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Abstract

A prime number p is called b-elite if only finitely many generalized Fermat numbers
Fb,n = b2n

+ 1 are quadratic residues modulo p. Let p be a prime. Write p − 1 = 2rh

with r ≥ 0 and h odd. Define the length of the b-Fermat period of p to be the minimal
natural number L such that Fb,r+L ≡ Fb,r (mod p). Recently Müller and Reinhart
derived three conjectures on b-elite primes, two of them being the following. (1) For
every natural number b > 1 there is a b-elite prime. (2) There are generalized elite
primes with elite periods of arbitrarily large lengths. We extend Müller and Reinhart’s
observations and computational results to further support above two conjectures. We
show that Conjecture 1 is true for b ≤ 1013 and that for every possible length 1 ≤ L ≤ 40
there actually exists a generalized elite prime with elite period length L.

1 Introduction

The numbers of the form

Fb,n = b2n

+ 1

are called generalized Fermat numbers (GFNs) for natural numbers b and n. The definition
generalizes the usual Fermat numbers Fn = 22n

+ 1, which were named after Pierre Simon
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de Fermat (1601-1665). A lot of research has been done on Fermat numbers and their
generalization since then (see [2, 6, 7, 8]).

In 1986 Aigner [1] called a prime number p elite if only finitely many Fermat numbers
Fn are quadratic residues modulo p, i.e., there is an integer index m for which all Fn with
n > m are quadratic non-residues modulo p. He discovered only 14 such prime numbers less
than 3.5 · 107. More computational effort yielded all 27 elites up to 2.5 · 1012 together with
some 60 much larger numbers [3, 4, 9]. These prime numbers are summarized in sequence
A102742 of Sloane’s On-Line Encyclopedia of Integer Sequences [13].

Müller and Reinhart [10] generalized Aigner’s concept of elite primes in analogy to that
of Fermat numbers.

Definition 1.1. ([10, Definition 1.1]). Let p be a prime number and b ≥ 2 be a natural
number. Then p is called a b-elite prime if there exists a natural number m, such that for
all n ≥ m the GFNs Fb,n are quadratic non-residues modulo p.

By the recurrence relation

Fb,n+1 = (Fb,n − 1)2 + 1, (1)

one sees that the congruences Fb,n (mod p) eventually become periodic. Write p − 1 = 2rh

with r ≥ 0 and h odd. Then this period – Müller and Reinhart [10] called it b-Fermat period
of p – begins at latest with the term Fb,r. So there has to be a minimal natural number L

such that
Fb,r+L ≡ Fb,r (mod p), (2)

which they [10] call the length of the b-Fermat period of p. The terms Fb,n (modp) for
n = r, . . . , r + L− 1 are the b-Fermat remainders of p.

Therefore, a prime number p is b-elite if and only if all L b-Fermat remainders are
quadratic non-residues modulo p. It is moreover known that for all p it is a necessary
condition for eliteness with L > 1 that L is an even number smaller than p+1

4
(compare [10]).

Müller and Reinhart [10] gave fundamental observations on b-elite primes and presented
selected computational results from which three conjectures are derived, two of them being
the following.

Conjecture 1. [10, Conjecture 4.1] For every natural number b > 1 there is a b-elite prime.

Conjecture 2. [10, Conjecture 4.2] There are generalized elite primes with elite periods of
arbitrarily large lengths.

Concerning Conjecture 1, Müller and Reinhart [10] observed that most of the bases b

actually have the prime 3 or 5 as b-elite – only the bases b ≡ 0 (mod 15) do not belong to
one of these two “trivial” families. Conjecture 2 seems to be supported by their computations.
They [10] proved the following Lemma 1.1.

Lemma 1.1. For every
L ∈ L1 = {1, 2, 4, 6, 8, 10, 12}, (3)

there is a generalized elite prime p < 104 with elite period length L.
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The main purpose of this paper is to extend Müller and Reinhart’s observations and
computational results to give further support to the two conjectures above. We state our
main results as the following two Theorems.

Theorem 1. Conjecture 1 is true for 1 < b ≤ 1013. More precisely, for every natural number
1 < b ≤ 1013, there is a b-elite prime p ≤ 472166881.

Theorem 2. For every

L ∈ {1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40},

there is a generalized elite prime p ≤ 100663393 with elite period length L.

In Section 2 we give an algorithm to test the b-eliteness of p for given b ≥ 2 and prime p.
The main tool of our algorithm is the Legendre symbol. Comparison of effectiveness with
Müller’s method for testing the 2-eliteness of p is given, see Remark 2.2.

