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Abstract

By considering a particular probabilistic scenario associated with coincidences, we

are led to a family of functions akin to the modified Bessel function of the first kind.

These are in turn solutions to a certain family of linear differential equations possessing

structural similarities to the modified Bessel differential equation. The Stirling number

triangle of the second kind arises quite naturally from these differential equations, as

do more complicated, yet related, truncated number triangles, none of which appear

in Sloane’s On-Line Encyclopedia of Integer Sequences.

1 Introduction

Let X ∼ Po(λ) denote a discrete random variable having the Poisson distribution [3] with
parameter λ. The mass function of X is given by

P(X = k) =
e−λλk

k!
, k ≥ 0.

Furthermore, suppose that, for some n ∈ N, the random variables X1, X2, . . . , Xn are inde-
pendently and identically distributed as X. We shall term the event

Cn =
∞
⋃

k=0

{X1 = X2 = · · · = Xn = k}

a coincidence. In order to place such an event into some of context, we might imagine n call
centers each receiving an average of λ telephone calls per hour. In this situation a coincidence
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is said to occur when, in a given hour, all of the centers receive exactly the same number of
calls.

Next, let r ∈ {1, 2, . . . , n} and Sr denote the set {1, 2, . . . , n}\{r}. We define the event
Ar by

Ar = {Xa1
= Xa2

= · · · = Xan−1
= k},

where {a1, a2, . . . , an−1} = Sr. The event

Nn =
∞
⋃

k=0

n
⋃

r=1

{Ar ∩ {Xr = k + 1}}

is known as a near coincidence. Returning to the call-center scenario, a near coincidence
is said to occur when, in a given hour, all but one of the centers receive exactly the same
number of calls, with the remaining center receiving exactly one more call than all of the
others.

In this paper we show how probabilities associated with coincidences, near coincidences
and beyond, give rise to functions which may be regarded as extended versions of certain
Bessel functions. Via the linear differential equations these functions satisfy, this leads first to
the triangle of Stirling numbers of the second kind and then on to rather more complicated,
yet related, truncated number triangles.

2 A connection with Bessel functions and Stirling num-

bers of the second kind

Bessel functions arise as solutions to certain linear differential equations. They come in
several varieties, and we will be concerned here with a particular Bessel function that appears,
amongst other things, in connection with special relativity [4, 5] and the Skellam distribution
[10].

Definition 1. The modified Bessel function of the first kind [9],

Im(x) =
∞
∑

k=0

x2k+m

22k+mk!Γ(k + m + 1)
,

is one of the solutions to the modified Bessel differential equation [8] given by

x2y′′ + xy′ −
(

m2 + x2
)

y = 0,

where Γ(x) is the gamma function [2, 6].

The probability of a coincidence occurring in any given hour is given by

P(Cn) =
∞
∑

k=0

(

e−λλk

k!

)n

= e−nλ

∞
∑

k=0

λnk

(k!)n
.
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Then, noting that

e−2λI0(2λ) = e−2λ

∞
∑

k=0

(2λ)2k

22kk!Γ(k + 1)

= e−2λ

∞
∑

k=0

λ2k

(k!)2

= P(C2),

we are led first to extend the definition of I0(x) as follows:

Definition 2. Let n ∈ N. Then

I0(n, x) =
∞
∑

k=0

xnk

nnk(k!)n
.

The function I0(n, x) is related to the probability P(Cn) by way of

P(Cn) = e−nλ

∞
∑

k=0

λnk

(k!)n

= e−nλI0(n, nλ).

It is clear that I0(1, x) = ex and I0(2, x) = I0(x). Note also that y = I0(1, x) and y = I0(2, x)
satisfy y′ − y = 0 and xy′′ + y′ − xy = 0, respectively. We now find a third-order linear
differential equation having I0(3, x) as a solution.

Result 3. The function y = I0(3, x) is a solution to

x2y′′′ + 3xy′′ + y′ − x2y = 0.

