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Abstract

In this paper we study the class of m-row matrix compositions (m-compositions, for
short), i.e., m-row matrices with nonnegative integer entries in which every column has
at least one non-zero element. We provide several enumerative results, various combi-
natorial identities, and some combinatorial interpretations. Most of these properties
are an extension to matrix compositions of the combinatorial properties of ordinary
compositions.

1 Introduction

A composition (or ordered partition) of length k of a natural number n is a k-tuple (x1, . . . , xk)
of positive integers such that x1+· · ·+xk = n . Compositions are very well known combinato-
rial objects [1, 11, 12, 13, 17, 27], and their study has been improved in several recent papers
[7, 8, 14, 18, 21, 25, 26, 29, 30, 37]. Moreover, in certain algebraic contexts [5, 7, 8, 42, 44, 45],
compositions are ordered to form a partially ordered set which generalizes Young’s lattice for
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partitions. Finally, compositions have been generalized in various ways: we have the vector
compositions [1, p.57][2, 3, 4] by P. A. MacMahon [34, 35, 36], the m-colored compositions
by Drake and Petersen [19], the compositions defined by Lin and Rui [31], and the packed
matrices by Duchamp, Hivert and Thibon [20].

Another slight generalization of ordinary compositions to the bidimensional case is given
by the 2-compositions, introduced to encode L-convex polyominoes [16], Clearly, 2-compositions
are a particular case of m-compositions. Indeed, more precisely, for any non-negative integer
m, we define an m-row matrix composition, or m-composition for short, as an m× k matrix
with nonnegative integer entries

M =




x11 x12 . . . x1k

x21 x22 . . . x2k
...

...
. . .

...
xm1 xm2 . . . xmk




where each column has at least one non-zero element. We say that the length of M is the
number k of its columns. Moreover, we say that M is an m-composition of a non-negative
integer n when the sum σ(M) of all its entries is equal to n . For instance, we have the
following seven 2-compositions of n = 2 :

[
0
2

]
,

[
1
1

]
,

[
2
0

]
,

[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 1
0 0

]
,

[
0 0
1 1

]
.

The aim of this paper is to give an elementary introduction to the combinatorics of
matrix compositions. In particular, by using standard combinatorial techniques, we obtain
several enumerative results, such as generating series, recurrences and explicit formulas, for
m-compositions, m-compositions without zero rows, m-compositions with palindromic rows
and m-compositions of Carlitz type (i.e., without equal consecutive columns). Moreover,
we give some combinatorial interpretations of matrix compositions in terms colored linear
partitions, labelled bargraphs and words of regular languages. Finally, by employing some
of the results obtained by these combinatorial interpretations, we also prove a Cassini-like
determinantal identity for m-compositions.

Other results concerning matrix compositions can be found in paper [23], where the
problem of generating efficiently m-compositions and m-partitions has been treated, and in
paper [32], where the probabilistic aspects of m-compositions have been studied.

2 Enumeration of m-compositions

Basic enumeration and combinatorial properties of m-compositions can be easily determined
by using the technique of generating series.

Since matrix compositions can be expressed in a natural way in terms of multisets, we
recall the following definitions. Let N be the set of all non-negative integer numbers. A
multiset on a set X is a function µ : X → N . The multiplicity of an element x ∈ X is
µ(x) . The order of µ is the sum ord(µ) of the multiplicities of the elements of X , i.e.,
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n 0 1 2 3 4 5 6 7 8 9 10
m = 0 1 0 0 0 0 0 0 0 0 0 0
m = 1 1 1 2 4 8 16 32 64 128 256 512
m = 2 1 2 7 24 82 280 956 3264 11144 38048 129904
m = 3 1 3 15 73 354 1716 8318 40320 195444 947380 4592256
m = 4 1 4 26 164 1031 6480 40728 255984 1608914 10112368 63558392
m = 5 1 5 40 310 2395 18501 142920 1104060 8528890 65885880 508970002
m = 6 1 6 57 524 4803 44022 403495 3698352 33898338 310705224 2847860436

Table 1: The numbers c
(m)
n . For m = 3, 4, 5, 6 , we have the sequences A145839, A145840,

A145841, A161434 in [43].

ord(µ) =
∑

x∈X µ(x) . The number of all multisets of order k on a set of size n is the multiset
coefficient [46] ((n

k

))
=

(
n + k − 1

k

)
=

n(n + 1) · · · (n + k − 1)

k!
.

Let C(m)
nk be the set of all m-compositions of n of length k and let C(m)

n be the set of all

m-compositions of n . Then let c
(m)
nk = |C(m)

nk | and c
(m)
n = |C(m)

n | (see Table 1). For simplicity,

sometimes we just write cn for the coefficients c
(2)
n .

Proposition 1. The generating series of m-compositions according to the sum (marked by
x) and the length (marked by y ), is

c(m)(x, y) =
∑

n≥0

c
(m)
nk xn =

(1 − x)m

(1 + y)(1 − x)m − y
. (1)

In particular, the generating series of m-compositions according to the sum is

c(m)(x) =
∑

n≥0

c(m)
n xn =

(1 − x)m

2(1 − x)m − 1
. (2)

Proof. An m-composition M can always be considered as the concatenation of its columns.
Since each column of M is equivalent to a multiset on an m-set with non-zero order, the
generating series for the columns is

h(m)(x) =
∑

k≥1

((m

k

))
xk =

1

(1 − x)m
− 1 . (3)

Hence, c(m)(x, y) = (1−h(m)(x)y)−1 , that is (1). Finally, series (2) follows at once by setting
y = 1 in (1).

Reading the denominator of the rational generating series (1) and (2), we can immediately

obtain a linear recurrence for the numbers c
(m)
nk and c

(m)
n , namely we can obtain recurrences

(9) and (10) that will be proved in Proposition 4 with a combinatorial argument explaining
their form. Here, we obtain two other recurrences just by manipulating series in formal way.
Recall that the incremental ratio of a formal series f(x) =

∑
n≥0 fnxn is the series defined

by Rf(x) = (f(x) − f0)/x =
∑

n≥0 fn+1x
n .
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Proposition 2. The numbers c
(m)
n satisfy the recurrence

c
(m)
n+1 = −δn,0 + 2c(m)

n +
n∑

k=0

(
m + k − 1

k + 1

)
c
(m)
n−k . (4)

Proof. Rewriting series (2) in the following form

c(m)(x) =
1

2 − 1

(1 − x)m

=
1 − x

2 − 2x − 1

(1 − x)m−1

,

we obtain the identity

(
2 − 2x − 1

(1 − x)m−1

)
c(m)(x) = 1 − x

and hence the equation

c(m)(x) = 1 − x + 2xc(m)(x) +

(
1

(1 − x)m−1
− 1

)
c(m)(x) .

