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Abstract

We give combinatorial-type formulae for the bi-unitary analogues of Euler’s arith-

metical function and the gcd-sum function and prove asymptotic formulae for the latter

one and for another related function.

1 Introduction

Euler’s arithmetical function and the gcd-sum function (or Pillai’s function) are defined by

φ(n) := #{k ∈ N : 1 ≤ k ≤ n, gcd(k, n) = 1} (1)

and

P (n) :=
n
∑

k=1

gcd(k, n), (2)

respectively. The function P was investigated in recent papers of this journal; it is sequence
A018804 in Sloane’s On-Line Encyclopedia of Integer Sequences. A direct connection be-
tween these two functions is given by

P (n) =
∑

d|n

dφ(n/d). (3)
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Let n be a positive integer. Recall that a positive integer d is said to be a unitary divisor

of n if d | n and gcd(d, n/d) = 1, and we write d || n. Let (k, n)∗ := max{d ∈ N : d | k, d || n},
and consider the function φ∗ (A047994) defined by

φ∗(n) := #{k ∈ N : 1 ≤ k ≤ n, (k, n)∗ = 1}, (4)

which is multiplicative and φ∗(pν) = pν − 1 for every prime power pν (ν ≥ 1). Also,

φ∗(n) =
∑

d||n

dµ∗(n/d),
∑

d||n

φ∗(d) = n, (5)

where µ∗(n) = (−1)ω(n), where ω(n) is the number of distinct prime factors of n. Various
properties of the function φ∗ were investigated by several authors, cf. [1, 6, 9, 11, 12, 13, 14].

Furthermore, consider the gcd-sum type function given by

P ∗(n) :=
n
∑

k=1

(k, n)∗, (6)

which was introduced in our paper [17]; also see [18, 19]. The function P ∗ (A145388) is also
multiplicative; we have P ∗(pν) = 2pν − 1 for every prime power pν (ν ≥ 1) and

P ∗(n) =
∑

d||n

dφ∗(n/d). (7)

The functions φ∗ and P ∗ defined by (4) and (6) are called the unitary Euler function and
unitary gcd-sum function (or unitary Pillai function), respectively. Many of their properties
are analogous to the functions φ and P . Note that µ∗ is the unitary analogue of the Möbius
function µ.

A natural question is the following: Why do we not consider the greatest common unitary
divisor of k and n when defining these functions? The answer is, because if we do so, the
resulting functions are not multiplicative, and their properties are not so close to those of
Euler’s function (1) and of the gcd-function (2), as it turns out from the results of the present
paper.

Let (k, n)∗∗ = max{d ∈ N : d || k, d || n} stand for the greatest common unitary divisor
of k and n. The function

φ∗∗(n) := #{k ∈ N : 1 ≤ k ≤ n, (k, n)∗∗ = 1}, (8)

called the bi-unitary Euler function, was introduced by Subbarao and Suryanarayana in
1971, cf. [16] and [2]. We have

φ∗∗(n) =
∑

d||n

µ∗(d)φ(n/d, d), (9)

where φ(x, n) := #{k ∈ N : 1 ≤ k ≤ x, gcd(k, n) = 1} is the Legendre function. Note that
φ(n, n) = φ(n).
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Here (k, n)∗∗ ≤ (k, n)∗ ≤ (k, n) for every k, n ≥ 1, and hence

φ(n) ≤ φ∗(n) ≤ φ∗∗(n). (10)

The average order of φ∗∗ is given by

∑

n≤x

φ∗∗(n) =
Ax2

2
+ O(x log2 x), (11)

where

A :=
∏

p

(

1 −
p − 1

p2(p + 1)

)

= ζ(2)
∏

p

(

1 −
2

p2
+

2

p3
−

1

p4

)

, (12)

the products being over the primes and ζ denoting the Riemann zeta function; see [16,
Corollary 3.6.2]. Here A ≈ 0.8073, this value is the asymptotic density of ordered pairs
(m,n) ∈ N

2 such that (m,n)∗∗ = 1, i.e., there is no prime power pν appearing in the prime
factorizations of both m and n; see [16, Corollary 3.6.3], [20, Theorems 2.2, 2.3].

