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Abstract

Let By, and A, = Z}Ll By, j with Ag = 1 be, respectively, the (n, k) partial and
the n*® complete Bell polynomials with indeterminate arguments xi, za, .... Congru-
ences for A, and B, with respect to a prime number have been studied by several
authors. In the present paper, we propose some results involving congruences for B, j,
when the arguments are integers. We give a relation between Bell polynomials and we
apply it to several congruences. The obtained congruences are connected to binomial
coefficients.

1 Introduction

Let 1, o, . . . denote indeterminates. Recall that the partial Bell polynomials B,, i (x1, Z2, . .

are given by

B o n! T\ k1 [ To\ K2 Tn—ki1 o
n,k(mlax%)_ZW(F) (5) m ’

where the summation takes place over all integers ky, ko, ... > 0 such that

ki +2ko+--+n—k+1)kypy1=n and ki +ko+ -+ kypi1 = k.
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For references, see Bell [1], Comtet [4] and Riordan [7].

Congruences for Bell polynomials have been studied by several authors. Bell [1] and
Carlitz [3] give some congruences for complete Bell polynomials. In this paper, we propose
some congruences for partial Bell polynomials when the arguments are integers. Indeed,
we give a relation between Bell polynomials, given by Theorem 1 below, and we use it in
the first part of the paper, and with connection of the results of Carlitz [3] in the second
part, to deduce some congruences for partial Bell polynomials. Some applications to Stirling
numbers of the first and second kind and to the binomial coefficients are given.

2 Main results

The next theorem gives an interesting relation between Bell polynomials. We use it to
establish some congruences for partial Bell polynomials.

Theorem 1. Let {x,} be a real sequence. Then for n,r, k integers with n,r,k > 1, we have

_ - B (1, 22, 3,...)
1 nr Pn+kk L1, L2, L3,
I',f Z Bn,j (yla Y2y - - ) (k - ’I’LT)] =T k n+k (2)
=1 (")
. B(r—l—l)n,nr (‘rla L2, L3, .- )
with yn = nr (T

For k = nr + s, Identity (2) becomes

Remark 2.  Let {z,} be a real sequence. Then for n,r, s integers with n,r > 1, we get
s o S B(r—i—l)n—l—s,nr—l—s (xla T2, T3, .. )
1A, (sy1, 8Ys,...) = — ((TEK:FS) , 8> —nr+1. (3)

For s > 0, we obtain Proposition 8 in [5], (see also [6]).

Theorem 3. Let k,s be a nonnegative integers and p be a prime number. Then for any
sequence {x;} of integers we have

(k+s+1)Bspitst1 (T1,22,...) =0 (mod p).

Application 4. If we denote by s(n,k) and S (n, k) for Stirling numbers of first and
second kind respectively, then from the well-known identities

B (0, =112l ...) =s(n,k) and B, (1,1,1,...) =S5 (n, k)
when z, = 1 or ,, = (—=1)""" (n — 1)! in Theorem 3 we obtain

(k+s+1)S(spk+s+1)=(k+s+1)s(sp,k+s+1) =0 (mod p).



Theorem 5. Let n, k, s be integers withn > k > 1, s > 1 and p be a prime number. Then
for any sequence {x;} of integers with x1 not a multiple of p we have

Bn+sp,k+sp (xh Lo, L3,y .- ) s Bn,k (xla Lo, L3, .- )

n+ts =1 n (mod p) ifp>n—k+1
(k +sp) (iar) k() .
4
an sp,s (331,1'2,1'3,...) SB( +1)n,n, (.7}171‘2,1’3,...) .
Ty — n+tsp = . s Pt n (mod p2) if p>n-+1.
s("7) n("")

Application 6. If we consider the cases k =1 and k£ = 2 in Theorem 5 we obtain

Biispitsp (X1, 22,23, ...) = 25z, (mod p) for p > n,

n—1
i n
Bitsporsp (X1, 22,23,...) = ! ( ‘)xjxn_j (mod p) for p>n—1.