In Section 3 we prove Theorem 1. We first propose a sufficient and necessary condition
on base b ≥ 2 to which there is a b-elite prime p ∈ {3, 5, 7, 11, 13, 19, 41, 641}. Using the
condition and the Chinese Remainder Theorem, it is easy to compute a setR with cardinality
|R| = 3667599 such that Conjecture 1 is already true for those bases b such that b ( mod m) 6∈
R, where m = 3 · 5 · 7 · 11 · 13 · 19 · 41 · 641 = 7497575085. Thus we only need to consider the
bases b with b (mod m) ∈ R. We then give an algorithm to find the smallest b-elite prime Pb

for each base b = um + bi ≤ 1013 with bi ∈ R. At last we tabulate P (B) and the smallest b

with Pb = P (B) for B = 1010, 1011, 1012, 1013, where P (B) is defined by (15) in section 3. In
particular, we have P (1013) = 472166881 = P9703200080805. Theorem 1 follows.

In Section 4 we prove Theorem 2. At first we compute all the elite periods of every
generalized elite prime p < 107 based on the method described by Müller and Reinhart [10].
As a result we find some elite period lengths

L ∈ L2 = {14, 16, 18, 20, 22, 24, 26, 28, 30, 36}. (4)

For every L ∈ L2, we tabulate P (L) and the smallest b to which P (L) is elite with length L,
where P (L) is defined by (17) in section 4. In particular we have P (36) = 742073(the smallest
base b = 5369). We also give a new method to find some elite primes with elite period lengths
32,34,38 and 40, where L = 40 is realized by the elite prime p = 100663393 (the smallest
base b = 54712). Thus Theorem 2 follows.

2 A b-eliteness testing algorithm

Let b > 1 be an integer, and let p = 2 r · h + 1 be a prime number with r ≥ 1 and h odd.
In this section, we will give an algorithm to test the b-eliteness of p. Let

(

∗

∗

)

denote the
Legendre symbol. Our algorithm is based on the following criterion.

Fb,n is a quadratic non-residue modulo p if and only if

(

Fb,n

p

)

= −1. (5)
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Given b ≥ 2 and prime p = 2 r · h + 1 with h odd, we check whether

(

Fb,n

p

)

= −1 (6)

holds for n = r, r+1, r+2, . . . consecutively, where Fb,n ( mod p) are computed recursively by
(1). If (6) does not hold for some n ≥ r, then p is not b-elite. If (6) holds for r ≤ n ≤ r+L−1,
then p is b-elite, where L is the length of the b-Fermat period of p, namely the least positive
integer such that (2) holds.

Now we describe our Algorithm 2.1 in the following pseudocode.

Algorithm 2.1. Testing the b-eliteness of prime p;
{Input b ≥ 2 and prime p}
{Determine whether p is b-elite or not; if p is b-elite then output the length L}
Begin Finding r and h such that p = 2rh + 1 with h odd;

fb ← Fb,r (mod p); f ← fb; L← 0; elite← True;

Repeat Computing
(

fb

p

)

by [5, Algorithm 2.3.5] (cf. also [12, §11.3]);

If
(

fb

p

)

6= −1 Then elite← False Else

begin fb ← (fb − 1)2 + 1 (mod p); L← L + 1 end;
Until (not elite) or (fb = f);
If elite Then output L Else output “p is not b-elite”

End.

Remark 2.1. The prime 2 is not b-elite to any b ≥ 2 since there is no quadratic non-residue
modulo 2. So here and for the rest of this paper, we only need to consider odd primes p.

Remark 2.2. Let q be a prime and c be a positive integer with q ∤ c. Denote by ordq(c) the
multiplicative order of c ( mod p). Müller [9] gave an eliteness testing algorithm [9, Algorithm
3.1] for the base b = 2 based on the following criterion [9, Theorem 2.1].

