Journal of Integer Sequences, Vol. 13 (2010), Article 10.4.8

Semihappy Numbers


H. G. Grundman
Department of Mathematics
Bryn Mawr College
Bryn Mawr, PA 19010
USA

Abstract:

We generalize the concept of happy number as follows. Let $ {\mathbf e}= (e_0,e_1,....)$ be a sequence with $ e_0 = 2$ and $ e_i = \{1,2\}$ for $ i > 0$. Define $ S_{{\mbox{\scriptsize $\mathbf e$}}}:{{\mathbb{Z}}}^+ \rightarrow {{\mathbb{Z}}}^+$ by

$\displaystyle S_{{\mbox{\scriptsize$\mathbf e$}}}\left(\sum_{i=0}^n a_i 10^i \right) = \sum_{i=0}^n a_i^{e_i}.$

If $ S_{{\mbox{\scriptsize $\mathbf e$}}}^k(a) = 1$ for some $ k \in {{\mathbb{Z}}}^+$, then we say that $ a$ is a semihappy number or, more precisely, an $ {\mathbf e}$-semihappy number. In this paper, we determine fixed points and cycles of the functions $ S_{{\mbox{\scriptsize $\mathbf e$}}}$ and discuss heights of semihappy numbers. We also prove that for each choice of $ {\mathbf e}$, there exist arbitrarily long finite sequences of consecutive $ {\mathbf e}$-semihappy numbers.


Full version:  pdf,    dvi,    ps,    latex    


(Concerned with sequence A007770.)


Received April 7 2010; revised version received April 12 2010. Published in Journal of Integer Sequences, April 15 2010.


Return to Journal of Integer Sequences home page