Proof. Let y = I0(3, x). We have

y′ =
∞
∑

k=1

x3k−1

33k−1(k!)2(k − 1)!

and

y′′ =
∞
∑

k=1

(3k − 1)x3k−2

33k−1(k!)2(k − 1)!
,

so that

x(y′ + xy′′) =
∞
∑

k=1

x3k

33k−2k!((k − 1)!)2
,

and hence

(x(y′ + xy′′))
′

=
∞
∑

k=1

x3k−1

33(k−1)((k − 1)!)3

=
∞
∑

k=0

x3k+2

33k(k!)3

= x2y.
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It follows from this that y = I0(3, x) satisfies

x2y′′′ + 3xy′′ + y′ − x2y = 0,

as required.

Adopting a method similar to that used in Result 3, we may show that y = I0(4, x) is a
solution to

(

x
(

x2y′′′ + 3xy′′ + y′
))

′

− x3y = 0,

and so on. It is in fact the case that I0(n, x) satisfies the nth-order linear differential equation

n
∑

k=1

S(n, k)xk−1y(k) − xn−1y = 0, (1)

where S(n, k) is a Stirling number of the second kind, enumerating the partitions of n distinct
objects into exactly k non-empty parts, and y(k) denotes the kth derivative of y with respect
to x. The number triangle associated with S(n, k) appears in Sloane’s On-Line Encyclopedia

of Integer Sequences [7] as sequence A008277. It is straightforward to prove (1) by using
induction in conjunction with the well-known result

S(n, k) = kS(n − 1, k) + S(n − 1, k − 1), (2)

which may be found in [1] and [6].

3 Near coincidences

Let us now consider the probability of the occurrence of a near coincidence, assuming that
n ≥ 2. We have

P(Nn) =

(

n

1

) ∞
∑

k=0

e−λλk+1

(k + 1)!

(

e−λλk

k!

)n−1

= ne−nλ

∞
∑

k=0

λnk+1

(k!)n(k + 1)
.

This leads us to generalize I0(n, x) as follows:

Definition 4. For n ≥ m + 1,

Im(n, x) =
∞
∑

k=0

xnk+m

nnk+m(k!)n(k + 1)m
.

Note then that P(Nn) = ne−nλI1(n, nλ). In this section we will indeed consider the special
case m = 1, which is the one associated with near coincidences.

Result 5. The function y = I1(2, x) satisfies the differential equation

x3y′′′ + 2x2y′′ − xy′ + y − x2 (xy′ + y) = 0.
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Proof. First,

(xI1(2, x))′ =
∞
∑

k=0

2(k + 1)x2k+1

22k+1(k!)2(k + 1)

=
∞
∑

k=0

x2k+1

22k(k!)2

= xI0(2, x).

Therefore

I0(2, x) =
1

x
(xI ′

1(2, x) + I1(2, x))

= I ′

1(2, x) +
1

x
I1(2, x),

and so, since y = I0(2, x) is a solution to xy′′ + y′ − xy = 0, we may obtain

x

(

I ′

1(2, x) +
1

x
I1(2, x)

)

′′

+

(

I ′

1(2, x) +
1

x
I1(2, x)

)

′

− x

(

I ′

1(2, x) +
1

x
I1(2, x)

)

= 0.

From this it follows that y = I1(2, x) does in fact satisfy

x3y′′′ + 2x2y′′ − xy′ + y − x2 (xy′ + y) = 0.

Taking things further,

(

x2I1(3, x)
)

′

=
∞
∑

k=0

3(k + 1)x3k+2

33k+1(k!)3(k + 1)

=
∞
∑

k=0

x3k+2

33k(k!)3

= x2I0(3, x),

from which we may obtain, using Result 3, that y = I1(3, x) is a solution to

x4y′′′′ + 5x3y′′′ + x2y′′ + 2xy′ − 2y − x3 (xy′ + 2y) = 0.