Now, taking the incremental ratio of both sides, we have

Rc(m)(x) = −1 + 2c(m)(x) + R

(
1

(1 − x)m−1
− 1

)
c(m)(x)

from which we obtain

c
(m)
n+1 = −δn,0 + 2c(m)

n +
n+1∑

k=1

((
m − 1

k

))
c
(m)
n−k+1 = −δn,0 + 2c(m)

n +
n∑

k=0

((
m − 1

k + 1

))
c
(m)
n−k ,

which simplifies in (4).

Recurrence (4) generalizes the identity cn+2 = 3cn+1 + cn + · · · + c0 , obtained in [16] by
simple manipulations of the recurrence cn+2 = 4cn+1 − 2cn .

Proposition 3. The numbers c
(m)
nk satisfy the recurrence

c
(m+1)
n+1,k+1 = c

(m)
n+1,k+1 − c

(m)
n,k+1 +

n,k+1∑

i,j=0

c
(m)
ij c

(m+1)
n−i,k−j+1 +

n,k∑

i,j=0

c
(m)
ij c

(m+1)
n−i,k−j . (5)

Similarly, the numbers c
(m)
n satisfy the recurrence

c
(m+1)
n+1 = c

(m)
n+1 − c(m)

n + 2
n∑

k=0

c
(m)
k c

(m+1)
n−k . (6)
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Proof. For simplicity, we just prove identity (6). Identity (5) can be proved in a completely
similar way. From (2), we have

(1 − x)m =
c(m)(x)

2c(m)(x) − 1
.

Now, substituting m with m + 1 and (1− x)m with the above expression in identity (2), we
obtain straightforwardly the relation

c(m+1)(x) =
(1 − x)c(m)(x)

1 − 2xc(m)(x)
,

and hence the equation

c(m+1)(x) = (1 − x)c(m)(x) + 2xc(m)(x)c(m+1)(x) .

Finally, taking the incremental ratio of both sides, we have at once (6).

3 Combinatorial identities

In this section we give a combinatorial interpretation of some formulas concerning m-
compositions. Most of them can be obtained by employing the classical Principle of Inclusion-
Exclusion [41, 46].

Proposition 4. The coefficients c
(m)
nk satisfy the recurrence

c
(m)
n+m,k+1 =

n+m−k∑

i=1

((m

i

))
c
(m)
n+m−i,k . (7)

Similarly, the coefficients c
(m)
n satisfy the recurrence

c
(m)
n+m =

n+m∑

i=1

((m

i

))
c
(m)
n+m−i . (8)

Proof. Any m-composition M ∈ C(m)
n+m,k+1 can always be decomposed into two parts: the

first column, equivalent to a multiset on the set {1, . . . ,m} of non-zero order i (with 0 ≤
i ≤ n + m − k ), and the rest of the matrix, equivalent to an m-composition of n + m − i
of length k . This decomposition implies at once recurrence (7). The same argument also
implies (8).

Recurrences (7) and (8) can be easily obtained, but they have a complex structure since
they involve a summation. However, we also have the following linear recurrences.
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Proposition 5. The numbers c
(m)
nk satisfies the recurrence

c
(m)
n+m,k+1 =

m∑

i=1

(
m

i

)
(−1)i−1c

(m)
n+m−i,k +

m∑

i=1

(
m

i

)
(−1)i−1c

(m)
n+m−i,k+1 . (9)

Similarly, the numbers c
(m)
n satisfies the recurrence

c
(m)
n+m = 2

m∑

i=1

(
m

i

)
(−1)i−1c

(m)
n+m−i . (10)

Proof. For simplicity, we only prove recurrence (10) (the same argument, also proves recur-
rence (9)). Let Ai be the set of all m-compositions M of n + m with a positive entry in
position (i, 1) along the first column. Since the first column of M is non-zero, it follows that

C(m)
n+m = A1 ∪ · · · ∪ Am . Hence, by the Principle of Inclusion-Exclusion, we have

c
(m)
n+m = |A1 ∪ · · · ∪ Am| =

∑

S⊆[m]
S 6=∅

(−1)|S|−1

∣∣∣∣∣
⋂

i∈S

Ai

∣∣∣∣∣ .

The set
⋂

i∈S Ai is formed of all m-compositions M = [xij] of n + m having positive entries
in the first column in all positions indexed by S . If, for every i ∈ S , we replace the entry xi1

with xi1−1 , then the first column of M either becomes the zero vector or it remains different
from it. In the first case, removing the first column, we have an m-compositions of n+m−|S| .
In the second case, we have an m-composition of n+m−|S| . Hence

∣∣⋂
i∈S Ai

∣∣ = 2 c
(m)
n+m−|S| .

Since this identity depends only on the size of S , we obtain (10).

Remark 6. For m = 2 , recurrence (10) reduces to the recurrence cn+2 = 4cn+1 − 2cn ,
already obtained in [16]. For m = 3 and 4 , we have the following recurrences

c
(3)
n+3 = 6c

(3)
n+2 − 6c

(3)
n+1 + 2c(3)

n , c
(4)
n+4 = 8c

(4)
n+3 − 12c

(4)
n+2 + 8c

(4)
n+1 − 2c(4)

n .

Proposition 7. The numbers c
(m)
nk admit the explicit expression

c
(m)
nk =

k∑

i=0

(
k

i

)((
m(k − i)

n

))
(−1)i . (11)

Similarly, the numbers c
(m)
n admit the explicit expression

c(m)
n =

n∑

k=0

c
(m)
nk =

n∑

k=0

k∑

i=0

(
k

i

)((
m(k − i)

n

))
(−1)i . (12)

Proof. Let Ai be the set of all matrices M ∈ Mm,k(N) where the i-th column is equal to the
zero vector and σ(M) = n . By the Principle of Inclusion-Exclusion, we have

c
(m)
nk = |A′

1 ∩ · · · ∩ A′
k| =

∑

S⊆[k]

(−1)|S|

∣∣∣∣∣
⋂

i∈S

Ai

∣∣∣∣∣ .
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The intersection
⋂

i∈S Ai is the set of all matrices M ∈ Mmk(N) with a zero vector in all
columns indexed by the elements of S . So, it is equivalent to the set of all multisets of

order n on a set of size mk − m|S| , and hence
∣∣⋂

i∈S Ai

∣∣ =
((

m(k−|S|)
n

))
. Since this identity

depends only on the size of S , we have (11).

The combinatorial argument used in the proof of Proposition (7) can be easily generalized

to the set C(m)
k (r1, . . . , rm) of all m-compositions of length k where the i-th row has sum equal

to ri , for every i = 1, . . . ,m . Let c
(m)
k (r1, . . . , rm) be the cardinality of such a set.

Proposition 8. The numbers c
(m)
k (r1, . . . , rm) admit the explicit expression

c
(m)
k (r1, . . . , rm) =

k∑

i=0

(
k

i

)((
k − i

r1

))
· · ·
((

k − i

rm

))
(−1)i . (13)

Proof. Let Ai be the set of all matrices M ∈ Mm,k(N) having the i-th column equal to the
zero vector, and row-sums r1 , . . . , rm . Then, by the Principle of Inclusion-Exclusion, we
have

c
(m)
k (r1, . . . , rm) = |A′

1 ∩ . . . ∩ A′
k| =

∑

S⊆[k]

(−1)|S|

∣∣∣∣∣
⋂

i∈S

Ai

∣∣∣∣∣ .