F2,n is a quadratic non-residue modulo p if and only if 2 r | ordp(F2,n). (7)

To check whether 2 r divides ordp(F2,n) for n = r, r + 1, r + 2, . . ., the algorithm computes

F 2kh
2,n (mod p) for k = 0, 1, . . . , k0, where k0 = min{0 ≤ k ≤ r : F 2kh

2,n ≡ 1 (mod p)}. It is
well-known [5, §2.1.2] (see also [12, Theorem 4.9]) that it takes

O(ln s · ln2 p)

bit operations to compute the modular exponentiation F s
2,n (mod p). With our method, we

compute the Legendre symbol
(

F2,n

p

)

, which requires only

O(ln2 p)

bit operations [5, §2.3] (see also [12, Corollary 11.12.1 and Exerice 11.3.16]). So, for testing
the b-eliteness of p, using criterion (5) is faster than using criterion (7).
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3 Proof of Theorem 1

Throughout this section, let N = {0, 1, 2, 3, . . .} be the set of all natural numbers. Let B ⊂ A
be two sets. We denote by |A| the number of elements in A, and

A− B = {c : c ∈ A, c 6∈ B}.

Let p be an odd prime. Define the sets

Ap = {0, 1, 2, . . . , p− 1};

Bp =

{

{b(≥ 2) ∈ Ap : p is b-elite} ∪ {1}, if p is (p− 1)-elite;

{b(≥ 2) ∈ Ap : p is b-elite}, if p is not (p− 1)-elite;

and
Rp = Ap − Bp.

To prove Theorem 1, we need nine Lemmata.

Lemma 3.1. [10, Observation 2.2,2.3] Let p be an odd prime number, b be a natural number.
If p is b-elite, then

(1) p is (b + pk)-elite for k ∈ {a, a + 1, a + 2, . . .}, where a = ⌈−b
p
⌉;

(2) p is (p− b)-elite if 2 ≤ b < p.
Moreover, the Fermat remainders and the respective length of the Fermat period for the

bases b + pk and p− b are the same.

By Lemma 3.1 we have

Lemma 3.2. Let p be an odd prime and b (> 1) ∈ N. Then

p is b-elite if and only if b (mod p) ∈ Bp.

Lemma 3.3. [10, Consequence 2.10] We have R3 = R5 = {0}.

Lemma 3.4. [10, Theorem 2.13] Let b be a natural number and p be an odd prime number.
Then p is b-elite with L = 2 if and only if p ≡ 7 (mod 12) and either b2 +1 ≡ b (mod p) with
(

b
p

)

= −1 or b2 + 1 ≡ −b (mod p) with
(

b
p

)

= 1.

Lemma 3.5. We have R7 = {0, 1, 6}.

Proof. Let k ∈ {0, 1, 2, 3, 4, 5, 6}. Then

k2 + 1 (mod 7) =



















k, if k = 3, 5;

7− k, if k = 2, 4;

1, if k = 0;

2, if k = 1, 6;

and
(

k

7

)

=











1, if k = 1, 2, 4;

0, if k = 0;

−1, if k = 3, 5, 6;

Based on Lemma 3.4, we have B7 = {2, 3, 4, 5}. Thus the Lemma follows.
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Using Algorithm 2.1, we can easily get the following Lemma 3.6 and Lemma 3.7.

Lemma 3.6. We have

R11 = {0, 2, 3, 4, 5, 6, 7, 8, 9};R13 = {0, 2, 3, 4, 6, 7, 9, 10, 11};

R19 = {0, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 17};

R17 = A17 and R23 = A23.

Lemma 3.7. Let p < 1000 be an odd prime. Then

|Rp| <
1

2
|Ap| if and only if p ∈ {3, 5, 7, 41, 641},

where
R41 = {0, 1, 3, 9, 14, 27, 32, 38, 40}

and
R641 = {0, 1, 2, 4, 5, 8, 10, 16, 20, 21, 25, 29, 31, 32, 40, 42, 50, 58, 61, 62, 64, 67, 77,

80, 84, 100, 105, 116, 122, 124, 125, 128, 129, 134, 141, 145, 153, 154, 155,
159, 160, 168, 177, 199, 200, 210, 221, 232, 241, 243, 244, 248, 250, 256, 258,
268, 282, 287, 290, 305, 306, 308, 310, 318, 320, 321, 323, 331, 333, 335, 336,
351, 354, 359, 373, 383, 385, 391, 393, 397, 398, 400, 409, 420, 431, 441, 442,
464, 473, 481, 482, 486, 487, 488, 496, 500, 507, 512, 513, 516, 517, 519, 525,
536, 541, 557, 561, 564, 574, 577, 579, 580, 583, 591, 599, 601, 609, 610, 612,
616, 620, 621, 625, 631, 633, 636, 637, 639, 640}.

Remark 3.1. In fact, the two results “R17 = A17” and “R23 = A23” were already given
by Müller and Reinhart [10] where they are immediate consequences of Theorem 2.15 and
Theorem 2.16. By Lemma 3.6 and Lemma 3.1, the primes 17 and 23 are not b-elite to any
natural number b ≥ 2.