Then, when z, = 1 or 2, = (—1)""" (n — 1)! we obtain
S(n+sp,1+sp) =1 (mod p) for p > n,
s(n+sp,1+sp)=(=1)""(n—1)! (mod p) for p > n,
S(n+sp,2+sp)=2""1—1 (mod p) for p>n — 1 and
s(n+sp,2+sp)=(—1)""" ”("THV (mod p) for p >n —1,

Theorem 7. Let n, k,s,p be integers withn >k > 1, s > 1, p > 1. Then for any sequence
{z;} of integers with x1 not a multiple of p we have

Bs n,sn a2 73 3o n(s— Bnn 72 73 y oo
(st tmon (21, 22, 325, . ) = 3:1:1( ) Bonn (71 2@ T3 ) (mod n?),
(“5) )
Bitspitsp (T1, 222,323, . . .) _ e Bk (1,229, 323, . . .) (mod p) 5)
n—+s — 1 n )
(k + Sp) (k;+s£) k(k)
an+sp,sp (I1,21’2,3[L’3,. . ) o SB(p+1)n,np <$1,2$2,3ZL‘3,. . ) 2
1 S(n:-;p) e .131 n((p+1)n) (mOd n )
np

Application 8.  Belbachir et al. [2] have proved that

By (11,2! (¢g+ 1)L0 )—n—! g (6)
n,k an e, \g Vg e _k‘ n—k‘ q7

then, for s > 1 and p 1 j, the two last congruences of (5) and Identity (6) prove that

(), = (2), ot wma 5(7) (%) o



Corollary 9. Let n, k,s be integers withn >k > 1 and p be a prime number. Then for any
sequence {x;} of integers with x1 not a multiple of p we have

Bpt1ynmp (21,22, .. .) w1 Bnipp (X1, 72,23, . ..)

_ 2 )
n =T n+ (mOdp) pr>n+1’
n((p:;) ) ( pp)
Bpi1ynnp (21,229,323, ...) _ x?_l Bipp (21,229,373, . . ) (mod p2)-
- ((p—l—l)n) (n+p)
np P

Application 10. As in Application 8, we have

(2)40), im0

Theorem 11. Let k > 2, 7 > 1 be integers and p be an odd prime number. Then for any
sequence of integers {x;} we have

Bpj+lc,k (.Tl, 2232, 3%’3, .. )

= x]f_lxpj+l (mod p) if pf ka1,

k(P Ak
B ((i >2{E 3x ) v
r I pIr 5 2, SR r— )
SRR p]. (:+1) J = a7 (xijrl - xpj*“rl) (mod p) i pfa:.
pir( pjrp)

Application 12. As in Application (8), let j = 1 in the second congruence of Theorem
11. Then N
=Dt (pr) = —1 (mod p).
r r/,

Theorem 13. Let k > 2, 7 > 1 be integers and p be an odd prime number. Then for any
sequence of integers {x;} we have

Bs,;i l‘1,2$273$3,... _ .
2k ST ) =i ((k - 1) xf)jH + xlxgpj+1) (mod p) if ptkay
R
BZ(TJrl)pj,ijT‘ (I’l, 2[E27 31’3, .. ) _ 9p_9 2 .
2pir (TP = 2" (o1 — 254) (mod p) i ptan.
2pir

Remark 14.  Similarly to the last proofs, one can exploit the results of Carlitz [3] with
connection to Theorem 1 to obtain more congruences for partial Bell polynomials.

3 Proof of the main results

Proof of Theorem 1. Let {x,} be a sequence of real numbers with z; := 1 and let {f, (x)}
be a sequence of polynomials defined by

n

In (1}) - ZBHJ (%’ %7 % .- ) (:L“)j,

=1



with fo () =1, (2); :==x(x —1)---(x —j+ 1) for j > 1 and (z), := 1.

n—1
We have nf, (1) = nan—u <
=1

X2 $3
2’ 3

It is well known that {f, (z)} presents a sequence of binomial type, see [4]. Then, from
Proposition 1 in [5] we have

1  fa (nr) B ‘
mB(rH)n,nr (1,z9,25,...) = e Dy—o fr (x57), (8)

) (1), = 2 and Dycofy (0) = 1 # 0.

Yn =

nr

where {f, (z;a)} is a sequence of binomial type defined by

fn(w50) = fn(an + ) 9)

an +x

with a is a real number, see [5]. From Proposition 1 in [5] we have also

Bn+k,k (171‘2, T3, .. ) . fn (k’) . fn (k — nr; 7’)

k;(";rk) -k k=nr (10)
but from [8] we can write f, (k — nr;r) as
fu (kK —=mnr;r) ZB,” e=0f1 (x;7), x:()fg(ﬂf;’f’),...)(k'—n’f’)j. (11)
Then, by substitution (11) in (10) and by using (8) we obtain
Bruien (1,2, 23, ) ZBM (1,92, . (b —nr) ™ (12)

k (n-‘rk’

We can verify that Identity (2) is true for z; = 0, and, for x; # 0 it can be derived from