The intersection
⋂

i∈S Ai contains all matrices M ∈ Mmk(N) with the zero vector in all
columns indexed by the elements of S . Since the i-th row of such a matrix M corresponds
to a multiset of order ri on a set of size k − |S| , it follows that

∣∣∣∣∣
⋂

i∈S

Ai

∣∣∣∣∣ =

((
k − |S|

r1

))
· · ·
((

k − |S|
rm

))
.

Since this cardinality depends only on the size of S , we have (13).

Identity (13) already appears in the book [1] where, however, it is proved in a formal way
manipulating generating series.

Now, identities (11), (12) and (13) can be rewritten in terms of the Stirling numbers
of the first kind

[
n
k

]
([22], sequences A008275 and A048994 in [43]) the Stirling numbers of

the second kind
{

n
k

}
([22], sequences A008277 and A048933 in [43]), and the numbers tn of

preferential arrangements [24, 46, 47] (sequence A000670 in [43]).

Proposition 9. The numbers c
(m)
nk , c

(m)
n and c

(m)
k (r1, . . . , rm) can be expressed as follows:

c
(m)
nk =

k!

n!

n∑

j=k

[
n

j

]{
j

k

}
mj (14)

c(m)
n =

1

n!

n∑

k=0

[
n

k

]
mktk (15)

c
(m)
k (r1, . . . , rm) =

k!

r1! · · · rm!

r1,...,rm∑

j1,...,jm=0

∑

k≥0

[
r1

j1

]
· · ·
[
rm

jm

]{
j1 + · · · + jm

k

}
. (16)
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Proof. Using the ordinary expansion

xn = x(x + 1) · · · (x + n − 1) =
n∑

k=0

[
n

k

]
xk (17)

of the rising factorials, identity (11) becomes

c
(m)
nk =

1

n!

n∑

j=0

[
n

j

]
mj

k∑

i=0

(
k

i

)
(k − i)j(−1)i .

The second sum on the right hand-side is the number of all surjective functions from an
n-set to a k-set [46], and can be expressed as

k∑

i=0

(
k

i

)
(k − i)n(−1)i =

{
n

k

}
k! . (18)

Hence we have identity (14). Now, from (14), we have

c(m)
n =

n∑

k=0

c
(m)
nk =

n∑

k=0

k!

n!

n∑

j=k

[
n

j

]{
j

k

}
mj =

1

n!

n∑

j=0

[
n

j

]
mj

n∑

k=0

{
j

k

}
k! .

Since

tn =
n∑

k=0

{
n

k

}
k! , (19)

we obtain at once identity (15). Finally, by using (17) once again, identity (13) can be
written as

c
(m)
k (r1, . . . , rm) =

1

r1! · · · rm!

r1,...,rm∑

j1,...,jm=0

∑

k≥0

[
r1

j1

]
· · ·
[
rm

jm

] k∑

i=0

(
k

i

)
(k − i)j1+···+jm(−1)i .

Hence, from (18), we obtain (16).

Remark 10. From (14) and (15), it follows that both c
(m)
nk and c

(m)
n are polynomial

expressions in m .

Remark 11. Every m-composition M ∈ C(m)
nn is an m × n (0, 1)-matrix with exactly a 1

in each column, and hence is equivalent to a function f : [n] → [m] . So, c
(m)
nn = mn . Now,

by using (11), we have
n∑

k=0

(
n

k

)((
mk

n

))
(−1)k = mn .

Notice that this identity can also be obtained from (14).
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4 Binet-like formulas and asymptotics

In this section we will obtain a Binet-like formula and an asymptotic expansion for the
coefficients c

(m)
n .

Proposition 12. The numbers c
(m)
n admit the following Binet-like formula

c(m)
n =

1

2

[
δn,0 +

1

m m
√

2

m−1∑

k=0

ωk
m

xn+1
k

]
=

1

2
δn,0 +

1

2m

m−1∑

k=0

ωk
m

m
√

2 − ωk
m

(
m
√

2
m
√

2 − ωk
m

)n

(20)

where

xk = 1 − 1
m
√

2
ωk

m (k = 0, 1, . . . ,m − 1) (21)

where ωm = e2πi/m is a primitive root of unity.

Proof. Series (2) can be rewritten as

c(m)(x) =
1

2

[
1 +

1

2(1 − x)m − 1

]
.

The roots of the polynomial at the denominator are the numbers xk given in (21). Then we
have the expansion in partial fractions

1

2(1 − x)m − 1
=

A0

x − x0

+ · · · + Am−1

x − xm−1

where the coefficients Ak are defined by

Ak = lim
x→xk

x − xk

2(1 − x)m − 1
.

By applying De l’Hopital rule, we have

Ak = lim
x→xk

1

−2m(1 − x)m−1
=

1

−2m(1 − xk)m−1
= − ωk

m

m m
√

2
.

Hence

c(m)(x) =
1

2

[
1 − 1

xk

m−1∑

k=0

Ak

1 − x/xk

]
=

1

2

[
1 +

1

m m
√

2 xk

m−1∑

k=0

ωk
m

1 − x/xk

]

from which we obtain (20).

Proposition 13. For n → ∞ , we have the asymptotic expansion

c(m)
n ∼ 1

2m( m
√

2 − 1)

(
m
√

2
m
√

2 − 1

)n

.

In particular, we have the limit

lim
n→∞

c
(m)
n

c
(m)
n+1

= 1 − 1
m
√

2
.

Proof. The statement follows at once from the fact that the dominant singularity (i.e., the
root with minimum modulus) is x0 = 1 − 1/ m

√
2 .
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5 Combinatorial interpretations

5.1 Colored linear partitions

Matrix compositions can be interpreted in terms of linear species [6, 28] as follows. Let
[m] = {1, . . . ,m} be a set of colors, totally ordered in the natural way. We say that a
linearly ordered set [n] = {1, 2, . . . , n} is m-colored when each of its elements is colored with
one of the colors in [m] respecting the following condition: for every elements x , with color
i , and y with color j , if x ≤ y then i ≤ j . In other words, an m-coloring of [n] is an
order-preserving map γ : [n] → [m] . We define an m-colored linear partition of [n] as a
linear partition in which each block is m-colored.