Now let

P ∗∗(n) :=
n
∑

k=1

(k, n)∗∗ (13)

be the bi-unitary gcd-sum function, introduced recently by Haukkanen [4]. It is known (see
[4, Corollary 3.1]) that

P ∗∗(n) =
∑

d||n

φ∗(d)φ(n/d, d). (14)

Note that for every n ≥ 1,

P ∗∗(n) ≤ P ∗(n) ≤ P (n). (15)

Haukkanen [4] considered also the function

P ∗∗
f (n) :=

n
∑

k=1

f((k, n)∗∗), (16)

and showed that for any arithmetical function f ,

P ∗∗
f (n) =

∑

d||n

(f × µ∗)(d)φ(n/d, d), (17)

where × stands for the unitary convolution. The unitary convolution of the functions f and
g is given by

(f × g)(n) =
∑

d||n

f(d)g(n/d). (18)

For the properties of convolution (18) and for background material on arithmetical func-
tions involving unitary divisors we refer to the book [9].
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Furthermore, let S∗∗ denote the function given by (16) in case f(n) = τ(n), the number
of divisors of n, i.e.,

S∗∗(n) =
n
∑

k=1

τ((k, n)∗∗). (19)

It is the aim of this paper to give combinatorial-type formulae for φ∗(n), φ∗∗(n), P ∗∗(n),
S∗∗(n) and to investigate the average orders of the functions P ∗∗ and S∗∗.

2 Combinatorial-type formulae

Let φ∗(x, n) = #{k ∈ N : 1 ≤ k ≤ x, (k, n)∗ = 1} be the unitary Legendre function,
considered by Haukkanen [3], and let φ∗∗(x, n) = #{k ∈ N : 1 ≤ k ≤ x, (k, n)∗∗ = 1} stand
for the bi-unitary Legendre function, investigated in [16]. Observe that φ∗(n, n) = φ∗(n) and
φ∗∗(n, n) = φ∗∗(n).

Let n = pν1

1 · · · pνr
r > 1 be a fixed integer and let A = An = {1, . . . , r}, r = ω(n).

We give explicit formulae for the values φ(x, n), φ∗(x, n) and φ∗∗(x, n) which are of
combinatorial type and do not involve the Möbius function µ, its unitary analogue µ∗ or
other similar arithmetical functions.

In the following formulae ⌊y⌋ stands for the largest integer less than or equal to y (floor
function) and we use the convention that the empty products are equal to 1.

Theorem 1.

φ(x, n) =
∑

B⊆A

(−1)#B

⌊

x
∏

j∈B

p−1
j

⌋

, (20)

φ∗(x, n) =
∑

B⊆A

(−1)#B

⌊

x
∏

j∈B

p
−νj

j

⌋

, (21)

φ∗∗(x, n) =
∑

B⊆A

(−1)#B
∑

C⊆B

(−1)#C

⌊

x
∏

j∈B

p
−νj

j

∏

j∈C

p−1
j

⌋

. (22)

Proof. It is well known that φ(x, n) =
∑

d|n µ(d)⌊x/d⌋. We give its proof for the sake of

completeness and in order to compare it with the following proofs. Using that d | gcd(k, n)
iff d | k, d | n,

φ(x, n) =
∑

k≤x

∑

d|gcd(k,n)

µ(d) =
∑

k≤x

∑

d|k
d|n

µ(d) =
∑

d|n

µ(d)
∑

k≤x
d|k

1 =
∑

d|n

µ(d)⌊x/d⌋.

Now let d = pβ1

1 · · · pβr
r stand for a square-free divisor of n, i.e., βj = 1 or 0 for every j,

and let B be the set of those j for which βj = 1 and we obtain (20) by the definition of the
Möbius function.

