−1

(f(i, j) − f ′(i, j)).

Proof. We denote

s(n) =
∑

1≤a,b≤n−1
gcd(a,b)=1

(n − a)(n − b), s′(n) =
∑

1≤2a,2b≤n−1
gcd(a,b)=1

(n − 2a)(n − 2b),

so that c(n) = s(n) − s′(n). By the definition of f ,

∑

1≤i,j≤n−1

f(i, j) =
∑

1≤i,j≤n−1

∑

1≤a≤i
1≤b≤j

gcd(a,b)=1

1 =
∑

1≤a,b≤n−1
gcd(a,b)=1

∑

a≤i≤n−1
b≤j≤n−1

1 =
∑

1≤a,b≤n−1
gcd(a,b)=1

(n − a)(n − b) = s(n).

Similarly,
∑

1≤i,j≤n−1

f ′(i, j) =
∑

1≤c,d≤n−1
gcd(c,d) 6=1

∑

c≤i≤n−1
d≤j≤n−1

1.
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The set {(c, d); 1 ≤ c, d ≤ n − 1, gcd(c, d) 6= 1} is identical to the set {(a, b); 1 ≤ 2a, 2b ≤
n− 1, gcd(a, b) = 1}. Indeed, gcd(c, d) 6= 1 is equivalent to the existence of m ≥ 2 such that
c = ma, d = mb, with gcd(a, b) = 1, 2a ≤ ma ≤ n − 1, 2b ≤ mb ≤ n − 1. We obtain

∑

1≤i,j≤n−1

f ′(i, j) =
∑

1≤2a,2b≤n−1
gcd(a,b)=1

(n − 2a)(n − 2b) = s′(n).

Sequence s(n) is A115004 in Sloane [4]. Values of c(n) are given in Table 1.

n s(n) s
′(n) c(n) d(n)

1 - - 0 0
2 1 0 1 1
3 8 1 7 9
4 31 4 27 36
5 80 15 65 100
6 179 32 147 225
7 332 71 261 441
8 585 124 461 784
9 948 211 737 1296
10 1463 320 1143 2025
11 2136 499 1637 3025
12 3065 716 2349 4356
13 4216 999 3217 6084
14 5729 1328 4401 8281
15 7568 1799 5769 11025
16 9797 2340 7457 14400
17 12456 3023 9433 18496
18 15737 3792 11945 23409
. . . . . . . . . . . . . . .
50 948514 235680 712835 1600625
. . . . . . . . . . . . . . .
100 15189547 3794060 11395487 24502500

Table 1: The number of crossings c(n) = s(n) − s′(n) in the regular Kn,n pattern. The
sequence of triangular numbers squared, d(n), enumerates the crossings when disregarding
multiplicity.

4 Asymptotics

When disregarding multiplicity, the number of crossings in the Kn,n pattern is

d(n) =

(

n

2

)(

n

2

)

=
n2(n − 1)2

4
,

the square of the nth triangular number (A000537).
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Proposition 11. For large n, c(n) ∼ 9
2π2 d(n).

Proof. We write
∑

1≤a,b≤n−1

(n − a)(n − b) = n2
∑

1 − n
∑

(a + b) +
∑

ab

with no condition of relative primality under the sums. We have

∑

(n − a)(n − b) =
∑

ab =
n2(n − 1)2

4
= d(n).

Hence n2
∑

1 − n
∑

(a + b) = 0. We now sum with the condition gcd(a, b) = 1. As the
probability that two positive integers are relatively prime is 6

π2 , for large n:

∑

1≤a,b≤n−1
gcd(a,b)=1

ab ∼ 6

π2
d(n), and n2

∑

1≤a,b≤n−1
gcd(a,b)=1

1 − n
∑

1≤a,b≤n−1
gcd(a,b)=1

(a + b) ∼ 0.

Hence

s(n) ∼ 6

π2
d(n).

Let m = ⌊n+1
2
⌋, then

∑

1≤a,b≤m−1

(n − 2a)(n − 2b) = n2(m − 1)2 − 2mn(m − 1)2 + 4
m2(m − 1)2

4
.

We sum with the condition gcd(a, b) = 1. For large n, m ∼ n
2
. As in the previous computa-

tion, the first two terms ∼ 0, and the last term s′(n) ∼ 6
π2 4d(n

2
) ∼ 6

π2 4
d(n)
16

. We obtain

s′(n) ∼ 1

4
s(n),

and c(n) = s(n) − s′(n) ∼ 9
2π2 d(n).

The equivalence c(n) ∼ 9
8π2 n

4, deduced from Proposition 11, appears to give a better

estimate of c(n). However, the approximation π ≈ 3
2

n2√
2c(n)

is not close; e.g., for n = 100,

the approximation is 3.1420.

5 Concluding remarks

The regular drawing of Kn,n can be considered an analogic device to compute the greatest
common divisor of two positive integers a and b. In the drawing, take a units on the left,
and b units on the right. Consider the corresponding (a, b)-crossing (i = 0, j = b). Then the
multiplicity m of this crossing is the greatest common divisor of a and b (Corollary 7).

It can be noted that the abscissas of the (a, b)-crossings are Farey fractions. This suggests
that number theoretical properties of the complete bipartite graph pattern deserve further
exploration.
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