The m-compositions of length k of n are equivalent to the m-colored linear partitions of
[n] with k blocks. Indeed, any M ∈ C(m)

nk corresponds to the m-colored linear partition π of
[n] obtained transforming the i-th column (h1, . . . , hm) of M into the i-th block of π of size
h1 + · · ·+ hm with the first h1 elements of color 1 , . . . , the last hm elements of color m , for
every i = 1, . . . , k . For instance, the 3-composition

M =




2 0 1 2
0 1 0 1
1 0 1 2


 (22)

corresponds to the following 3-colored partition of the set {1, 2, 3, . . . , 11}

s s s s s s s s s s s1 1 3 2 1 3 1 1 2 3 3

which can also be represented as π = [[1, 1, 3], [2], [1, 3], [1, 1, 2, 3, 3]] .

Proposition 14. Let C(m) be the linear species of m-compositions, i.e., the linear species of
m-colored linear partitions. Let G be the uniform linear species. Let Map

(m)
6=∅ be the linear

species of multisets of non-zero order on the set [m] . Then

C(m) = G ◦ Map
(m)
6=∅ . (23)

Proof. To give an m-colored linear partition on a linearly ordered set L is equivalent to assign
a linear partition π on L and then an m-coloring (i.e., an order-preserving map in [m] ) on
each block of π . Since an order-preserving map f : [k] → [m] is equivalent to a multiset of
order k on the set [m] , we have at once (23).

Remark 15. From identity (23), we reobtain at once (2). Indeed, since Card(G; x) =

1/(1−x) and Card(Map
(m)
6=∅ ; x) = h(m)(x) , where h(m)(x) is series (3), we have Card(C(m); x) =

Card(G; x) ◦ Card(Map
(m)
6=∅ ; x) = c(m)(x) .

Using this interpretation, we can obtain the following identities we will employ in Sec-
tion 6 to prove a Cassini-like identity.

10



Proposition 16. We have the following identity

c
(m)
i+j+1 =

∑

h,k≥0

((
m

h + k + 1

))
c
(m)
i−hc

(m)
j−k . (24)

Proof. Let L = {x1, . . . , xi+1, . . . , xi+j+1} be a linearly ordered set with size i + j + 1 and let
π ∈ C(m)[L] . The element xi+1 belongs to a block B of the form {xi−h+1, . . . , xi, xi+1, xi+2, . . . , xi+k+1}
with h, k ∈ N , as in the following picture:

�
�

�



π1 �
�

�



π2

s s s s s s sh s s s s s s
xi+1xi xi+2xi−h+1 xi+k+1

i − h h k j − k

Removing the block B , π splits into an m-colored linear partition π1 on a linear order of
size i − h and into an m-colored linear partition π2 on a linear order of size j − k .

Proposition 17. We have the identity

((
m

i + j + 1

))
=

m∑

k=1

((
k

i

))((
m − k + 1

j

))
=

m−1∑

k=0

(
i + k

i

)((
m − k

j

))
. (25)

Proof. The coefficient
((

m
i+j+1

))
gives the number of all the order-preserving maps f :

[i + j + 1] → [m] . Now, suppose that f(i + 1) = k , with k ∈ [m] . Since f is order-
preserving, it follows that f(x) ∈ [k] for every x ∈ [i] and f(x) ∈ {k, . . . ,m} for every
x ∈ {i + 2, . . . , i + j + 1} . Hence we have at once identity (25).

5.2 Surjective families of order-preserving maps

Let P1 , . . . , Pm and Q be finite linearly ordered sets. We say that F = {fi : Pi → Q}m
i=1 is a

surjective family of order-preserving maps when for every element q ∈ Q there exists at least
one index i and one element p ∈ Pi such that q = fi(p) . The single maps are not necessarily
surjective, but every element of the codomain admits at least one preimage along one of the
maps of the family.

Proposition 18. Let P1 , . . . , Pm and Q be finite linearly ordered sets with |P1| = r1 , . . . ,
|Pm| = rm and |Q| = k . Then the number of all surjective families F = {fi : Pi → Q}m

i=1 is

c
(m)
k (r1, . . . , rm) .

Proof. Let Q = {q1, . . . , qk} . A surjective family F = {fi : Pi → Q}m
i=1 is equivalent to

the m-composition M of length k with row-sum vector (r1, . . . , rk) , whose i-row is ri =
(|f •

i (q1)|, . . . , |f •
i (qk)|) , where f •

i (qj) is the set of all preimages of qj along the map fi .
Clearly, the sum of the i-row ri is |Pi| = ri . Moreover, since F is a surjective family, any
column of M is different from the zero vector.
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5.3 Labelled bargraphs

The interpretation of matrix compositions in terms of colored linear partitions can be refor-
mulated in terms of labelled bargraphs. A bargraph is a column-convex polyomino where all
columns are bottom justified (see Figure 1 (a)). A bargraph is completely determined by
the height of its columns and gives a graphical representation of an ordinary composition (as
already pointed out in [37]). Bargraphs, and more generally polyominoes [9], are well-known
combinatorial objects. In particular, the enumeration of bargraphs according to perimeter,
area and site-perimeter has been treated in [39, 40], in relation to the study of percolation
models, and more recently, from an analytical point of view, in [10].

1
1

(b)

2
2
3
4

4
4
3

21 1

3 2

1
3

4
4
2 4

1
32 2

4
3

3

2

2
4

4
1

3

(a)

Figure 1: (a) a bargraph; (b) a labelled bargraph of degree 4.

Let M = [aij] be an m-composition, equivalent to an m-colored linear partition π =
[B1, . . . , Bk] where the block Bj has the form [1, . . . , 1, 2, . . . , 2, . . . ,m, . . . ,m], and for ev-
ery i = 1, . . . ,m , i occurs exactly aij times. Now, draw each block vertically as a stack
of cells, and label each cell with the corresponding color. What we obtain is a bargraph
in which, along each column, the labels are weakly increasing from the bottom to the
top. For instance, the 3-composition (22), equivalent to the 3-colored linear partition
π = [[1, 1, 3], [2], [1, 3], [1, 1, 2, 3, 3]] , is represented by the following labelled bargraph of area
11 with 4 columns:

1
1
3

2 1
3

1
1
2
3
3

Similarly, the labelled bargraph in Figure 1(b) represents the following 4-composition of 33 :



2 0 1 0 0 1 0 1 0 0 2 0
0 1 0 3 1 0 0 3 1 0 0 0
0 0 0 1 1 0 4 0 0 0 0 2
0 0 0 1 2 1 0 0 2 2 0 1


 .

So, we define a labelled bargraph as a bargraph in which all cells are labelled with positive
integers so that, along each column, the label of a cell is less then or equal to the label of
the cell immediately above (if any) (see Figure 1(b)). The degree is the maximal label of the
bargraph. In this way, an m-composition of n of length k is equivalent to a labelled bargraph
of area n with k columns and degree at most m .