For the proof of (21) we use that d || (k, n)∗ iff d | k, d || n and have

φ∗(x, n) =
∑

k≤x

∑

d||(k,n)∗

µ∗(d) =
∑

k≤x

∑

d|k
d||n

µ∗(d) =
∑

d||n

µ∗(d)
∑

k≤x
d|k

1 =
∑

d||n

µ∗(d)⌊x/d⌋.
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Now let d = pγ1

1 · · · pγr
r be a unitary divisor of n, i.e., γj = νj or 0 for every j, and let B

be the set of those j for which γj = νj and we obtain the formula (21).
For the proof of (22) we apply that d || (k, n)∗∗ iff d || k, d || n and obtain

φ∗∗(x, n) =
∑

k≤x

∑

d||(k,n)∗∗

µ∗(d) =
∑

k≤x

∑

d||k
d||n

µ∗(d) =
∑

d||n

µ∗(d)
∑

k≤x
d|k

gcd(d,k/d)=1

1

=
∑

d||n

µ∗(d)φ(x/d, d) =
∑

d||n

µ∗(d)
∑

e|d

µ(e)⌊x/(de)⌋.

Let d = pγ1

1 · · · pγr
r be a unitary divisor of n i.e., γj = νj or 0 for every j, and let B be

the set of those j for which γj = νj. Furthermore, let e = pη1

1 · · · pηr
r be a square-free divisor

of d, where ηk = 1 or 0 for every k and let C be the set of those k for which ηk = 1, where
C ⊆ B.

Corollary 1.

φ∗∗(n) =
∑

B⊆A

(−1)#B
∑

C⊆B

(−1)#C









∏

j∈A\B

p
νj

j

∏

j∈C

p−1
j







 . (23)

This is obtained from (22) for x = n. If r = 1, then we deduce that φ∗∗(pν1

1 ) = pν1

1 − 1 =
φ∗(pν1

1 ), which can be seen directly from the definition (8). For r = 2 we obtain

φ∗∗(pν1

1 pν2

2 ) = (pν1

1 −1)(pν2

2 −1)+
⌊

pν1

1 p−1
2

⌋

+
⌊

pν2

2 p−1
1

⌋

= φ∗(pν1

1 pν2

2 )+
⌊

pν1

1 p−1
2

⌋

+
⌊

pν2

2 p−1
1

⌋

, (24)

therefore the function φ∗∗ is not multiplicative.
For P ∗∗(n) and S∗∗(n) we have the following formulae. First note that τ ×µ∗ = β, where

β(n) is the number of square-full divisors of n (A005361), β is multiplicative and β(pν) = ν
for any prime power pν (ν ≥ 1). Therefore we have from (17),

S∗∗(n) =
∑

d||n

β(d)φ(n/d, d). (25)

Theorem 2.

P ∗∗(n) =
∑

B⊆A





∑

D⊆B

(−1)#D
∏

j∈B\D

p
νj

j









∑

C⊆B

(−1)#C









∏

j∈A\B

p
νj

j

∏

j∈C

p−1
j











 , (26)

S∗∗(n) =
∑

B⊆A

(

∏

j∈B

νj

)

∑

C⊆B

(−1)#C









∏

j∈A\B

p
νj

j

∏

j∈C

p−1
j







 . (27)

Proof. From (14) and (5) we obtain

P ∗∗(n) =
∑

d||n

φ∗(d)φ(n/d, d) =
∑

d||n





∑

e||d

µ∗(e)
d

e









∑

δ|d

µ(δ)⌊n/(dδ)⌋



 ,
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and use similar arguments as in Theorem 1. To obtain (27) use (25).
For r = 1 we deduce from (26) that P ∗∗(pν1

1 ) = 2pν1

1 − 1 = P ∗(pν1

1 ), which can be seen
also directly from the definitions. For r = 2 we obtain

P ∗∗(pν1

1 pν2

2 ) = (2pν1

1 − 1) (2pν2

2 − 1) − (pν1

1 − 1)
⌊

pν2

2 p−1
1

⌋

− (pν2

2 − 1)
⌊

pν1

1 p−1
2

⌋

= P ∗(pν1

1 pν2

2 ) − (pν1

1 − 1)
⌊

pν2

2 p−1
1

⌋

− (pν2

2 − 1)
⌊

pν1

1 p−1
2

⌋

.

