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Abstract

We recall two formulas, due to C. Jordan, for the successive derivatives of functions

with an exponential or logarithmic inner function. We apply them to get addition

formulas for the Stirling numbers of the second kind and for the Stirling numbers of

the first kind. Then we show how one can obtain, in a simple way, explicit formulas for

the generalized Euler polynomials, generalized Euler numbers, generalized Bernoulli

polynomials and the Bell polynomials.

1 Introduction

By
{

n

k

}

we mean the Stirling number of the second kind (the number of ways of partitioning
a set of n elements into k nonempty subsets; see Graham et al. [4] and sequence A008277
of Sloane’s On-line Encyclopedia [10]). As usual, we set

{

n

0

}

= 0 if n > 0,
{

0
0

}

= 1, and
{

n

k

}

= 0 for k > n or k < 0. Let us recall that the Stirling numbers satisfy the identities

{

n

k

}

=
1

k!

k
∑

j=0

(−1)k−j

(

k

j

)

jn =
1

k!

k
∑

j=0

(−1)j

(

k

j

)

(k − j)n, (1)

{

n + 1

k

}

= k

{

n

k

}

+

{

n

k − 1

}

, (2)

and appear in the Taylor expansion

(ew − 1)k

k!
=

∞
∑

n=k

{

n

k

}

wn

n!
. (3)

1

mailto:g.rzadkowski@uksw.edu.pl
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A008277


Peregrino [9] proved the following addition formula for the Stirling numbers of the second
kind

{

u + v

k

}

=
v
∑

j=0

v
∑

i=0

(

v

i

)

ki(−1)v+i+j

{

v − i

j

}{

u

k − j

}

. (4)

By
[

n

k

]

we denote the Stirling number of the first kind (number of ways of partitioning a set
of n elements into k nonempty cycles, see [4], sequence A008275 in [10]). Similarly

[

n

0

]

= 0

if n > 0,
[

0
0

]

= 1,
[

n

k

]

= 0 for k > n or k < 0. The Stirling numbers of the first kind fulfil the
recurrence formula

[

n + 1

k

]

= n

[

n

k

]

+

[

n

k − 1

]

. (5)

We use common notation for the falling factorial

(x)k = x(x − 1) · · · (x − k + 1)

and for the rising factorial (Pochhammer’s symbol)

x(k) = x(x + 1) · · · (x + k − 1).

The paper is organized as follows. We recall and prove two formulas, due to C. Jordan
[6], in section 2. The formulas involve Stirling numbers of both kinds. Since the original
Peregrino’s proof of (4), by induction on v, is long we give shorter and more direct proof
of his formula and similar formulas in section 3. We prove addition formulas for Stirling
numbers of the first kind in section 4. Sections 5,6,7 are devoted to show explicit formulas
respectively for generalized Euler polynomials, generalized Bernoulli polynomials and the
Bell polynomials. All proofs, in the last three sections, are more simple and direct than the
proofs which exist in the literature. In the case of generalized Bernoulli polynomials (and
generalized Bernoulli numbers) our results seem to be new.

2 Formulas for successive derivatives

We have the following formulas for successive derivatives of composite functions with the
exponential, or the logarithmic, inner function.

Lemma 1. If f ∈ C∞(R) then the following formulas for the nth order (n = 1, 2, 3, . . .)
derivatives hold

dn

dtn
(f(et)) =

n
∑

k=1

{

n

k

}

f (k)(et)ekt, (6)

dn

dtn
(f(log t)) =

1

tn

n
∑

k=1

(−1)n−k

[

n

k

]

f (k)(log t). (7)
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Proof. To prove formula (6), we proceed by induction with respect to n. Denote g(t) = f(et).
For n = 1, (6) is obviously true. Let us suppose that for an integer n formula (6) holds.
Then using (2) we have

g(n+1)(t) =
d

dt

(

n
∑

k=1

{

n

k

}

f (k)(et)ekt

)

=
n
∑

k=1

{

n

k

}

(f (k+1)(et)e(k+1)t + kf (k)(et)ekt)

= f ′(et)et + f (n+1)(et)e(n+1)t

+
n
∑

k=2

(

k

{

n

k

}

+

{

n

k − 1

})

f (k)(et)ekt

=
n+1
∑

k=1

{

n + 1

k

}

f (k)(et)ekt,

which ends the proof of (6). Analogously, using (5), formula (7) can be shown.

Formulas (6), (7) are known and can be found, with proofs based on finite differences, in
the C. Jordan’s book [6, pp. 205–206]. The formulas are given, as exercises without proofs
and without direct referencing to [6], also in the L. Comtet’s book [2, Ex. 6, p. 157]. It is easy
to see that formula (6) holds, with the same proof, for complex variable t and a holomorphic
function f . Formula (7) holds for complex t, a branch of logarithm and a holomorphic
function f .