Let
m = 3 · 5 · 7 · 11 · 13 · 19 · 41 · 641 = 7497575085. (8)

Applying the Chinese Remainder Theorem, it is easy to compute the set

R = {0 ≤ b < m : b (modp) ∈ Rp for p = 3, 5, 7, 11, 13, 19, 41, 641} (9)

which has cardinality

R = |R| = 1 · 1 · 3 · 9 · 9 · 13 · 9 · 129 = 3667599. (10)

Using the Heap Sort Algorithm [11, §8.3], we sort the elements of R in an increasing order

R = {b1 < b2 < · · · < bR}, (11)

where

b1 = 0, b2 = 1590, b3 = 2955, b4 = 5685, b5 = 6405, b6 = 7020, . . . , bR = 7497573495.

By Lemma 3.2 and the Chinese Remainder Theorem we have the following Lemma 3.8.
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Lemma 3.8. Let b (> 1) ∈ N, and let m be given as in (8). Then
there is a b-elite prime p ∈ {3, 5, 7, 11, 13, 19, 41, 641}
if and only if b (mod p) ∈ Bp for some p ∈ {3, 5, 7, 11, 13, 19, 41, 641}
if and only if b (mod m) 6∈ R.

From Lemma 3.8, we see that Conjecture 1 is already true for those bases b such that
b (mod m) 6∈ R. Thus we only need to consider the bases b with b (mod m) ∈ R.

Lemma 3.9. For every base 1 < b ≤ 1013 with b (modm) ∈ R, there is a prime p ≤
472166881 such that p is b-elite.

Proof. Given b ≥ 2 with b (mod m) ∈ R, let

Pb = {prime p : p is b-elite}, (12)

and let

Pb =

{

∞, if Pb = ∅,

min{p : p ∈ Pb}, otherwise.
(13)

Let 1 ≤ B1 < B2 be two natural numbers such that

R∩ {b (mod m) : B1 < b ≤ B2} 6= ∅.

Define the functions

P (B1, B2) = max{Pb : B1 < b ≤ B2, b (mod m) ∈ R}, (14)

and
P (B2) = P (1, B2) = max{P (1, B1), P (B1, B2)}, (15)

With the above preparation, we describe our algorithm for verifying Lemma 3.9 for those
bases b with B1 < b ≤ B2 and b (mod m) ∈ R.

Algorithm 3.1. Verifying Lemma 3.9 for B1 < b ≤ B2 with b (mod m) ∈ R;
{Input B1, B2 and maxp with 1 ≤ B1 < B2, say B1 = 1010, B2 = 1011, and maxp = 109}
{Output either P = P (B1, B2) < maxp and the smallest b ∈ (B1, B2] such that P = Pb}
{or the smallest b ∈ (B1, B2] with b (mod m) ∈ R such that Lemma 3.9 fails}
Begin P ← 3; u← ⌊B1

m
⌋ ·m; b′ ← u; j ← 1; First← True;

While b′ ≤ B1 Do begin j ← j + 1; b′ ← u + bj end;
Repeat If First Then begin i← j; First← False end Else i← 0 ;

repeat p← 29; Found← False;
Repeat b′′ ← b′ (mod p);

Using Algorithm 2.1 to test the b′′-eliteness of p;
If p is b′′-elite Then

begin Found← True; If p > P Then Begin P ← p; b← b′ End

end Else

begin p← the next prime > p;
If (p = 41) or (p = 641) then p← the next prime > p
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end

Until Found Or (p > maxp);
If not Found Then

begin output “the lemma fails at b′, enlarge maxp and try again”; exit
end;

i← i + 1; b′ ← u + bi;
until (i > R) or (b′ > B2);
u← u + m;

Until u > B2;
Output P and b;

End;

The Delphi program ran about 105 hours on a PC AMD 3000+/2.0G to find

P (1, 1010), P (1010, 1011), P (1011, 1012),

and
P (i · 1012, (i + 1) · 1012), for i = 1, 2, . . . , 9.

Then by (15) we get P (B) for B = 1010, 1011, 1012, 1013; see Table 1, where b is the first base
with Pb = P (B). As a result we have

P (1013) = 472166881,

which means that for every base 1 < b ≤ 1013 with b (modm) ∈ R, there is a prime
p ≤ 472166881 such that p is b-elite. The Lemma follows.

Lemma 3.9 together with Lemma 3.8 implies Theorem 1.