Also, for r = 1 we have from (27), S∗∗(pν1

1 ) = pν1

1 + ν1. For r = 2 we obtain

S∗∗(pν1

1 pν2

2 ) = (pν1

1 + ν1)(p
ν2

2 + ν2) − ν1

⌊

pν2

2 p−1
1

⌋

− ν2

⌊

pν1

1 p−1
2

⌋

= S∗∗(pν1

1 pν2

2 ) − ν1

⌊

pν2

2 p−1
1

⌋

− ν2

⌊

pν1

1 p−1
2

⌋

.

Therefore the functions P ∗∗ and S∗∗ are not multiplicative.

3 The average order of P ∗∗

We show that

Theorem 3.
∑

n≤x

P ∗∗(n) =
1

2
Bx2 log x + O(x2), (28)

where

B :=
∏

p

(

1 −
3p − 1

p2(p + 1)

)

= ζ(2)
∏

p

(

1 −
(2p − 1)2

p4

)

≈ 0.35823. (29)

Proof. We will use the fact that for any real numbers s ≥ 0 and 0 ≤ ε < 1,

∑

n≤x
gcd(n,k)=1

ns =
xs+1φ(k)

(s + 1)k
+ O(xs min(xεσ−ε(k), 2ω(k))), (30)

this estimate being uniform for x and k, where σ−ε(k) is the sum of ε-th powers of the
reciprocals of divisors of k. A similar treatment was applied also in [17]. We have by (14),
and by (30) applied for s = 0 and s = 1, respectively,

∑

n≤x

P ∗∗(n) =
∑

de≤x
gcd(d,e)=1

φ∗(d)φ(e, d) =
∑

de≤x
gcd(d,e)=1

φ∗(d)

(

eφ(d)

d
+ O (eεσ−ε(d))

)

=
∑

d≤x

φ(d)φ∗(d)

d

∑

e≤x/d
gcd(e,d)=1

e + O





∑

d≤x

φ∗(d)σ−ε(d)
∑

e≤x/d

eε




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=
∑

d≤x

φ(d)φ∗(d)

d

(

x2φ(d)

2d3
+ O

(

(x/d)ε+1σ−ε(d)
)

)

+ O

(

∑

d≤x

dσ−ε(d)(x/d)ε+1

)

=
x2

2

∑

d≤x

φ2(d)φ∗(d)

d4
+ O

(

xε+1
∑

d≤x

σ−ε(d)

dε

)

,

where the error term is O(xε+1 · x1−ε) = O(x2), cf. [17, Lemma 2.2].
Now let Ek(n) = nk and φ2φ∗ = f ∗ E3 in terms of the Dirichlet convolution. Thus f =

φ2φ∗ ∗µE3. Here f is multiplicative and direct computations show that f(p) = −3p2 +3p−1
and f(pν) = p2ν+1(1−1/p)3 for every prime p and every ν ≥ 2. We obtain that the Dirichlet
series

∞
∑

n=1

f(n)

ns

is absolutely convergent for Re s > 3 and by φ2φ∗/E4 = f/E4 ∗ E−1,

∑

n≤x

φ2(n)φ∗(n)

n4
=
∑

d≤x

f(d)

d4

∑

e≤x/d

1

e
=
∑

d≤x

f(d)

d4
(log(x/d) + O(1))

= log x

∞
∑

d=1

f(d)

d4
+ O

(

log x
∑

d>x

|f(d)|

d4

)

+ O

(

∑

d≤x

|f(d)| log d

d4

)

= B log x + O(1),

therefore
∑

n≤x

φ2(n)φ∗(n)

n4
= B log x + O(1), (31)

by the Euler product formula. This completes the proof.

Remark 1. The asymptotic formula (31) can be obtained by using known theorems on
mean values of certain multiplicative functions. The following useful theorem, which is a
particular case of a more general result, has been proved in [7] using Iwaniec’s ideas.

