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Abstract

In a previous paper, we showed that 35241-avoiding permutations are counted by
the unique sequence that starts with a 1 and shifts left under the self-composition
transform. The proof uses a complicated bijection. Here we give a much simpler proof
based on Lagrange inversion.

1 Introduction

A permutation avoids the barred pattern 35241 [1] when the (not necessarily consecutive)
pattern 3241 occurs only as part of a 35241 pattern. The composition of two sequences
(an)n≥1 and (bn)n≥1 is defined by composition of their (ordinary) generating functions. A
sequence is unital if its first term is 1. There is a unique unital sequence (bn)n≥1 whose
composition with itself is equal to its left shift, (b2, b3, . . .), the so-called left-shift eigense-
quence for self-composition. This sequence begins (bn)n≥1 = (1, 1, 2, 6, 23, 104, 531, . . .). In a
previous paper [1], we showed that the counting sequence for 35241-avoiding permutations
is this sequence indexed from 0. More precisely, with Sn(τ) denoting the set of permutations
of [n] that avoid the pattern τ , we established

Theorem 1. The sequence (an)n≥1 defined by a1 = 1 and, for n ≥ 1, an+1 = |Sn(35241) |
is the left-shift eigensequence for self-composition.
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The proof used a rather complicated bijection. Our objective here is to simplify the proof
using Lagrange inversion. We start with the characterization of 35241-avoiding permutations
given in [1], and recall some notation. Every permutation π on [n], considered as a list (or
word), has the form π = m1L1m2L2 . . . mrLr where m1 < m2 < . . . < mr = n are the
left-to-right maxima of π (LRmax for short) and the Li are the intervening words. We call
m1L1 /m2L2 / . . . /mrLr the LRmax decomposition of π.

Theorem 2. [1, Theorem 1] A permutation π on [n] is 35241-avoiding if and only if its

LRmax decomposition satisfies

( i ) L1 < L2 < . . . < Lr in the sense that u ∈ Li, v ∈ Lj with i < j implies u < v, and

(ii ) each Li is 35241-avoiding.

2 The revert-reciprocal transform

Let us define a transform on sequences, (an)n≥1 → (bn)n≥1, using generating functions, by

A(x) → B(x) :=

(

x

1 + A(x)

)〈−1〉

,

where 〈−1〉 denotes compositional inverse. We shall call it the revert-reciprocal transform.
The Lagrange inversion formula [2, Theorem 5.4.2, p. 38] is just the ticket to find an explicit
form for the entries of the transformed sequence—we find that b1 = 1 and for n ≥ 1,

bn+1 =
1

n + 1

∑

1r1 ... nrn⊢n

(

n + 1

n + 1 − Pn
i=1ri, r1, . . . , rn

)

ar1

1 ar2

2 . . . arn

n ,

where the sum is over all partitions 1r1 . . . nrn of n, written in frequency-count form. Thus
the unique fixed point (an)n≥1 for the revert-reciprocal transform is defined by a1 = 1 and
for n ≥ 1,

an+1 =
1

n + 1

∑

1r1 ... nrn⊢n

(

n + 1

n + 1 − Pn
i=1ri, r1, . . . , rn

)

ar1

1 ar2

2 . . . arn

n . (1)

Proposition 3. The fixed point for revert-reciprocal coincides with the left-shift eigense-

quence for self-composition.

Proof. With B(x) :=
(

x
1+A(x)

)〈−1〉
, the revert-reciprocal transform of A(x), we have

B(x) = A(x) ⇔

A(x)

1 + A(A(x))
= x ⇔

A(A(x)) =
A(x) − x

x ,

which is the defining relation for the left-shift eigensequence for self-composition.
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3 Permutations and trees

We consider a permutation as a word of distinct letters from the alphabet of positive integers.
A cycle is a permutation in which the largest entry occurs first. A standard permutation is
one on an initial segment of the positive integers. To standardize a permutation means to
replace its smallest entry by 1, second smallest by 2, and so on. A cycle-labeled ordered tree
is an ordered tree in which, for each non-leaf vertex v, the child edges of v are labeled, left
to right, with the entries of a standard cycle.

