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Abstract

The paper gives a unified treatment of the summation of certain iterated series of
the form

∑∞
n=1

∑∞
m=1 an+m, where (an)n∈N is a sequence of real numbers. We prove

that, under certain conditions, the double iterated series equals the difference of two
single series.

1 Introduction

The goal of this paper is to provide a unified treatment of the summation of a special class
of double series that have appeared recently. Below, we collect some problems that led to
the motivation of this article.

Problem 1 ([6]) Find the sum

∞∑

n=1

∞∑

m=1

(−1)n+m

(
⌊
√

n + m⌋
)3 ,

where ⌊a⌋ denotes the greatest integer less than or equal to a.
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Problem 2 ([5]) Find
∞∑

n=1

∞∑

m=1

(−1)n+m

n + m
. (1)

Problem 3 ([4]) Compute the sum

∞∑

n=0

∞∑

m=1

(−1)n+m ln(n + m)

n + m
. (2)

Problem 4 ([7]) Find
∞∑

n=1

∞∑

m=1

(−1)n+m Hn+m

n + m
, (3)

where Hn denotes the nth harmonic number.

Although the problems can be solved by various techniques, in this paper we give a
general method for summing the iterated series

∞∑

n=1

∞∑

m=1

an+m, (4)

where (an)n∈N is a sequence of real numbers, and we show that, under certain conditions,
the double iterated series equals the difference of two single series. The organization of the
paper is as follows: in Section 2 we give the first two main results of the paper, which are
about the evaluation of the double iterated series (4), and in Section 3 we give the closed
form evaluation of multiple series of the form

∑∞

n1=1 · · ·
∑∞

nk=1 an1+n2+···+nk
.

2 Double iterated series

The first main result of this section is the following theorem.

Theorem 1. Suppose that both series

∞∑

k=1

ak and
∞∑

k=1

kak (5)

converge and let σ and σ̃ denote their sums, respectively. Then the iterated series (4) con-
verges and its sum s equals σ̃ − σ.

Proof. For positive integers ν and n we let

Aν =
∞∑

m=1

aν+m and sn =
n∑

ν=1

Aν .
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Likewise, for every positive integer n we let

σn =
n∑

k=1

ak and σ̃n =
n∑

k=1

kak.

Since Aν = σ − σν , it follows that

sn = nσ −
n∑

ν=1

σν = nσ −
n∑

k=1

(n + 1 − k)ak = nσ + σ̃n − (n + 1)σn =
un

vn

, (6)

where

un = σ − σn +
σ̃n − σn

n
and vn =

1

n
.

On the other hand, it is straight-forward to show that

un+1 − un

vn+1 − vn

= σ̃n+1 − σn+1.

Since

lim
n→∞

un+1 − un

vn+1 − vn

= σ̃ − σ,

an application of Cesáro-Stolz theorem, the
(

0
0

)
case, implies that

s = lim
n→∞

sn = lim
n→∞

un

vn

= σ̃ − σ,

and the theorem is proved.

Solution to Problem 1. Let ak = (−1)k/
(
⌊
√

k⌋
)3

, and note that both series (5)

∞∑

k=1

ak =
∞∑

k=1

(−1)k 1
(
⌊
√

k⌋
)3 and

∞∑

k=1

kak =
∞∑

k=1

(−1)k k
(
⌊
√

k⌋
)3 ,

converge based on the Leibniz test. Moreover,

σ̃ =
∞∑

k=1

kak =
∞∑

k=1

(−1)kk
(
⌊
√

k⌋
)3 =

∞∑

N=1

(
N2+2N∑

k=N2

(−1)kk
(
⌊
√

k⌋
)3

)
=

∞∑

N=1

1

N3

(
N2+2N∑

k=N2

(−1)kk

)

=
∞∑

N=1

(−1)N(N2 + N)

N3
=

∞∑

N=1

(−1)N

N
+

∞∑

N=1

(−1)N

N2

= − ln 2 − π2

12
.

On the other hand,

σ =
∞∑

k=1

ak =
∞∑

N=1

(
N2+2N∑

k=N2

(−1)k

(
⌊
√

k⌋
)3

)
=

∞∑

N=1

1

N3

(
N2+2N∑

k=N2

(−1)k

)
=

∞∑

N=1

(−1)N

N3
= −3

4
ζ(3),
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where ζ(3) =
∑∞

k=1 1/k3 denotes the Apéry constant. It follows, based on Theorem 1, that

∞∑

n=1

∞∑

m=1

(−1)n+m

(
⌊
√

n + m⌋
)3 =

3

4
ζ(3) − ln 2 − π2

12
,

and the problem is solved.