12



5.4 Words of a regular language on finite many letters

Matrix compositions (as concatenation of columns) can be easily encoded as words of a
language on infinite letters. However, they can also be encoded as words of a regular language
on the finite alphabet Am = {a1, · · · , am, b1, . . . , bm} . This encoding extends the encoding
described in [8] for the ordinary compositions, Let C(m) be the set of all m-compositions and
let ℓ : C(m) → A∗

m be the map defined in the following way. First, write an m-composition M
as the formal sum (juxtaposition) of its columns. Then write each column as juxtaposition
of simple columns, that is columns containing exactly one non-zero entry. Now, order all
simple columns according to the position of the non-zero entry. This convention allows to
write each simple column as juxtaposition of elementary columns, that is columns containing
exactly one non-zero entry, equal to 1 . Finally, substitute each elementary column with a
letter according to the following rules

1
0
...
0

ℓ7−→ a1 , . . . ,

0
...
0
1

ℓ7−→ am , +

1
0
...
0

ℓ7−→ b1 , . . . , +

0
...
0
1

ℓ7−→ bm (26)

For instance, by applying this procedure to the 3-composition

M =




2 0 1 2
0 1 0 1
1 0 1 2


 ,

we have

M  

2
0
1

+
0
1
0

+
1
0
1

+
2
1
2

 

2 0
0 0
0 1

+
0
1
0

+
1 0
0 0
0 1

+
2 0 0
0 1 0
0 0 2

 

1 1 0
0 0 0
0 0 1

+
0
1
0

+
1 0
0 0
0 1

+
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1

and hence ℓ(M) = a1a1a3b2b1a3b1a1a2a3a3 .

Proposition 19. The language L(m) = ℓ(C(m)) on the alphabet Am corresponding to the
m-compositions is the regular language defined by the unambiguous regular expression

L(m) = ε + L(m)
1 L(m)

2 (27)

where ε , as usual, is the empty word, and

L(m)
1 =

(
a+

1 a∗
2 · · · a∗

m + a+
2 a∗

3 · · · a∗
m + · · · + a+

m

)

L(m)
2 = ( b1a

∗
1a

∗
2 · · · a∗

m + b2a
∗
2 · · · a∗

m + · · · + bma∗
m )∗ .

13



Proof. Non-empty words in L(m) are characterized by the following conditions:

1. the first letter is always an ai , with i = 1, 2, . . . ,m ;

2. the letters ai and bi can always be followed by any bj , but they can be followed by an
aj only when i ≤ j.

This characterization implies that the non-empty words in L(m) have a unique factorization
of the form xy , where

1. x is a non-empty word of the form ai1
1 · · · aim

m , with i1, . . . , im ≥ 0 ;

2. y is a (possibly empty) word y = y1 · · · yk , where yr = bja
qj

j · · · aqm
m with qj, . . . , qm ≥ 0 ,

for every r = 1, . . . , k .

This factorization implies at once identity (27).

Remark 20. The encoding just described is the basis for an efficient algorithm for the
exhaustive generation of m-compositions, and for the definition of a Gray code on the set of
m-compositions of a given size, as described in [23].

6 Cassini-like identities

For m = 2 , the numbers cn satisfy the following Cassini-like identity [16]:

cncn+2 − c2
n+1 = −2n−1 (for n ≥ 1) .

This identity can be generalized to arbitrary m-compositions, as proved in the following

Proposition 21. For every m,n ≥ 1 , we have the generalized Cassini-like identity:
∣∣∣∣∣∣∣∣∣

c
(m)
n c

(m)
n+1 . . . c

(m)
n+m−1

c
(m)
n+1 c

(m)
n+2 . . . c

(m)
n+m

...
...

...

c
(m)
n+m−1 c

(m)
n+m . . . c

(m)
n+2m−2

∣∣∣∣∣∣∣∣∣

= (−1)⌊m/2⌋ 2n−1. (28)

Proof. Let C
(m)
n = [ c

(m)
n+i+j ]m−1

i,j=0 be the matrix appearing on the left-hand side of (28).
Since the main recurrence (10) is of the form

c
(m)
n+m = αm−1c

(m)
n+m−1 + · · · + α1c

(m)
n+1 + α0c

(m)
n

(
where αk = (−1)m−k−12

(
m

k

))
,

we can simplify the last row of the determinant |C(m)
n | simply by subtracting to it a suitable

linear combination of the first m − 1 rows. More precisely, we have

|C(m)
n | =

∣∣∣∣∣∣∣∣∣∣∣∣

c
(m)
n c

(m)
n+1 . . . c

(m)
n+m−1

c
(m)
n+1 c

(m)
n+2 . . . c

(m)
n+m

...
...

...

c
(m)
n+m−2 c

(m)
n+m−1 . . . c

(m)
n+2m−3

α0c
(m)
n−1 α0c

(m)
n . . . α0c

(m)
n+m−2

∣∣∣∣∣∣∣∣∣∣∣∣

.
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Now, we can extract α0 = (−1)m−12 from the last row and shift cyclically all rows downward,

obtaining the identity |C(m)
n | = 2 |C(m)

n−1| . From this recurrence, it follows at once that

|C(m)
n | = 2n−1 |C(m)

1 | (for every n ≥ 1) .

It remains to evaluate the determinant of the matrix C
(m)
1 = [ c

(m)
i+j+1 ]m−1

i,j=0 .
Identity (24) is equivalent to the matrix factorization

C
(m)
1 = L(m)M (m)L

(m)
T

where

L(m) = [ c
(m)
i−j ]m−1

i,j=0 and M (m) =

[ ((
m

i + j + 1

)) ]m−1

i,j=0

.

Since L(m) is triangular and its diagonal entries are equal to c
(m)
0 = 1 , it follows that

|C(m)
1 | = |M (m)|.

Similarly, identity (25) is equivalent to the matrix factorization

M (m) = B(m)B̃(m)

where

B(m) =

[ (
i + j

i

) ]m−1

i,j=0

and B̃(m) =

[ ((
m − i

j

)) ]m−1

i,j=0

.

Since B̃(m) = J (m)B(m) , where J (m) = [δi+j,m−1]
m−1
i,j=0 , it follows that

M (m) = B(m)J (m)B(m) .

Since |J (m)| = (−1)⌊m/2⌋ and |B(m)| = 1 , it follows that |M (m)| = (−1)⌊m/2⌋ . Finally, for
every n ≥ 1 , we have

|C(m)
n | = 2n−1 |C(m)

1 | = 2n−1 |M (m)| = (−1)⌊m/2⌋2n−1 ,

that is we have identity (28).

7 Matrix compositions without zero rows

In this section, we will consider the class of all m-compositions where all rows are different
from the zero vector. Let f

(m)
n be the number of all m-compositions of n of this kind.

Proposition 22. The numbers f
(m)
n admit the explicit expression

f (m)
n =

m∑

k=0

(
m

k

)
(−1)kc(m−k)

n =
m∑

k=0

(
m

k

)
(−1)m−kc(k)

n . (29)
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Proof. Let Ai be the set of all m-compositions M ∈ C(m)
n where the i-th row is zero. Then,

by the Principle of Inclusion-Exclusion, we have

f (m)
n = |A′

1 ∩ · · · ∩ A′
m| =

∑

S⊆[m]

(−1)|S|

∣∣∣∣∣
⋂

i∈S

Ai

∣∣∣∣∣ .