Table 1: P (B) and b with Pb = P (B)

B 1010 1011 1012 1013

P (B) 5483521 24494081 167772161 472166881
b 4157043150 45329209185 224199632355 9703200080805
L 4 12 4 4

4 Proof of Theorem 2

Let L ∈ {1, 2, 4, 6, 8, . . .}. Define

P(L) = {prime p : p is a generalized elite with period length L} (16)

and let

P (L) =

{

∞, if P(L) = ∅,

min{p : p ∈ P(L)}, otherwise.
(17)
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By Lemma 1.1, Müller and Reinhart [10] have found P (L) for L ∈ L1(L1 is given by (3)).
We summarize their computations in the following Table 2, where b is the base to which
P (L) is elite with elite period length L.

Table 2: The function P (L) for L ∈ L1

L 1 2 4 6 8 10 12
P (L) 3 7 41 199 409 331 3121

b 2 2 2 19 6 23 8

To prove Theorem 2, we need three Lemmata.

Lemma 4.1. [10, Theorem 2.18] Let p = 2rh + 1 with h odd. Let n be the number of all
possible periods and denote by Li the length of the period i. Then

n
∑

i=1

Li = h. (18)

The number Nb,i of all b’s in the period i is

Nb,i = 2r · Li. (19)

Lemma 4.2. For every L ∈ L2 (L2 is given by (4)), there is a generalized elite prime p < 107

with elite period length L.

Proof. Based on Lemma 4.1, Müller and Reinhart [10] presented an algorithm to find the
first elite period of prime p.

Given a prime p = 2 r · h + 1 with h odd, let

S2r = {c ∈ Zp : ∃ b ∈ Zp such that b2r

≡ c (mod p)}. (20)

Then we have |S2r | = h and

Fb,n − 1 (mod p) ∈ S2r (21)

for n = r, . . . , r + L − 1 and for all bases b. Moreover, elements of S2r belong to many
different periods of various lengths.

Let g be a primitive root modulo p and let c ∈ S2r . Then we have c = g2rk0 with
k0 ∈ {0, 1, . . . , h− 1}. Let g0 = gk0 . We check whether

(

g2r+i

0 + 1

p

)

= −1 (22)

holds for i = 0, 1, 2, . . . consecutively. If (22) does not hold for some i, then this Fermat
period is not an elite period. If (22) holds for 0 ≤ i < l, where l is the smallest natural
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number such that g2 r+l

0 ≡ g2 r

0 (mod p), then the period c + 1, c2 + 1, . . . , c2l−1

+ 1 is an elite
period with length L = l.

It is easy to modify Müller and Reinhart’s computational method in order to find all elite
periods of every generalized elite prime p < Bound, say Bound = 107. Now we describe the
modified algorithm in the following pseudocode.

Algorithm 4.1. Finding all elite periods L of each prime p < Bound if they exist.
{Input Bound, say Bound = 107; Output p < Bound with L > 12.}

Begin p← 3;
Repeat Finding r and h such that p = 2rh + 1 with h odd; g ← primitive root mod p;

For i← 0 To h Do testedi ← False; periodstart← 0;
repeat index← periodstart; elite← True; L← 0;

Repeat testedindex ← True; If elite Then

begin f ← g2r
∗index + 1 (mod p);

Computing
(

f

p

)

by [5, Algorithm 2.3.5] (cf. also [12, §11.3]);

If
(

f

p

)

6= −1 Then elite← False;

end;

index← index ∗ 2 (mod h); L← L + 1 ;
Until (index = periodstart);
If elite and (L > 12) Then output p and L;
While testedperiodstart Do periodstart← periodstart + 1;

until (periodstart = h);
p← the next prime > p ;

Until p > Bound

End.

The Dephi program ran about 53 hours to compute all elite periods of every elite prime
p < 107, and find some elite period lengths L ∈ L2. For every L ∈ L2, we summarize P (L)
and the smallest b to which P (L) is elite with length L in Table 3. The Lemma follows.

Table 3: The function P (L) for L ∈ L2

L 14 16 18 20 22 24 26 28 30 36
P (L) 32251 30841 17443 36901 50543 688297 180247 117973 796387 742073

b 247 75 726 298 182 2935 6143 432 27867 5369

Remark 4.1. The smallest base b in Table 3 can be easily obtained by using Algorithm 2.1
to test the b-eliteness of P (L) for b = 2, 3, . . . , P (L)−1

2
consecutively until the length of the

elite period is found to be L.