More generally,

(

xn−1I1(n, x)
)

′

=
∞
∑

k=0

n(k + 1)xnk+n−1

nnk+1(k!)n(k + 1)

=
∞
∑

k=0

xnk+n−1

nnk(k!)n

= xn−1I0(n, x),

giving

I0(n, x) = I ′

1(n, x) +
n − 1

x
I1(n, x). (3)
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Result 6. The function y = I1(n, x) is a solution to

n
∑

k=1

f(n, k)xk+1y(k+1) + (n − 1)(−1)n+1 (xy′ − y) − xn (xy′ + (n − 1)y) = 0, (4)

where

f(n, k) = S(n, k) +
n − 1

(k + 1)!

n
∑

j=k+1

(−1)j−k+1j!S(n, j), (5)

noting that the sum on the far right is defined to be zero when k ≥ n.

Proof. Starting with (3) and proceeding by induction gives

I
(k)
0 (n, x) = I

(k+1)
1 (n, x) + k!(n − 1)

k
∑

j=0

(−1)k−jI
(j)
1 (n, x)

xk−j+1j!
.

From this we obtain, using (1) and induction once more, the general result that I1(n, x)
satisfies the differential equation

n
∑

k=1

f(n, k)xk+1y(k+1) + (n − 1)
n
∑

k=1

(−1)k+1k!S(n, k) (xy′ − y)

− xn (xy′ + (n − 1)y) = 0, (6)

where f(n, k) is as given in the statement of the result.
Since, by definition,

n
∑

k=1

S(n, k)(x)k = xn,

where (x)k = x(x − 1)(x − 2) · · · (x − k + 1) denotes the falling factorial, on setting x = −1
it follows that

(−1)n =
n
∑

k=1

S(n, k)(−1)k

=
n
∑

k=1

S(n, k)k!(−1)k.

Therefore (6) may be simplified somewhat to give the desired result.

Since in Definition 4 we require n ≥ m+1, the number triangle for f(n, k) is, unlike that
for S(n, k), truncated. Its first few rows may be seen in Table 1 of Section 5.
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4 Further coincidences

Next, let r, s ∈ {1, 2, . . . , n} such that r 6= s, and let Qr,s denote the set {1, 2, . . . , n}\{r, s}.
We define Br,s by

Br,s = {Xa1
= Xa2

= · · · = Xan−2
= k},

where {a1, a2, . . . , an−2} = Qr,s, and consider the event

Mn =
∞
⋃

k=0

⋃

r,s

{Br,s ∩ {Xr = Xs = k + 1}} ,

where the inner union is over all possible pairs (r, s) such that r, s ∈ {1, 2, . . . , n} and r 6= s.
It is clear that

P(Mn) =

(

n

2

) ∞
∑

k=0

(

e−λλk+1

(k + 1)!

)2(
e−λλk

k!

)n−2

= e−nλ

(

n

2

) ∞
∑

k=0

λnk+2

(k!)n(k + 1)2

= e−nλ

(

n

2

)

I2(n, nλ).

For this new scenario we now obtain, in correspondence to Result 6, a family of linear
differential equations and the associated truncated number triangle.

First,

(

x
(

xn−2I2(n, x)
)

′

)

′

=

(

x

∞
∑

k=0

n(k + 1)xnk+n−1

nnk+2(k!)n(k + 1)2

)

′

=

(

∞
∑

k=0

xnk+n

nnk+1(k!)n(k + 1)

)

′

=
∞
∑

k=0

n(k + 1)xnk+n−1

nnk+1(k!)n(k + 1)

=
∞
∑

k=0

xnk+n−1

nnk(k!)n

= xn−1I0(n, x),

from which we have

I0(n, x) = I ′′

2 (n, x) +
2n − 3

x
I ′

2(n, x) +
(n − 2)2

x2
I2(n, x). (7)
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It follows from this that

I
(k)
0 (n, x) =I

(k+2)
2 (n, x) + k!(2n − 3)

k
∑

j=0

(−1)k−jI
(j+1)
2 (n, x)

xk−j+1j!