(12) by replacing x,, by I and by using the well known identities
Ty

B, (way, wag, xas,...) = x*B,} (a1,a9,a3,...) and
By (zay, 22ag, 23as, . ..) = 2" B, (a1, az, a3, . . .)

where {a,} is any real sequence. O

Proof of Theorem 3. We prove that kB, = 0 (mod p), kK > s+ 1. From the identities

<=?P) = 0 (mod p), for pfj and <p]> = (j) (mod p), (14)

and from the recurrence relation given by

n
an,k - Z( )ijn —j,k—1

T \J



with B, j, == B (21,22, ...) and ; = 0 for j < 0, we obtain

sp *\ (s
(k+1) Bypsr = ) <j >%’Bspj,k =>. (]> ZjpB(s—jpk (mod p).
i i=1
Then, for s =0, we get kB =0 (mod p), k > 0.
For s =1, we get (k+ 1) B, j+1 = 2,Box = 0 (mod p), k > 1.
For s = 2, the last congruences imply that

(k+ 1) Bop g1 = 22,Bp i + 19, By = 0 (mod p), k > 2 and p 1 k.

The induction on s proves that kB, = 0 (mod p) when k£ > s + 1. O
Proof of Theorem 5. From [4] we have

k .
n! To T3 T4 x!

Bn,k ($1,l’2,...):m E Bn—k,k—j (5,;,1,) 7!1, nZkZ 1. (15)

Jj=0

Then, for i € {1,...,n}, the last identity and Identities (13) imply

ti=((n+ 1))y = %B(T—H)i,ir (T, 29, . .., Timjy1) =
Ei: (ir =)} iy ((n +1)! ((n+ 1))’ (n+ 1)) xi_jﬂ) |

Za, T3, ..., ———
(i — )" 2 T g i~ 1

from which we deduce that ¢y, ..., ¢, are integers, and then B, 1 (t1,t2,...) ..., Bun (t1,t2, .. .)
are also integers. Therefore, by using the second identity of (13), Identity (2) becomes

- j — nr((n+1)'>an k.k (171,I2,ZE37...)
xlf E Bn,j (th lo, .. ) (k - nT>J t= Ly ]{—EnZk) .
Jj=1

Hence, when we replace k by a + sp in the last identity we obtain

& j— 1!anasas ) ) PR
S B (it ) (a sp— eyt = gy D) Breeromany (0 201

= (a + sp) (n+a+8p> ’

j=1 a+sp

and when we reduce modulo p in the last identity we obtain

((n—i— 1)')” Bn+a+spa+sp (Il,xg,xg,. . ) ats n .
" et = 19 B (t1,ts,...) (0 —nr)Y ™" (mod p).
(o t0) () 2 Bn

But from (2) we have



x‘fZij (ty,ta,...) (@ —nr) ™ = ((n+1)! ZB . (y1, 2, .. .) (o —nr)’ ™!
j=1
n ann-‘,-oa,a (.731,332,.1'3,...)

Ty

=((n+1DH"z

from which the last congruence becomes

((n+ D" Bryatspatrsy (1,22, 23,...) n Briao (21,22, 23,...)
) S + 1 ! )
(Oé + Sp) (n+a+sp) 1 ((n ) ) a(n+a)

a-+sp o

(mod p

Now, when we replace n by n — «, the last congruence becomes

n Bn,a ($17 To,T3, .. )

a(g)

((n —a+ 1" Butspatsp (X1, T2, T3, . . .)
n+s
(a+sp) (3157)

=z] (n—a+ 1)) (mod

Then, if p > n — a+ 1 we obtain

Bn+5p7a+sp (33'1,1'2,...) o stnva (.1'1,5172,1'3,...)
= 41
(+sp) (O1o) o(3)

For the second part of theorem, when we replace k by sr in (2) we get

(mod p).

- y ] 1 Bn 87,81 Y 9 AR
zy’ Z B, (ti,tg,...) rit (s —n)’~ b= =" ln+ DY S:(n7+s7“(;[;1 i )>
=1

ST

and, because B, ; (t1,%s,...) (1 < j < n) are integers, the last identity proves that
nr ((n + 1)')nr BTH—ST’ sr <l’1, X2, T3, .. )

).

p)-

= xsrzn
1 sr (n—i—sr) 1
sr ((n + 1)!)”‘7‘ B(T+1)TL,']’LT‘ (x]J ‘1.27 '/’U37 . ')
=5 o (mod r).
n/r( nr )

Let » =p > n+ 1 be a prime number. Now, because the expressions

((n4+ D)™ Byispsp (1, 22,23, .. .) ((n+DN™ Bpsiynmp (1, T2, 23, .. .)