Remark 4.2. There are no generalized elite primes p < 107 with L = 32 or 34 or L > 36.
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In the following Table 4, we list the factorization of 2
L
2 + 1 and the factorization of

P (L)− 1 for L ∈ L3 = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 36}

Table 4: The factorizations of 2
L
2 + 1 and of P (L)− 1 for L ∈ L3

L P (L) The factorization of 2
L
2 + 1 The factorization of P (L)− 1

2 7 3 2 · 3
4 41 5 23 · 5
6 199 32 2 · 3 · 11
8 409 17 23 · 3 · 17
10 331 3 · 11 2 · 3 · 5 · 11
12 3121 5 · 13 24 · 3 · 5 · 13
14 32251 3 · 43 2 · 3 · 53 · 43
16 30841 257 23 · 3 · 5 · 257
18 17443 33 · 19 2 · 33 · 17 · 19
20 36901 52 · 41 22 · 32 · 52 · 41
22 50543 3 · 683 2 · 37 · 683
24 688297 17 · 241 23 · 3 · 7 · 17 · 241
26 180247 3 · 2731 2 · 3 · 11 · 2731
28 117973 5 · 29 · 113 22 · 32 · 29 · 113
30 796387 32 · 11 · 331 2 · 3 · 331 · 401
36 742073 5 · 13 · 37 · 109 23 · 23 · 37 · 109

Let L be even. Define
qL = max{prime q : q | 2

L
2 + 1}.

Then for every L ∈ L3, we find that,

qL | (P (L)− 1). (23)

Based on (23), we try to find some generalized elite primes p with elite period lengths

32,34,38 and 40. The method is as follows (taking L = 32 for example). Since 2
L
2 + 1 =

216 + 1 = 224

+ 1 = 65537 = F4, we have q32 = 65537. In order to find the elite prime p with
length 32, we consider primes p (p > 107) which can be written in the form p = 65537k + 1
with k an integer. Using Algorithm 4.1, we compute all the elite periods of these elite primes
consecutively until the length of the elite period is L. As a result we find that prime 47710937
is b-elite with L = 32, where b = 62792 and 47710936 = 23 · 7 · 13 · 65537.

In Table 5, for L = 32, 34, 38 and 40, we tabulate the prime p, the base b to which p is
elite with length L.
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Table 5: Elite primes p with length L = 32, 34, 38 and 40

L p b The factorization of 2
L
2 + 1 The factorization of p− 1

32 47710937 62792 65537 23 · 7 · 13 · 65537
34 51118471 106257 3 · 43691 2 · 32 · 5 · 13 · 43691
38 78643351 661362 3 · 174763 2 · 32 · 52 · 174763
40 100663393 54712 17 · 61681 25 · 3 · 17 · 61681

Remark 4.3. For every L ∈ {32, 34, 38, 40}, the prime p we find in Table 5 may be larger
than P (L).

From Table 5, we have the following Lemma 4.3.

Lemma 4.3. For every
L ∈ {32, 34, 38, 40},

there is a generalized elite prime p ≤ 100663393 with elite period length L.

Theorem 2 follows from Lemma 1.1, Lemma 4.2 and Lemma 4.3.
We have known that for each even L ≤ 40, there is a generalized elite prime p with elite

period length L such that qL | (p− 1). But it is still an open problem whether for every even
L there is a generalized elite prime p with elite period length L such that qL | (p− 1).
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[1] A. Aigner, Über Primzahlen, nach denen (fast) alle Fermatzahlen quadratische
Nichtreste sind. Monatsh. Math. 101 (1986), 85–93.

[2] A. Björn and H. Riesel, Factors of generalized Fermat numbers. Math. Comp. 67 (1998),
441–446.

[3] A. Chaumont and T. Müller, All elite primes up to 250 billion. J. Integer Seq. 9 (2006),
Article 06.3.8.

[4] A. Chaumont, J. Leicht, T. Müller and A. Reinhart, The continuing search for large
elite primes. Int. J. Number Theory. 5 (2009), 209–218.

[5] R. Crandall and C. Pomerance, Prime Numbers, a Computational Perspective, 2nd ed.,
Springer-Verlag, 2005.

12



[6] H. Dubner and Y. Gallot, Distribution of generalized Fermat prime numbers. Math.
Comp. 71 (2001), 825–832.

[7] H. Dubner and W. Keller, Factors of generalized Fermat numbers. Math. Comp. 64

(1995), 397–405.
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