For example if f(x) = xm, g(t) = emt then using (6) we get

g(n)(t) =
n
∑

k=1

{

n

k

}

m(m − 1) · · · (m − k + 1)e(m−k)tekt. (8)

From the other side
g(n)(t) = mnemt, (9)

and comparing (8) with (9) we obtain the well-known generating function for the Stirling
numbers of the second kind

n
∑

k=1

{

n

k

}

(m)k = mn.

3 Addition formulas for Stirling numbers of the second

kind

Let us substitute f(x) = exp(x) in (6). We have

(eet

)(u+v) =
u+v
∑

k=1

{

u + v

k

}

eet

· ekt. (10)
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From the other side

(eet

)(u) =
u
∑

n=1

{

u

n

}

eet

· ent

and

(eet

)(u+v) = [(eet

)(u)](v) =
u
∑

n=1

{

u

n

}

(eet

· ent)(v)

=
u
∑

n=1

{

u

n

} v
∑

m=0

(

v

m

)

(
m
∑

i=0

{

m

i

}

eet

· eit) · nv−ment

=
u
∑

n=1

{

u

n

} v
∑

m=0

(

v

m

)

(
m
∑

i=0

{

m

i

}

eet

· e(i+n)tnv−m). (11)

Theorem 2. The following addition formula for the Stirling numbers of the second kind
holds.

{

u+v

k

}

=
k
∑

n=1

{

u

n

} v
∑

m=k−n

(

v

m

){

m

k − n

}

nv−m. (12)

Proof. Formula (12) follows by comparing the coefficients of eet

ekt in (10) and (11) for
i + n = k.

Denoting in (12) m = v − i, (i = 0, 1, 2, . . . , v − k + n) we have

{

u+v

k

}

=
k
∑

n=1

{

u

n

} v−k+n
∑

i=0

(

v

i

){

v − i

k − n

}

ni,

and then letting n = k − j, (j = 0, 1, 2, . . . , k − 1) we obtain

{

u+v

k

}

=
k−1
∑

j=0

v−j
∑

i=0

(

v

i

)

(k − j)i

{

v − i

j

}{

u

k − j

}

. (13)

Formula (4) follows easily from (13). To see this let us observe that the range of the variables
i, j in (13) can be changed to the same range as in (4) i.e., i, j = 0, 1, 2, . . . , v. This is allowed
because the number

{

u

k−j

}

is zero if j ≥ k and
{

v−i

j

}

equals zero for j > v− i i.e., if i+j > v.

We rearrange (13) into (4) using formulas (1), for the symbol
{

v−i

j

}

, respectively in the start
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and end of the following calculation:

{

u+v

k

}

=
v
∑

j=0

v
∑

i=0

(

v

i

)

(k − j)i

{

v − i

j

}{

u

k − j

}

=
v
∑

j=0

{

u

k − j

} v
∑

i=0

(

v

i

)

(k − j)i 1

j!

j
∑

l=0

(−1)j−l

(

j

l

)

lv−i

=
v
∑

j=0

{

u

k − j

}

1

j!

j
∑

l=0

(−1)j−l

(

j

l

) v
∑

i=0

(

v

i

)

(k − j)ilv−i

=
v
∑

j=0

{

u

k − j

}

1

j!

j
∑

l=0

(−1)j−l

(

j

l

)

(k − j + l)v

=
v
∑

j=0

{

u

k − j

}

1

j!

j
∑

l=0

(−1)j−l

(

j

l

) v
∑

i=0

(−1)v−i

(

v

i

)

ki(j − l)v−i

=
v
∑

j=0

{

u

k − j

} v
∑

i=0

(

v

i

)

ki(−1)v+i+j 1

j!

j
∑

l=0

(−1)l

(

j

l

)

(j − l)v−i

=
v
∑

j=0

v
∑

i=0

(

v

i

)

ki(−1)v+i+j

{

v − i

j

}{

u

k − j

}

.

4 Addition formulas for Stirling numbers of the first

kind

Let us substitute f(x) = log x in (7). We have (t > 1)

(log log t)(u+v) =
(−1)u+v+1

tu+v

u+v
∑

k=1

[

u + v

k

]

(k − 1)!

logk t
. (14)

From the other side

(log log t)(u) =
(−1)u+1

tu

u
∑

n=1

[

u

n

]

(n − 1)!

logn t
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and by using the Leibniz formula and formula (7) for g(t) = (log t)−n we get

(log log t)(u+v) = [(log log t)(u)](v)

= (−1)u+1

u
∑

n=1

[

u

n

]

(n − 1)!