and
sp (n+5p) np<(p+1) )
are integers, we obtain
an—‘rsp,sp (xla X2, T3,y .. ) _ s B(p—l—l)n,np ('xb X2,T3, .. ) 2
1 s(”:;p) =] n((pH)”) (mod p?).
np

Proof of Theorem 7. From Identity (15) we get

k

Bn-i—k,k (.231, 2:[,‘2, 3.253, P k‘ f—j
k(":k) ; - gz, ws, g, )2y, nyk>1



and this implies that the numbers

B(r+1)n,m" (1'1, 2:527 31’3, .. )

(r+1)n) ’

n>1 (17)

- i

are integers, and then, the numbers B, ; (21, z2,...) (1 < j < n) are also integers. From
Identity (3), when we replace r by 1 and s by n (s — 1) we obtain

n(s— 3+1 .
B(s—l—l)n,sn (%1, 2%2, 3.1’3, .. ) = l’l( Dn ( ) Z an 21,22, .- ) ((8 - 1) n)J ' ) (18)

with z,, = ﬁBgn’n (21,229, ...).

Furthermore, from (18), we have

n

Bs n,8n 72 73 y n{s— -
(s+1)n, (131 2, 20 ) :nxl( DSZBnJ (21,22,..-) ((S_ 1) n)j '

s+1)n

(( sn) ) j=1
=n {x?(s_l)szn}
=n {x?(s I)SﬁBZTL,n (xl, 2%2, .. )}
= xT(Sfl)sﬁBgn,n (71,279,...) (mod n?), ie.,

Bsitynsn (1,229,323, . .. _1)Bopn (21, 229, 323, . ..

(s+1)n, ( 1 2 3 )Esx?(s 1) Don, (I1 2902 Z3 ) (mod nz)‘
((s+1)n) (:)

For the second part of (5), when we replace k by a + sp in (2), we obtain

a—+sp n j—1 nr B?‘L+Oé+sp,a+sp (xl, 2272, 3[E37 .. )
x] Z B, (z1,22,...) (a4 sp—nr)’”" =i ot ) (n+a+sp)
j=1 a+sp) ("5

with z, is given by (17). Because the numbers B,, ; (21, 22,...), 1 < j < n, are integers, then
when we reduce modulo p in the last identity we get

nr Pn+a+sp,a+sp 1 25 3y a+s z :
=X an 21, 22, ) (Oé

" (a+sp) ("L007)

—nr)Y ™! (mod p)

and by (2) the last congruence becomes

Bn+a+sp,a+sp (xb 2:[;27 3$3; - ) = 25 Bn+a,a (xb 233'2, 3.1'3, .- )
(CY + Sp) (n+a+sp) — 1 a(nJra)

a+sp o

(mod p).

To terminate, it suffices to replace n by n — « in the last congruence.

For the third part of (5), when we replace k by kr in (2), we obtain

Bn—i—kr,kr (xla 23327 3-7:37 . )
rk (n—i—kr)

kr

n
kT Z B, (21,29,...) (kr —nr)?™h = a7
j=1



and because the numbers B, ; (21, 22,...), 1 < j < n, are integers, then when we reduce
modulo 7 in the last identity we get

e Bn+kr,kr ('xla 233'2, 333'3, . ) — ,Ier — xlle(r—f—l)n,n’r ($1, 21:27 31‘3, .. ) (mod p)
1 rk (") Y nr (73,7

Now, because

Bn+kr,kr ($17 2I27 31’3, . . ) and xlle(T-i-l)n,nr ([L’l, 21‘27 35(73, .. )
rk (nJrk?") nr((ﬂrl)n)

kr nr

are integers and x} = z; (mod p) for any prime number p, then when we put r = p, the last
congruence becomes

n Brtkpip (21, 229, 323, .. .) i Bot1ynmp (21,22, 323, . . )

x] kp(”;:p) =1 (p+1)n) (mod p).

np(*,

To complete this proof, it suffices to multiply the two sides of the last congruence by p. [

Proof of Corollary 9. From the first congruence of (4) when we replace s by s—1, n by n+p
and k by p we get

B +sp, (.711 Lo, X3 ) _ B +p, (xl To, X3 )
— sps(nJ;sp)7 7 = .T'i P _DIRP (n;p)7 7 (mOd p2)7 p >n+ 1, S 2 1,
Sp p

and by combining the last congruence and the second congruence of (4) we obtain

B o (L1, To, T3, . .. B, , Lo, T3,y ...
(p+1)n,np ((pil)nZ 3 ) _ qu_1 +p,p (x;_pr T3 ) (mod p2), p>n+l.
TL( np ) (p)