Theorem [7, Proposition A.3]. Let f be any nonnegative multiplicative function such that

f(n) ≪ nα for some α < 1/2 and satisfying

∑

p≤x

f(p) log p

p
= κ log x + Of (1) (x ≥ 2),

where κ = κf > 0. Then we have uniformly for all x ≥ 2,

∑

n≤x

f(n)

n
= Mf,κ(log x)κ + Of ((log x)κ−1), (32)

where

Mf,κ :=
1

Γ(κ + 1)

∏

p

(

1 −
1

p

)κ
(

1 +
∞
∑

ν=1

f(pν)

pν

)

.

Now (31) follows at once by applying (32) to f(n) = φ2(n)φ∗(n)
n3 with κ = 1 and noticing

that f(p) = (1 − 1/p)3 = 1 + O(1/p).
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4 The average order of S∗∗

For the function S∗∗ we have

Theorem 4.
∑

n≤x

S∗∗(n) =
1

2
Cx2 + O(x log2 x), (33)

where

C :=
∏

p

(

1 +
1

(p + 1)2

)

= ζ2(2)
∏

p

(

1 −
1

p2
−

2

p3
+

2

p4

)

≈ 1.266558. (34)

Proof. Similar to the proof of Theorem 3, here it is enough to apply (30) for ε = 0. From
(25) we obtain

∑

n≤x

S∗∗(n) =
∑

de≤x
(d,e)=1

β(d)φ(e, d) =
∑

de≤x
(d,e)=1

β(d)

(

eφ(d)

d
+ O

(

2ω(d)
)

)

=
∑

d≤x

φ(d)β(d)

d

∑

e≤x/d
(e,d)=1

e + O

(

∑

de≤x

β(d)2ω(d)

)

=
∑

d≤x

φ(d)β(d)

d

(

x2φ(d)

2d3
+ O

(

(x/d)2ω(d)
)

)

+ O

(

x
∑

d≤x

β(d)2ω(d)

d

)

=
x2

2

∞
∑

d=1

β(d)φ2(d)

d4
+ O

(

x2
∑

d>x

β(d)

d2

)

+ O

(

x
∑

d≤x

β(d)2ω(d)

d

)

. (35)

We need here the estimate
∑

n≤x β(n) ≪ x. The function β is multiplicative and increas-
ing on prime powers, i.e., β(pν) = ν > ν − 1 = β(pν−1) for every prime p and every ν ≥ 1.
It follows by well known results on sums of multiplicative functions, that

∑

n≤x

β(n) ≤ x
∏

p≤x

(

1 −
1

p

) ∞
∑

ν=0

β(pν)

pν
,

cf. for ex. [5, p. 23], and obtain that

∑

n≤x

β(n) ≤ x
∏

p≤x

(

1 −
1

p

)

(

1 +
∞
∑

ν=1

ν

pν

)

= x
∏

p≤x

(

1 +
1

p(p − 1)

)

≪ x.

By partial summation we obtain

∑

d>x

β(d)

d2
= −

1

x2

∑

d≤x

β(d) + 2

∫ ∞

x

(

∑

d≤t

β(d)

)

dt

t3
≪

1

x
,
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therefore the first O-term in (35) is O(x). The second O-term in (35) is O(x log2 x). This
follows from the estimate

∑

d≤x

β(d)2ω(d)

d
≤
∏

p≤x

(

1 +
∞
∑

ν=1

β(pν)2ω(pν)

pν

)

=
∏

p≤x

(

1 +
2

p − 1
+

2

(p − 1)2

)

≪ log2 x,

by using Mertens’ theorem.
The given representations of C follow by the Euler product formula. For the numerical

value of C consult [8, item 56].

Remark 2. It is known that
∑

n≤x β(n) ∼ cx, where c = ζ(2)ζ(3)/ζ(6), which can be
obtained using the representation β(n) =

∑

de=n

∑

a2b3=d µ2(b). For an asymptotic formula
with remainder term for β(n), see [15].
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