Remark 2. It is worth mentioning that if the series
∑∞

k=2(k − 1)ak, would be absolutely
convergent, the conclusion of Theorem 1 would follow by rearranging the terms of the iterated
series (4) as follows

∞∑

k=2

(k − 1)ak = a1+1 +
(
a1+2 + a2+1

)
+ · · · +

(
a1+(k−1) + a2+(k−2) + · · · + a(k−1)+1

)
+ · · · .

Unfortunately, when ak = (−1)k/⌊
√

k⌋3, the absolute convergence of the series
∑∞

k=2(k−1)ak

fails to hold. Also, the convergence of series (5) is sufficient but not necessary for the
convergence of the iterated series (4). This is shown by the series (1), (2), and (3). Clearly,
Theorem 1 does not apply to these series. However, the next theorem, which can be applied
for summing the series (1), (2) and (3), is the second new result of this section.

Theorem 3. With the same notation as in the statement and the proof of Theorem 1, let
us suppose that the first series in (5) converges, that σ̃2n = o(n), and that the limit

ℓ = lim
n→∞

(
na2n + σ̃2n−1

)
(7)

exists in R. Then the iterated series (4) converges and its sum s is given by s = ℓ − σ.

Proof. Let wn = na2n + σ̃2n−1. With the same notation as in the statement and the proof of
Theorem 1, we have, based on (6), that

σ + s2n = (2n + 1)(σ − σ2n) + σ̃2n =
xn

yn

,

where xn = σ − σ2n + 1
2n+1

σ̃2n and yn = 1
2n+1

. On the other hand,

xn+1 − xn

yn+1 − yn

=
2n + 1

2
a2n+2 + σ̃2n+1 = wn+1 −

1

2
a2n+2 .

Since an → 0 as n → ∞, we have, based on the Cesáro-Stolz theorem, the
(

0
0

)
case, and (7),

that limn→∞(σ + s2n) = ℓ, and it follows that limn→∞ s2n = ℓ− σ. On the other hand, since

s2n+1 = s2n + A2n+1 = s2n + σ − σ2n+1,

we get that limn→∞ s2n+1 = limn→∞ s2n = ℓ− σ. Thus, limn→∞ sn = ℓ− σ, and the theorem
is proved.
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Solution to Problem 2. Let ak = (−1)k/k and we note that

σ =
∞∑

k=1

ak =
∞∑

k=1

(−1)k

k
= − ln 2.

On the other hand, σ̃2n =
∑2n

k=1(−1)k = 0, and

wn = na2n + σ̃2n−1 =
1

2
+

2n−1∑

k=1

k · (−1)k

k
= −1

2
, for all n ∈ N.

Thus, ℓ = −1
2
. An application of Theorem 3 shows that

∞∑

n=1

∞∑

m=1

(−1)n+m

n + m
= ln 2 − 1

2
,

and the problem is solved.

Before we give the solution to Problem 3 we need to introduce a notation. Recall that,
the double factorial of a positive integer n is defined by the following formula

n!! =

{
n(n − 2) · · · 5 · 3 · 1, if n is odd;

n(n − 2) · · · 6 · 4 · 2, if n is even.

Solution to Problem 3. Let ak = (−1)k ln k
k

. It can be proved, see [9], that

σ =
∞∑

k=1

(−1)k ln k

k
= γ ln 2 − 1

2
ln2 2,

where γ denotes the Euler-Mascheroni constant. On the other hand,

σ̃2n =
2n∑

k=1

(−1)k ln k = ln
(2n)!!

(2n − 1)!!
=

1

2
ln

(
(2n)!!

)2
(
(2n − 1)!!

)2
(2n + 1)

+
ln(2n + 1)

2
,

and

wn = na2n + σ̃2n−1 =
1

2
ln(2n) +

2n−1∑

k=1

(−1)k ln k =
1

2
ln(2n) + ln

(2n − 2)!!

(2n − 1)!!

=
1

2
ln

(
(2n)!!

)2
(
(2n − 1)!!

)2
(2n + 1)

+
1

2
ln

2n + 1

2n
.

An application of the Wallis formula

lim
n→∞

(
(2n)!!

)2
(
(2n − 1)!!

)2
(2n + 1)

=
π

2
,
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shows that σ̃2n = o(n) and ℓ = limn→∞ wn = 1
2
ln π

2
. Theorem 3 implies that

∞∑

n=1

∞∑

m=1

(−1)n+m ln(n + m)

n + m
=

1

2
ln

π

2
− σ,

and hence

∞∑

n=0

∞∑

m=1

(−1)n+m ln(n + m)

n + m
= σ +

∞∑

n=1

∞∑

m=1

(−1)n+m ln(n + m)

n + m
=

1

2
ln

π

2
,

and the problem is solved.