Similarly, we use the second and the third congruences of (5) to get the second part of the
corollary. n

Proof of Theorem 11. Identity (2) can be written as

B x72x73,§6,...
bk (01,222, 373, . .) :xlpr((k:—p)Zlv(k—p)Z%“')’

‘IJ;T (k - p) k?(p+k)
i (19)
. B(r—i—l)n nr (ZEl, 21‘2, 31;37 .. )
with z, = ’ ; , k> 1
nr(73)7)
Bell [1] showed, for any indeterminates x1, xo, ..., that
A, (z1, 29, 73,...) = 2} + x, (mod p). (20)

Therefore, from (20) and (19), we obtain
B

r kg (21,229,323, .. .)
27 (k — p) Dreki

o = af {(k=p)" 4+ (=) %} (mod p),




Bp+k’k (%17 232'27 3.1'3, - )
Tk

(L)

are integers. Now, because z; = 27~ 'z,, then, when k is not a multiple of p, the last congru-

ence and Fermat little Theorem prove that

and Identity (16) shows that and the terms of the sequence {z,;n > 1}

er+k,k (]31, 2$2, 3LL’3, . )

EICY

= 28 {2 zy + 219,} (mod p).

For k =1 in the last congruence we have
Yp = 25 pi1 — 2wy (mod p),

The proof for j = 1 results from the two last congruences.
Assume now that the congruences given by (7) are true for the index j.
Carlitz [1] showed, for any indeterminates xq,xs, ..., that

Ay = xfj + xzj_l - xﬁi_Q + -4z, (mod p).

For x1,z9, ... integers we obtain
Ay =x1+xp+ a2+ -+ 2, (mod p).
Then, when we use Identity (19) and the fact that the sequence {z,;n > 1} is a sequence of
integers, we obtain when p 1k
. Bpj“'l—i-k,k (l’l, 2%27 31’3, ce

! k (pf+;+k)

)Ex’f(zl+zp+zpz+~--+zpj+1)

x’f (z1 +2pt 22t + ij> + x’fzpj+1
TBijrk,k (131, QZEQ, 3£L‘3, .. )

C e

k-1
2y @i + 2z (mod p).

k
+ Ty Zpi+

For k =1 in the last congruence we have
TN Tpitiy1 = Tpigr + T12p+1 (mod p).
From the two last congruences we deduce that
Bpj+1+k;,k (Il, 21‘27 35(73, . )

K

= of 'y (mod p)  if ptkay,

Brg1)pitt pitir (21,229,313, . ..)
pj+1r((r+1)pj+1)

= 27" (w141 — Tpiy1) (mod p) if pfay,

which completes the proof. O

10



Proof of Theorem 13. Carlitz [1] showed, for any indeterminates x1,xs, ..., that
Ay = Aij + Zg, (mod p).
Then, for x1, 9, ... integers we get
, - 2
Ay = (x’fj + xgj R xpj> + 2o = (xl +a,+ -+ a:pj)2 + Zg, (mod p),

and, when we use Identity (19), we obtain

Bopi 1k g (71,229, 313, . . )

K

27 (k- 2p7r) = 2V Ay ((k —2077) 21, (K — 2p77) 20,...)

and because {z,;n > 1} is a sequence of integers, the last identity gives

Bij-‘rk,k (xh 21’2, 31’3, . )

L (2;071'1c +k)

zk ((k —29r)? (21 2+ e zpj)2 + (k —2p'r) ZQPJ') (mod p).

27 (k= 2pir)

From the proof of Theorem 11, the last congruence gives when p 1 kx4

k o B2pj+k:,k: (wla 2[[’2, 31‘3, cee
a7 |

e

>> = ka3t (21 +2pt+ 2+ + ij)2 + 23* 25

2
— I TBp.7+k,k (1’1,293'2,31‘3,...) o ‘
= Ty + 7" Zopi

)

_ 2 .
=k (27 2p00)" + 229, (mod p), Le.,

2% B2pj+k,k (Q?l, 233'2, 333’3, e

1 k (Zpic +k)

) = (k:v%’”_Qx;jH + 2951) (mod p).

2r—2_.2

For k =1 in the last congruence we get x%’“_lxgpjﬂ =21 X, + 2, e,

Zop = 72 (T129pis1 — xijﬂ) (mod p).

Then 5 (01,22, 3 )
2pi+k,k \ L1, 202,03, ...)
JJ% e k(2pﬂ'+k) = xllc ((k - 1) xij.;.l + xlxzpj-l,-l) (mod p).
k
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