Since there is an evident bijective correspondence between
⋂

i∈S Ai and the set of all (m−|S|)-
compositions of n , we have at once (29).

Remark 23. Since the set C(m)
n can be partitioned according to the number of zero rows,

we also have the identity

c(m)
n =

m∑

k=0

(
m

k

)
f (k)

n . (30)

Now, by inverting this formula, we reobtain (29). Viceversa, we can obtain (30) by inverting
(29).

Proposition 24. The generating series for the numbers f
(m)
n is

f (m)(x) =
m∑

k=0

(
m

k

)
(−1)m−kc(k)(x) =

m∑

k=0

(
m

k

)
(−1)m−k (1 − x)k

2(1 − x)k − 1
. (31)

Proof. This is an immediate consequence of identity (29).

Proposition 25. For n ≥ 1 , the numbers f
(m)
n satisfy a homogeneous linear recurrence with

constant coefficients of order
(

m+1
2

)
.

Proof. Immediate consequence of the fact that the rational series (31) has the form

f (m)(x) =
xmFm(x)

(1 − 2x)(1 − 4x + 2x2) · · · (2(1 − x)m − 1)
(32)

where Fm(x) is a polynomial with degree (less than or) equal to
(

m
2

)
.

Remark 26. The recurrence satisfied by the numbers f
(m)
n can be deduced from the

denominator of series (32). For instance, for m = 2 , we have the series

f (2)(x) =
3x2 − 2x3

(1 − 2x)(1 − 4x + 2x2)
=

3x2 − 2x3

1 − 6x + 10x2 − 4x3

and hence the recurrence
f

(2)
n+3 = 6f

(2)
n+2 − 10f

(2)
n+1 + 4f (2)

n .

Similarly, for m = 3 , we have the series

f (3)(x) =
13x3 − 24x4 + 16x5 − 4x6

1 − 12x + 52x2 − 102x3 + 96x4 − 44x5 + 8x6

and hence the recurrence

f
(3)
n+6 = 12f

(3)
n+5 − 52f

(3)
n+4 + 102f

(3)
n+3 − 96f

(3)
n+2 + 44f

(3)
n+1 − 8f (3)

n .
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n 0 1 2 3 4 5 6 7 8 9 10
m = 0 1 0 0 0 0 0 0 0 0 0 0
m = 1 1 2 4 8 16 32 64 128 256 512
m = 2 3 16 66 248 892 3136 10888 37536 128880
m = 3 13 132 924 5546 30720 162396 834004 4204080
m = 4 75 1232 13064 114032 893490 6550112 45966744
m = 5 541 13060 195020 2327960 24418640 235804122
m = 6 4683 155928 3116220 48697048 657516672

Table 2: The numbers f
(m)
n .

Proposition 27. The numbers f
(m)
n have the following explicit expression

f (m)
n =

∑

ρ∈Pm

|ρ|=n

∑

k≥0

k∑

i=0

(
k

i

)((
k − i

r1

))
· · ·
((

k − i

rm

))
(−1)i , (33)

where P is the set of all positive integers.

Proof. Since f
(m)
n counts all m-compositions with non-zero row-sums, we have

f (m)
n =

∑

k≥0

∑

(r1,...,rm)∈Pm

r1+···+rm=n

c
(m)
k (r1, . . . , rm) =

∑

k≥0

∑

ρ∈Pm

|ρ|=n

c
(m)
k (ρ)

where ρ = (r1, . . . , rm) and |ρ| = r1 + · · · + rm . Hence, by (13), we have at once (33).

Let f
(m)
nk be the number of all m-compositions, without zero rows, of n of length k .

Proposition 28. The numbers f
(m)
nk admit the explicit expression

f
(m)
nk =

m∑

i=0

k∑

j=0

(
m

i

)(
k

j

)((
(m − i)(k − j)

n

))
(−1)i+j . (34)

Proof. Let Aij be the set of all matrices M ∈ Mmk(N) with the i-th row and the j-th column
equal to the zero vector. Then, by the Principle of Inclusion-Exclusion, we have

f
(m)
nk =

∣∣∣∣∣∣

⋂

(i,j)∈[m]×[k]

A′
ij

∣∣∣∣∣∣
=
∑

I⊆[m]
J⊆[k]

(−1)|I|+|J |

∣∣∣∣∣∣∣

⋂

i∈I
j∈J

Aij

∣∣∣∣∣∣∣
.

Since the intersection
⋂

i∈I, j∈J Aij is in bijective correspondence with the set of all multisets
of order n on a set of size (m − |I|)(k − |J |) , identity (34) follows at once.

Also the numbers f
(m)
nk and f

(m)
n can be expressed in terms of Stirling numbers and of the

numbers tk of preferential arrangements.
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Proposition 29. The numbers f
(m)
nk can be expressed as

f
(m)
nk =

m!k!

n!

n∑

h=0

[
n

h

]{
h

m

}{
h

k

}
. (35)

Similarly, the numbers f
(m)
n can be expressed as

f (m)
n =

m!

n!

n∑

k=m

[
n

k

]{
k

m

}
tk . (36)

Proof. By using (17), identity (34) can be rewritten as

f
(m)
nk =

1

n!

n∑

h=0

[
n

h

] m∑

i=0

(
m

i

)
(m − i)h(−1)i

k∑

j=0

(
k

j

)
(k − j)h(−1)j .

Now, by (18), we have (35). Finally, using the fact that f
(m)
n =

∑n
k=0 f

(m)
nk and identities

(19) and (35), we have at once identity (36).

Clearly, f
(m)
n = 0 whenever n < m . In particular, we have

f (n)
n = tn , f

(n)
n+1 =

n

2
(tn+1 + tn) ,

f
(n)
n+2 =

n

24
[(3n + 1)tn+2 + 6(n + 1)tn+1 + (3n + 5)tn] .

The identity f
(n)
n = tn can also be proved combinatorially since preferential arrangements can

be represented as matrix compositions in a very natural way. Since a preferential arrangement
is a set partition in which the blocks are linearly ordered [24, 46, 47], with a given preferential
arrangement π = (B1, . . . , Bk) of an n-set X we can always associate the matrix M having
as columns the characteristic vectors of the blocks of π . For instance, the preferential
arrangement π = ({2, 3}, {1, 5}, {4}) of the set X = {1, 2, 3, 4, 5} corresponds to the matrix

M =




0 1 0
1 0 0
1 0 0
0 0 1
0 1 0




.