Before we give the solution to Problem 4 we need to mention the properties of a special
function. Recall that, the dilogarithm function, (see [11, 12]), denoted by Li2(z), is the
special function defined by

Li2(z) =
∞∑

n=1

zn

n2
= −

∫ z

0

ln(1 − t)

t
dt, |z| ≤ 1.

A special Landen identity involving this function, [12, p. 107], is given by

Li2(z) + Li2(1 − z) =
π2

6
− ln(z) ln(1 − z).

This implies, when z = 1/2, that

Li2

(
1

2

)
=

π2

12
− ln2 2

2
. (8)

Now we are ready to give the solution to Problem 4.

Solution to Problem 4. Let ak = (−1)k Hk

k
. To calculate

σ =
∞∑

k=1

(−1)k Hk

k
,

we will be using a general result established by Kantor [8]: given a sequence (αk)k≥1 of real
numbers, we consider the power series

f(x) =
∞∑

k=1

αkx
k and g(x) =

∞∑

k=1

αkHkx
k. (9)

By the ratio test, the two power series have the same radius of convergence. Kantor [8]
proved that for every real number x for which the first series in (9) converges one has

g(x) =

∫ 1

0

f(x) − f(tx)

1 − t
dt.
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Let αk = (−1)k/k, and note that

f(x) =
∞∑

k=1

(−1)k xk

k
= − ln(1 + x), x ∈ (−1, 1].

It follows that

σ = g(1) =

∫ 1

0

ln(1 + t) − ln 2

1 − t
dt.

The substitution x = 1 − t implies that

σ =

∫ 1

0

1

x
ln
(
1 − x

2

)
dx =

∫ 1/2

0

ln(1 − y)

y
dy = −Li2

(
1

2

)
=

ln2 2

2
− π2

12
.

On the other hand,

σ̃2n =
2n∑

k=1

(−1)kHk =
n∑

k=1

(
H2k − H2k−1

)
=

n∑

k=1

1

2k
=

1

2
Hn,

and

wn = na2n + σ̃2n−1 =
1

2
H2n + σ̃2n − H2n =

1

2

(
Hn − H2n

)
.

Since Hn = ln n + γ + o(1), we have that all the hypotheses of Theorem 3 are satisfied and
ℓ = limn→∞ wn = −1

2
ln 2. Thus,

∞∑

n=1

∞∑

m=1

(−1)n+m Hn+m

n + m
= l − σ = − ln 2

2
− ln2 2

2
+

π2

12
,

and the problem is solved.

3 Multiple series of a special form

In this section we study the multiple series of the form

∞∑

n1,n2,...,nk=1

an1+n2+···+nk
, (10)

where (an)n∈N is a sequence of real numbers that verifies a special condition. Before we give
the main theorem of this section we collect some results we need in our analysis. Recall that,
the Stirling numbers of the first kind, denoted by s(n, k), are the special numbers defined by
the generating function

z(z − 1)(z − 2) · · · (z − n + 1) =
n∑

k=0

s(n, k)zk.

For recurrence relations as well as interesting properties satisfied by these numbers the reader
is referred to the book by Srivastava and Choi [12]. The main result of this section is the
following theorem.
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Theorem 4. Let k ≥ 1 be a natural number and let (an)n∈N be a sequence of real numbers
such that

∑∞

n=1 annk−1 converges absolutely. Then the multiple series (10) converges and

∞∑

n1,n2,...,nk=1

an1+n2+···+nk
=

1

(k − 1)!

k∑

i=1

s(k, i)

(
∞∑

p=k

app
i−1

)
,

where s(k, i) are the Stirling numbers of the first kind.

Proof. We have

∞∑

n1,n2,...,nk=1

an1+n2+···+nk
=

∞∑

p=k

(
∑

n1+n2+···+nk=p

an1+n2+···+nk

)

=
∞∑

p=k

ap

(
∑

n1+n2+···+nk=p

1

)

=
∞∑

p=k

ap

(
p − 1

k − 1

)

=
1

(k − 1)!

∞∑

p=k

ap

p
(p(p − 1)(p − 2) · · · (p − k + 1))

=
1

(k − 1)!

∞∑

p=k

ap

p

(
k∑

i=0

s(k, i)pi

)

=
1

(k − 1)!

k∑

i=0

s(k, i)

(
∞∑

p=k

app
i−1

)

=
1

(k − 1)!

k∑

i=1

s(k, i)

(
∞∑

p=k

app
i−1

)
,

since s(k, 0) = 0 for k ∈ N. The theorem is proved.