+ k!(n − 2)2

k
∑

j=0

(−1)k−j(k − j + 1)I
(j)
2 (n, x)

xk−j+2j!
.

Then, to obtain a linear differential equation satisfied by I2(n, x), we may use the fact
that I0(n, x) is a solution to (1) to give

n
∑

k=1

g(n, k)xk+2y(k+2) + (n − 2)2

n
∑

k=1

k!S(n, k)
2
∑

j=0

(−1)k+j

j!
xjy(j)(k − j + 1)

+ (2n − 3)(−1)n+1
(

x2y′′ − xy′
)

− xn
(

x2y′′ + (2n − 3)xy′ + (n − 2)2y
)

= 0, (8)

where

g(n, k) =S(n, k) +
2n − 3

(k + 1)!

n
∑

j=k+1

(−1)j−k−1j!S(n, j)

+
(n − 2)2

(k + 2)!

n
∑

j=k+2

(−1)j−kj!S(n, j)(j − k − 1), (9)

and the first and second sums on the right are defined to be zero when k ≥ n and k ≥ n− 1,
respectively. The truncated number triangle for g(n, k) is shown in Table 2 of Section 5.

The sequence of numbers along the mth diagonal of the triangle of Stirling numbers of
the second kind is given by {S(n + m,n) : n = 1, 2, 3, . . .}, where the convention is that
the upper-most diagonal, consisting solely of 1s, is the zeroth diagonal. The sequences for
m = 1, 2, 3 and 4 appear in [7] as A000127, A001296, A001297, and A001298, respectively.
Using the recurrence relation (2), it is possible to show, by induction, that for each m ∈ N

there exists a polynomial pm(x) such that S(n + m,n) = pm(n), n = 1, 2, 3, . . .. It is in fact
reasonably straightforward to show that pm(x) has degree 2m and leading coefficient 1

2mm!
.

It follows from this, in conjunction with (5), that the mth diagonal of the table for f(n, k)
is a polynomial sequence of degree 2m. On using (9), a similar result applies to the table for
g(n, k).

It is possible to generalize the results (3) and (7). We have

xn−1I0(n, x) =

(

x · · ·
(

x
(

xn−mIm(n, x)
)

′

)

′

· · ·

)

′

,

where the nesting is to a depth of m. It follows from this that

xn−1I0(n, x) =
m
∑

k=1

S(m, k)xk−1
(

xn−mIm(n, x)
)(k)

. (10)
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It is also straightforward to show that

(xqh(x))(k) =
k
∑

j=0

xq−j(q)j

(

k

j

)

h(k−j)(x), (11)

where (q)0 = 1 by definition. From (10) and (11) we may obtain

I0(n, x) =
1

xn−1

m
∑

k=1

S(m, k)xk−1

k
∑

j=0

xn−m−j(n − m)j

(

k

j

)

I(k−j)
m (n, x)

=
m
∑

k=1

S(m, k)
k
∑

j=0

xk−j−m(n − m)j

(

k

j

)

I(k−j)
m (n, x).

This result, in conjunction with (1), allows us to find a linear differential equation satisfied
by y = Im(n, x) for any m ∈ N.

5 Tables

n f(n, 1) f(n, 2) f(n, 3) f(n, 4) f(n, 5) f(n, 6) f(n, 7) f(n, 8)

2 2 1

3 1 5 1

4 4 13 9 1

5 1 35 45 14 1

6 6 81 190 110 20 1

7 1 189 721 686 224 27 1

8 8 421 2583 3759 1932 406 35 1

Table 1: The coefficients f(n, k) of the differential equation (4).
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n g(n, 1) g(n, 2) g(n, 3) g(n, 4) g(n, 5) g(n, 6) g(n, 7) g(n, 8)

3 2 6 1

4 −2 21 11 1

5 46 50 69 17 1

6 −150 201 318 162 24 1

7 526 294 1421 1141 319 32 1

8 −1498 1429 5481 7035 3120 562 41 1

Table 2: The coefficients g(n, k) of the differential equation (8).
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