(

1

logn t
·

1

tu

)(v)

= (−1)u+1

u
∑

n=1

(n − 1)!

[

u

n

] v
∑

m=1

(

v

m

)(

1

logn t

)(m)(
1

tu

)(v−m)

= (−1)u+1

u
∑

n=1

(n − 1)!

[

u

n

] v
∑

m=1

(

v

m

)

(−u)v−m

tu+v−m

×
1

tm

m
∑

i=0

(−1)m−i

[

m

i

]

(−n)i

(log t)n+i
. (15)

Theorem 3. The following addition formula for the Stirling numbers of the first kind holds.

[

u + v

k

]

=
v
∑

j=0

v
∑

i=0

(

v

i

)

u(i)

[

v − i

j

][

u

k − j

]

. (16)

Proof. By comparing the coefficients of (tu+v logk t)−1 in (14) and (15) for i+n = k, i = k−n

we get
[

u + v

k

]

(k − 1)! = (−1)v

k
∑

n=1

(n − 1)!

[

u

n

]

(−n)k−n

×
v
∑

m=k−n

(

v

m

)

(−u)v−m(−1)m−k+n

[

m

k − n

]

and then using the identities

(n − 1)!(−n)k−n

(k − 1)!
= (−1)k−n, (−u)v−m(−1)v−m = u(v−m)

we obtain the formula
[

u + v

k

]

=
k
∑

n=1

[

u

n

] v
∑

m=k−n

(

v

m

)

u(v−m)

[

m

k − n

]

. (17)

By the same manner as for the Stirling numbers of the second kind, formula (17) can be
rearranged to the form (16).

5 Generalized Euler polynomials

The generalized Euler polynomials Eµ
n(z) of degree n = 0, 1, 2, . . ., complex order µ and

complex argument z (see Nörlund [8]) can be defined by the generating function

∞
∑

n=0

Eµ
n(z)

n!
wn =

2µewz

(ew + 1)µ
, |w| < π.
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The generalized Euler polynomials play an important role in the calculus of finite differences.
We will show, in a very easy way, an explicit formula for the Euler polynomial Eµ

n(z). By
(6) we get

dm

dwm

1

(ew + 1)µ
=

m
∑

k=1

{

m

k

}

(−µ)k

ekw

(ew + 1)µ+k

and then by the Leibniz formula

dn

dwn

2µewz

(ew + 1)µ
= 2µ

(

znewz

(ew + 1)µ
+

n
∑

m=1

(

n

m

) m
∑

k=1

{

m

k

}

(−µ)k

ekwewzzn−m

(ew + 1)µ+k

)

.

Thus

Eµ
n(z) =

dn

dwn

2µewz

(ew + 1)µ

∣

∣

∣

∣

w=0

= zn +
n
∑

m=1

(

n

m

)

zn−m

m
∑

k=1

{

m

k

}

(−µ)k

2k
. (18)

Another approach to formula (18) is presented by Howard [5]. Putting in (18) z = 0 we
obtain the following explicit formula (see Todorov [12]) for the generalized Euler number Eµ

n

Eµ
n = Eµ

n(0) =
n
∑

k=1

{

n

k

}

(−µ)k

2k
. (19)

Luo [7] deals with the Apostol–Euler polynomials, which are a further generalization of
the polynomials {Eµ

n(z)}. Formula (19) coincides, as a particular case, with formula (32) of
this paper.

6 Generalized Bernoulli polynomials

The generalized Bernoulli polynomials Bµ
n(z) of degree n = 0, 1, 2, . . ., complex order µ and

complex argument z (see Nörlund [8] ) can be defined by the generating function

∞
∑

n=0

Bµ
n(z)

n!
wn =

wµewz

(ew − 1)µ
, |w| < 2π.

We will show that by applying formula (6) one can obtain explicit formulas for the polyno-
mials and then for the generalized Bernoulli numbers Bµ

n = Bµ
n(0). Our approach can be

seen as consistent with the spirit of the paper of Gould [3].
Using (6) and the Leibniz formula we get successively

dj

dwj

1

(ew − 1)µ
=

j
∑

k=0

{

j

k

}

(−µ)k

ekw

(ew − 1)µ+k
,

dm

dwm

wµ

(ew − 1)µ
=

m
∑

j=0

(

m

j

) j
∑

k=0

{

j

k

}

(−µ)ke
kw

(ew − 1)µ+k
(µ)m−jw

µ−m+j (20)
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and
dn

dwn

wµewz

(ew − 1)µ
=

wµznewz

(ew − 1)µ
+

n
∑

m=1

(

n

m

)(

dm

dwm

wµ

(ew − 1)µ

)

zn−mewz. (21)