So, if π is a partition of an n-set with k blocks, then the matrix M has n rows each of which
contains exactly one non-zero entry equal to 1 , k columns different from the zero vector
and σ(M) = n . This means that M is an n-composition of n without zero rows. Since
this correspondence is clearly a bijection between the class of preferential arrangements of
an n-set and the class of n-composition of n without zero rows, there follows the identity
f

(n)
n = tn .
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n 0 1 2 3 4 5 6 7 8 9 10
m = 0 1 0 0 0 0 0 0 0 0 0 0
m = 1 1 1 1 3 4 7 14 23 39 71 124
m = 2 1 2 5 18 53 162 505 1548 4756 14650 45065
m = 3 1 3 12 58 255 1137 5095 22749 101625 454116 2028939
m = 4 1 4 22 136 793 4660 27434 161308 948641 5579224 32811986
m = 5 1 5 35 265 1925 14056 102720 750255 5480235 40031030 292408771
m = 6 1 6 51 458 3984 34788 303902 2654064 23179743 202445610 1768099107

Table 3: The numbers z
(m)
n .

Remark 30. Another kind of matrix compositions are packed matrices [20], that is
matrices with nonnegative integer entries without zero rows or zero columns. Let bn be the
number of all packed matrices M with σ(M) = n . These numbers form sequence A120733
in [43], and, by (36), can be expressed as

bn =
n∑

m=0

f (m)
n =

1

n!

n∑

k=0

[
n

k

]
t2k .

8 Matrix compositions of Carlitz type

We say that an m-composition is of Carlitz type when no two adjacent columns are equal.
For m = 1 , we have the ordinary Carlitz compositions [11] (see also [13, 33, 29] and [18]). Let

z
(m)
n be the number of all m-composition of n of Carlitz type. For m = 1 we have sequence

A003242 in [43], while for m ≥ 2 we have new sequences (see Table 3).

Proposition 31. The generating series of the numbers z
(m)
n is

z(m)(x) =
∑

n≥0

z(m)
n xn =

1

1 −
∑

k≥1

((m

k

)) xk

1 + xk

, (37)

or, equivalently,

z(m)(x) =
1

1 +
∑

k≥1

(−1)k 1 − (1 − xk)m

(1 − xk)m

=
1

1 +
∑

k≥1

(−1)kh(m)(xk)
. (38)

Proof. Let xµ be an indeterminate marking a column of an m-matrix equivalent to a multiset

µ ∈ M(m)
6=0 , and let X be the set of all these indeterminates. Let z(m)(X) be the generating

series for the set of all m-compositions of Carlitz type and let z
(m)
µ (X) be the generating

series for the set of all m-compositions of Carlitz type whose last column corresponds to the

19

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A120733
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A003242


multiset µ . Then we have at once the linear system





z(m)(X) = 1 +
∑

µ∈M
(m)
6=0

z(m)
µ (X)

z
(m)
µ (X) =

(
z(m)(X) − z

(m)
µ (X)

)
xµ ∀ µ ∈ M(m)

6=0

from which

z(m)
µ (X) =

xµ

1 + xµ

z(m)(X) and z(m)(X) =
1

1 −
∑

µ∈M
(m)
6=0

xµ

1 + xµ

.

Now, to obtain (37) it is sufficient to substitute xµ with xord(µ) in z(m)(X) .
Finally, (38) can be obtained with the same argument used in [11] by Carlitz, or simply

by rewriting in a suitable way the series at the denominator of (37).

Proposition 32. The numbers z
(m)
n can be expressed as

z(m)
n =

∑

k≥0

∑

α,β∈Pk

α·β=n

((m

α

))
(−1)|β|−k . (39)

where, for every α = (a1, . . . , ak) and β = (b1, . . . , bk) , α · β = a1b1 + · · · + akbk , |β| =

b1 + · · · + bk and
((

m
α

))
=
((

m
a1

))
. . .
((

m
ak

))
.

Proof. From (37), we have

z(m)(x) =
∑

k≥0

(
∑

n≥1

((m

n

)) xn

1 + xn

)k

=
∑

k≥0

∑

a1≥1

((
m

a1

))
xa1

1 + xa1
· · ·
∑

ak≥1

((
m

ak

))
xak

1 + xak

=
∑

k≥0

∑

a1,...,ak≥1

((
m

a1

))
. . .

((
m

ak

))
xa1

1 + xa1
· · · xak

1 + xak

=
∑

k≥0

∑

a1,...,ak≥1
b1,...,bk≥1

((
m

a1

))
. . .

((
m

ak

))
(−1)b1+···+bk−kxa1b1+···+akbk

=
∑

n≥0



∑

k≥0

∑

α,β∈Nk
0

α·β=n

((m

α

))
(−1)|β|−k


 xn

Hence, we have (39).
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n 0 1 2 3 4 5 6 7 8 9 10
m = 0 1 0 0 0 0 0 0 0 0 0 0
m = 1 1 1 3 4 7 14 23 39 71 124
m = 2 3 12 45 148 477 1502 4678 14508 44817
m = 3 13 108 672 3622 18174 87474 410379 1894116
m = 4 75 1056 10028 79508 570521 3850376 24966124
m = 5 541 11520 155840 1705915 16529925 148188201
m = 6 4683 140256 2566554 37084794 465922722

Table 4: The numbers g
(m)
n .

n 0 1 2 3 4 5 6 7 8 9 10
m = 0 1 0 0 0 0 0 0 0 0 0 0
m = 1 1 1 2 2 4 4 8 8 16 16 32
m = 2 1 2 5 8 18 28 62 96 212 328 724
m = 3 1 3 9 19 48 96 236 468 1146 2270 5556
m = 4 1 4 14 36 101 240 648 1520 4082 9560 25660
m = 5 1 5 20 60 185 501 1470 3910 11390 30230 88002
m = 6 1 6 27 92 309 930 2939 8640 27048 79280 247968

Table 5: The numbers p
(m)
n .

Now, let g
(m)
n be the number of all m-compositions of Carlitz type of n without zero rows.

With arguments completely similar to the ones used in the case of ordinary m-compositions,
we have

z(m)
n =

m∑

k=0

(
m

k

)
g(k)

n and g(m)
n =

m∑

k=0

(
m

k

)
(−1)m−kz(k)

n . (40)

Every n-composition of n without zero rows is necessarily of Carlitz type. Indeed, it
corresponds to a preferential arrangement and this implies at once that there are no two
equal columns. Then g

(n)
n = f

(n)
n = tn .

9 Matrix compositions with palindromic rows

An ordinary composition is palindromic when its elements are the same in the given or in
the reverse order [14, 15, 27, 37]. Here, we say that an m-composition is palindromic when
all its rows are palindromic. For instance,

M =




1 2 1 2 1
2 0 3 0 2
0 0 1 0 0
3 1 1 1 3




is a palindromic 4-composition of length 5 of 24 . Let p
(m)
n be the number of all palindromic

m-compositions of n (see Table 5).
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m/n 0 1 2 3 4 5 6 7 8 9 10
m = 0 1 0 0 0 0 0 0 0 0 0 0
m = 1 1 2 2 4 4 8 8 16 16 32
m = 2 1 4 10 20 46 80 180 296 660
m = 3 1 6 24 74 204 558 1334 3480
m = 4 1 8 44 192 706 2384 7652
m = 5 1 10 70 400 1930 8182
m = 6 1 12 102 724 4404

Table 6: The numbers q
(m)
n .