The next result, which is a consequence of Theorem 4, is about the calculation of another
multiple series of a special form.

Corollary 5. Let 1 ≤ i ≤ k be fixed natural numbers and let (an)n∈N be a sequence of positive
numbers such that

∑∞

n=1 ann
k converges. Then

∞∑

n1,n2,...,nk=1

ni · an1+n2+···+nk
=

1

k!

k∑

i=1

s(k, i)

(
∞∑

p=k

app
i

)
,

where s(k, i) are the Stirling numbers of the first kind.

8



Proof. We have, based on symmetry reasons, that for all i, j = 1, . . . , k, one has that

∞∑

n1,n2,...,nk=1

ni · an1+n2+···+nk
=

∞∑

n1,n2,...,nk=1

nj · an1+n2+···+nk
,

and hence

∞∑

n1,n2,...,nk=1

ni · an1+n2+···+nk
=

1

k

∞∑

n1,n2,...,nk=1

(n1 + n2 + · · · + nk) · an1+n2+···+nk
,

and the result follows based on Theorem 4 applied to the sequence (nan)n∈N.

Corollary 6. a) Let k be a fixed positive integer and let m > k. Then

∞∑

n1,n2,...,nk=1

1

(n1 + n2 + · · · + nk)m

=
1

(k − 1)!

k∑

i=1

s(k, i)

(
ζ(m + 1 − i) − 1 − 1

2m+1−i
− · · · − 1

(k − 1)m+1−i

)
,

where the parenthesis contains only the term ζ(m + 1 − i) when k = 1.
b) Let k and i be fixed positive integers such that 1 ≤ i ≤ k, and let m be such that

m − k > 1. Then

∞∑

n1,n2,...,nk=1

ni

(n1 + n2 + · · · + nk)m

=
1

k!

k∑

i=1

s(k, i)

(
ζ(m − i) − 1 − 1

2m−i
− · · · − 1

(k − 1)m−i

)
,

where the parenthesis contains only the term ζ(m − i) when k = 1.

The next result specializes to the case when the sequence an = 1/n!. Recall that, if

k ∈ N, the series Sk =
∑∞

n=1
nk

n!
, also known as the Wolstenholme series, equals an integral

multiple of e, i.e., Sk = Bke, (see [1, p. 197]). The integer Bk is known in the mathematical
literature as the kth Bell number [2] and the equality Sk = Bke is known as Dobinski’s
formula [3]. For example, B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52. One can prove that
the sequence (Bk)k∈N verifies the recurrence formula

Bk =
k−1∑

j=1

(
k − 1

j

)
Bj + 1.

The next corollary gives a recurrence relation involving the Stirling numbers of the first kind
and the Bell numbers. The formula is obtained by calculating, by two different methods, a
multiple series involving a factorial term.
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Corollary 7. Let k ≥ 2 and let i be fixed positive integers such that 1 ≤ i ≤ k. Then

a)
∞∑

n1,n2,...,nk=1

ni

(n1 + n2 + · · · + nk)!
=

e

k!
.

b)
k∑

i=1

s(k, i)

(
Bie −

k−1∑

p=1

pi

p!

)
= e.

Proof. We have, based on Corollary 5, that

∞∑

n1,n2,...,nk=1

ni

(n1 + n2 + · · · + nk)!
=

1

k!

k∑

i=1

s(k, i)

(
Bie −

k−1∑

p=1

pi

p!

)
.

On the other hand,

∞∑

n1,n2,...,nk=1

ni

(n1 + n2 + · · · + nk)!
=

1

k

∞∑

n1,n2,...,nk=1

1

(n1 + n2 + · · · + nk − 1)!

=
∞∑

p=k

(
∑

n1+···+nk=p

1

(n1 + n2 + · · · + nk − 1)!

)

=
1

k

∞∑

p=k

1

(p − 1)!

(
p − 1

k − 1

)

=
1

k!

∞∑

p=k

1

(p − k)!

=
e

k!
,

and the corollary is proved.

The next result refers to the calculation of multiple Wolstenholme series.

Corollary 8. Let m and k be natural numbers. Then

∞∑

n1,...,nk=1

(n1 + n2 + · · · + nk)
m

(n1 + n2 + · · · + nk)!
=

1

(k − 1)!

k∑

i=1

s(k, i)

(
Bm+i−1e −

k−1∑

p=1

pm+i−1

p!

)
,

where the parenthesis contains only the term Bm+i−1e when k = 1.

References

[1] T. J. J’A. Bromwich, An Introduction to the Theory of Infinite Series, AMS Chelsea
Publishing, Third Edition, 1991.

10



[2] L. Comtet, Advanced Combinatorics, D. Reidel, 1974.
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