Rewriting the right hand side of (20) into the form

wµ+m

(ew − 1)µ+m

(

1

w2m

m
∑

j=0

(

m

j

)

(µ)m−j

j
∑

k=0

{

j

k

}

(−µ)ke
kw(ew − 1)m−kwj

)

,

using (3) in the expression

wjekw(ew − 1)m−k = wj(ew − 1)m ekw

(ew − 1)k
= wj(ew − 1)m

(

1+
1

ew−1

)k

= wj(ew − 1)m

k
∑

l=0

(

k

l

)

1

(ew − 1)l
= wj

k
∑

l=0

(

k

l

)

(ew − 1)m−l

= wj

k
∑

l=0

(

k

l

) ∞
∑

i=m−l

(m − l)!

{

i

m − l

}

wi

i!
,

and grouping terms of power w2m we get

lim
w→0

dm

dwm

wµ

(ew − 1)µ
=

m
∑

j=0

(

m

j

)

(µ)m−j

j
∑

k=0

{

j

k

}

(−µ)k

×
k
∑

l=0

(

k

l

){

2m − j

m − l

}

(m − l)!

(2m − j)!
.

Thus by (21) we obtain the following explicit formula for the generalized Bernoulli polyno-
mials

Bµ
n(z) =

dn

dwn

wµewz

(ew − 1)µ
|w=0 = zn +

n
∑

m=1

(

n

m

)

zn−m

m
∑

j=0

(

m

j

)

(µ)m−j

×

j
∑

k=0

{

j

k

}

(−µ)k

k
∑

l=0

(

k

l

){

2m − j

m − l

}

(m − l)!

(2m − j)!
. (22)

Comparing it with the formula given by Srivastava and Todorov [11, Eq. (3), p. 510], we
see that formula (22) does not involve any hypergeometric function.

In particular, for µ = 1 we obtain the common Bernoulli polynomials

Bn(z) = zn −
1

2
zn−1 +

n
∑

m=2

(

n

m

)

zn−m

×

(

m

m−1
∑

k=1

{

m − 1

k

}

(−1)kk!
k
∑

l=0

(

k

l

){

m + 1

m − l

}

(m − l)!

(m + 1)!

+
m
∑

k=1

{

m

k

}

(−1)kk!
k
∑

l=0

(

k

l

){

m

m − l

}

(m − l)!

m!

)
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and putting z = 0, the common Bernoulli numbers

Bn = n

n−1
∑

k=1

{

n − 1

k

}

(−1)kk!
k
∑

l=0

(

k

l

){

n + 1

n − l

}

(n − l)!

(n + 1)!

+
n
∑

k=1

{

n

k

}

(−1)kk!
k
∑

l=0

(

k

l

){

n

n − l

}

(n − l)!

n!
. (23)

Applying, to the expression (23), the two identities

k
∑

l=0

(

k

l

){

n + 1

n − l

}

(n − l)! =
n−k
∑

j=0

(

n − k

j

)

(−1)j(n − j)n+1,

k
∑

l=0

(

k

l

){

n

n − l

}

(n − l)! =
n−k
∑

j=0

(

n − k

j

)

(−1)j(n − j)n,

and then the next two

n−1
∑

k=1

{

n−1

k

}

(−1)kk!

(

n−k

j

)

= (−1)j+n+1

j
∑

k=0

(

n+1

k

)

(−1)k(j+1−k)n−1,

n
∑

k=1

{

n

k

}

(−1)kk!

(

n − k

j

)

= (−1)j+n

j
∑

k=0

(

n + 1

k

)

(−1)k(j + 1 − k)n

= (−1)j+n

〈

n

j

〉

,

where
〈

n

j

〉

are Eulerian numbers (see [4], and A008292 in [10]), we obtain the following

formula for the nth Bernoulli number

Bn =
(−1)n

(n + 1)!

[

n

n−1
∑

j=0

(n − j)n+1

j
∑

k=0

(−1)k+1

(

n + 1

k

)

(j + 1 − k)n−1

+(n + 1)
n−1
∑

j=0

(n − j)n

〈

n

j

〉

]

.

7 Bell polynomials

The Bell polynomials Bn(z) can be defined by the generating function (see Bell [1])

∞
∑

n=0

Bn(z)

n!
wn = e(ew

−1)z. (24)

9

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A008292


Using (6) we compute the nth derivative of the right hand side of (24)

dn

dwn
e(ew

−1)z =
n
∑

k=1

{

n

k

}

e(ew
−1)zekwzk. (25)

The well known explicit formula for Bn(z)

Bn(z) =
n
∑

k=1

{

n

k

}

zk,

follows immediately from (25) by putting w = 0.
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