Proposition 33. The generating series for the palindromic m-compositions is

p(m)(x) =
∑

n≥0

p(m)
n xn =

(1 + x)m

2(1 − x2)m − 1
. (41)

In particular, the numbers p
(m)
n can be expressed as

p(m)
n =

⌊n/2⌋∑

k=0

((
m

n − 2k

))
c
(m)
k . (42)

Proof. A palindromic m-composition of even length has the form [M |Ms] and a palin-
dromic m-composition of odd length has the form [M |v|Ms] , where M is an arbitrary m-
composition, Ms is the specular m-composition obtained from M by reversing every row and
v is an arbitrary non-zero column vector. Hence

p(m)(x) = c(m)(x2) +

[
1

(1 − x)m
− 1

]
c(m)(x2) =

c(m)(x2)

(1 − x)m
,

that is (41). Finally, identity (42) can be obtained by expanding the series on the right-hand
side of the above equations.

Now, let q
(m)
n be the number of all m-compositions of n with palindromic non-zero rows

(see Table 6). With arguments similar to those used in the case of ordinary m-compositions,
we have

p(m)
n =

m∑

k=0

(
m

k

)
q(k)
n and q(m)

n =
m∑

k=0

(
m

k

)
(−1)m−kp(k)

n . (43)

When n = m , the column vector with all entries equal to 1 is the only n-composition
with palindromic rows. So, q

(n)
n = 1 .

10 Matrices generated by m-compositions

Identities (29), (30), (40) and (43) can be reformulated in terms of matrices. In particular,
we will consider the following pairs of infinite matrices.
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1. The matrix C = [c
(m)
n ]m,n≥0 generated by m-compositions (see Table 1), and the the

upper triangular matrix F = [f
(m)
n ]m,n≥0 generated by m-compositions without zero

rows (see Table 2).

2. The matrix Z = [z
(m)
n ]m,n≥0 generated by m-compositions of Carlitz type (see Table

3), and the upper triangular matrix G = [g
(m)
n ]m,n≥0 generated by m-compositions of

Carlitz type without zero rows (see Table 4).

3. The matrix P = [p
(m)
n ]m,n≥0 generated by m-compositions with palindromic rows (see

Table 5), and the upper triangular matrix Q = [q
(m)
n ]m,n≥0 generated by m-compositions

with palindromic rows without zero rows (see Table 6).

Finally, we also need the ordinary binomial matrix B = [
(

m
n

)
]m,n≥0 . Moreover, if X =

[xij]i,j≥0 if an infinite matrix, then we can always consider the partial matrices Xk = [xij]
k
i,j=0 ,

for every k ∈ N .

Proposition 34. We have the following LU-factorizations over N : C = BF , Z = BG ,
P = BQ . Similarly, Ck = BkFk , Zk = BkGk , Pk = BkQk , for every k ∈ N .

Proposition 35. For every k ∈ N , we have det Ck = det Zk = t0t1 · · · tk and det Pk = 1 .

Proof. Since Bk , Fk , Gk and Qk are triangular matrices and f
(n)
n = g

(n)
n = tn and

q
(n)
n = 1 for every n ∈ N , the factorizations in Proposition 34 and Binet’s theorem imply

at once the stated identities.

11 Final remarks

In this final section, we present some open problems on matrix compositions and some
possible lines of research on this topic.

L-convex polyominoes. As remarked in the introduction, 2-compositions have been in-
troduced in [16] to provide a simple encoding of L-convex polyominoes. This result led us
to consider m-compositions with the hope of encoding some larger class of polyominoes. To
find such larger classes of polyominoes, however, seems to be much more problematic and is
still a completely open problem.

Labelled bargraphs. The simple correspondence between m-compositions and labelled
bargraphs with degree at most m (considered in Subsection 5.3) suggests to study some
particular subclasses of matrix compositions arising in a very natural way as subclasses of
bargraphs, such as the following ones.

1. The class of bargraphs having all the m labels in each column (Figure 2(a)), corre-
sponding to the set of m-compositions containing no 0’s.
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2
13

1
3

1

Figure 2: Labelled bargraphs of degree 3: (a) having all the labels in each of its columns;
(b) a 3-partition; (c) a labelled stack of degree 3.

2. The class of labelled Ferrers diagrams, i.e., labelled bargraphs in which each column
has height greater than or equal to the height of the column on its right (see Figure
2 (b)). A labelled Ferrers diagram of degree m corresponds to an m-composition such
that the sum of the entries of each column is greater than or equal to the sum of the
entries of column on its right. We call these objects m-partitions. This definition is
motivated by the fact that the ordinary partitions correspond to Ferrers diagrams, that
is labelled Ferrers diagrams of degree 1 . For instance, the bargraph in Figure 2 (b)
corresponds to the following 3-partition of 20 :




1 3 0 1 0 0
4 0 1 2 0 1
1 2 2 0 2 0


 .

3. The class of labelled stacks, that is of labelled bargraphs in which each row is connected.
These objects have the shape of stack polyominoes, as can be seen in Figure 2(c). Given
a labelled stack, let ci be the sum of the entries of its i-th column. Then a labelled
stack of degree m corresponds to an m-composition in which the sequence c1, . . . , ck is
unimodal.

The problem of generating efficiently the m-partitions has been studied in [23], while the
problem of enumerating labelled Ferrers diagrams and labelled stacks has been solved in [38],
in a more general context.

m-colored compositions. Another interesting problem concerns the generalization to
matrix compositions of the poset of ordinary compositions considered by Björner and Stan-
ley [8]. A first step in this direction has been made, independently, by Drake and Petersen
in [19], where they introduced the m-colored compositions. What is relevant here is that
the m-colored compositions can be considered as a particular kind of matrix compositions.
Indeed an m-colored composition α is an ordered tuple of “colored” positive integers, that is
α = (a1ω

s1 , . . . , akω
sk) , where the ai’s are positive integers, ω is a primitive m-root of unity

and 0 ≤ si ≤ m−1 for each i = 1, . . . , k . The i-th part of α is aiω
si and has color ωsi . More-

over, α is an m-colored composition of an integer number n when a1+ · · ·+ak = n . Hence an
m-colored composition α of a integer n is uniquely represented by the m-composition M(α)
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of n where in column i appears exactly one non-zero entry, equal to ai , in position (si +1, i) ,
for each i = 1, . . . , k . So, for instance, the 3-colored composition α = (2ω, 3, 1, ω2, 3ω) of 10
is equivalent to the 3-composition

M(α) =




0 3 1 0 0
2 0 0 0 3
0 0 0 1 0


 .

This suggests that the poset of m-colored compositions can be generalized to a poset of
matrix compositions. This generalization will be studied in detail in a further work. Finally,
it could be interesting to study the natural generalization of m-compositions to r-colored
m-compositions.
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