Theorem 4. Permutations on [n] satisfying condition (i ) of Theorem 2 are in bijective

correspondence with cycle-labeled ordered trees on n edges.

Proof. In the LRmax decomposition, m1L1 / m2L2 / . . . / mrLr, of a permutation π on [n],
set ai = length of miLi and bi = mi −mi−1 for 1 ≤ i ≤ r, with m0 := 0. Now create ar edges
from the root labeled with the entries of mrLr from left to right. Then, at the br-th leaf,
place ar−1 edges labeled with mr−1Lr−1. Proceed to place ar−2 edges labeled with mr−2Lr−2

in the current tree at leaf number br−1 starting from the newly created leaf in the current

tree as leaf number 1, and so on. (This means that at the k-th step, when ar−k edges are
inserted at a leaf in the current tree, precisely

∑k

i=1(br−i+1 − 1) = n−mr−k − k leaves in the
current tree will precede the insertion leaf.)

The result for π = 3 1 2 / 5 4 / 11 7 6 8 / 12 / 14 13 10 9 is shown on the left in Figure 1
below.
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Figure 1

Next, for each non-leaf vertex, erase the label on its leftmost child edge (a LRmax entry),
standardize the permutation labeling the remaining child edges, and relabel the leftmost child
edge with the outdegree of the vertex, thereby obtaining a standard cycle as the labeling
on the child edges of the vertex. The result is shown on the right in Figure 1 above with
leftmost child edge labels in red.

The LRmax entries are encoded in the cycle-labeled tree by the locations of the non-
leaf vertices, and so can be recovered. The leftmost child edge labels on non-leaf vertices
taken in preorder (aka clockwise walkaround order) give the lengths of the miLi segments
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in reverse order. Since we know the LRmax entries, the support sets of the Li’s can then
be determined. Finally, the permutations labeling the child edges of the non-leaf vertices
(ignoring the label on the leftmost edge) determine the actual words Li from their support
sets.

4 The coup de grâce

The number of ordered trees on n edges (hence, n + 1 vertices) with outdegree sequence
(ri)

n
i=0—ri is the number of vertices with i children—is [2, Theorem 5.3.10, p. 34]

1

n + 1

(

n + 1

r0, r1, . . . , rn

)

.

Necessarily,
∑n

i=0 ri = n + 1, the number of vertices, and
∑n

i=0 iri = n, the number of
edges. Under the correspondence of Theorem 4, Theorem 2 (ii) says that 35241-avoiding
permutations on [n] correspond to cycle-labeled trees with n edges in which each cycle (or,
equivalently, each cycle without its first entry) is 35241-avoiding.

Consequently, by counting cycle-labeled trees in which the label lists associated with the
vertices are 35241-avoiding permutations, we find, letting an denote the number of 35241-
avoiding permutations on [n − 1], that

an+1 =
1

n + 1

∑

1r1 ... nrn⊢n

(

n + 1

n + 1 −
Pn

i=1ri, r1, . . . , rn

)

ar1

1 ar2

2 . . . arn

n .

But this is precisely the relation (1) that defines the fixed point sequence for revert-reciprocal
and so, since this fixed point coincides with the left-shift eigensequence for self-composition
by Proposition 3, Theorem 1 is established.

5 Concluding remarks

The revert-reciprocal transform as defined in Section 2 is convenient for our purposes. But
the transform always starts with a 1. If we redefine the revert-reciprocal transform to delete
this 1,

A(x) → B(x) :=

( x
1 + A(x)

)〈−1〉
− 1

x
,

then it becomes an invertible transform from sequences (an)n≥1 to (bn)n≥1 and, with this
modified definition of revert-reciprocal, Proposition 3 has the form

The (unique) left-shift eigensequences for the transforms revert-reciprocal and self-composition

coincide.

The two transforms, however, are quite different: the only sequence on which they agree is
this left-shift eigensequence. Self-composition is not quite invertible, but it is invertible on
the set of real sequences with positive first entry, {(an)n≥1 : a1 > 0}.
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