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Abstract

We consider the functions 1/f and h/f , and study some properties of the successive

derivatives of these functions. We also study certain integer sequences connected with

these successive derivatives.

1 Introduction.

In the next section we shall need the generalization of the chain rule of calculus to higher
derivatives, that is, the Faá di Bruno’s formula.

For the compact establishment of the Faá di Bruno’s formula in the next section we need
certain compact notation on partitions and multinomial coefficients. This compact notation
is due to Vella [2]. We now explain this notation.

A partition π of a positive integer n is a representation of n as a sum of positive integers,
n = p1+p2+ · · ·+pm, called summands or parts of the partition. The order of the summands
is irrelevant. The number of partitions of n we shall denote p(n). The number of parts of
the partition π we shall denote ℓ(π). Consequently ℓ(π) = m.

For example, let us consider the following partition π of 55,

1 + 1 + 1 + 1 + 1 + 1 + 2 + 2 + 2 + 6 + 6 + 7 + 7 + 7 + 10 = 55.

We have ℓ(π) = 15.
A partition can be written more simply in the form π = {p1, p2, . . . , pm}. For example

our former partition π of 55 can be written in the form

π = {1, 1, 1, 1, 1, 1, 2, 2, 2, 6, 6, 7, 7, 7, 10}.
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For each i (1 ≤ i ≤ n), the number of times that i appears as a part of the partition π of
n is denoted πi and is called the multiplicity of the part i in π. For example, in our former
partition π of 55 we have π1 = 6, π2 = 3 and π3 = 0. Note that ℓ(π) =

∑n

i=1 πi.
The standard notation for partitions is π = [1π1 , 2π2 , . . . , nπn ] with parts of multiplicity

zero omitted. For example, in standard notation, our partition π of 55 is

π = [16, 23, 62, 73, 101].

Note that {π1, π2, . . . , πn} is a partition of ℓ(π). We shall call to this partition the derived
partition of π, and denote it δ(π). For example, the derived partition δ(π) of our partition
π of 55 is the following partition of ℓ(π) = 15.

δ(π) = {1, 2, 3, 3, 6} = [11, 21, 32, 61].

Let us consider the partition π = {p1, p2, . . . , pm} of n. We shall use the notation π! =
∏m

i=1(pi!) and we shall use the notation
(

n

π

)

for the multinomial coefficient

(

n

p1, p2, . . . , pm

)

=
n!

∏m

i=1(pi!)
.

That is,
(

n

p1, p2, . . . , pm

)

=

(

n

π

)

=
n!

π!
.

In the next section (using this compact notation) we establish the Faá di Bruno’s formula
and use this formula in the study of the successive derivatives of the function 1

f(x)
. Further-

more, we introduce an integer sequence An connected with these successive derivatives.
In the third section we study the successive derivatives of the function h(x)

f(x)
and generalize

the quotient rule to nth derivatives.
Finally, in the fourth section, we study some asymptotic properties of the integer sequence

An.

2 Successive Derivatives of the Function 1
f(x).

In the following theorem we establish in a compact and useful way the Faá di Bruno’s
formula. This establishment is due to Vella [2].

Theorem 1. Suppose y = g(u) and u = f(x) are differentiable n times. Then the composite
function y = (g ◦ f)(x) is also differentiable n times and

(g ◦ f)(n)(x) =
∑

π∈Ωn

(

n

π

)

δ(π)!
. g(ℓ(π)) ◦ f(x).

n
∏

i=1

[f (i)(x)]πi , (1)

where Ωn denotes the set of all partitions of n.
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If f = f(x) we shall use the convention f = f (0).
Now, consider the function.

1

f(x)
=

1

f
=

(

1

f

)(0)

. (2)

We have the following general theorem.

Theorem 2. The successive derivatives of the function (2) satisfy the following formula,

(

1

f

)(n)

=
Pn

fn+1
(n ≥ 0), (3)

where Pn is a polynomial of integer coefficients in the variables f, f (1), . . . , f (n).
If n = 0 then

P0 = 1, (4)

and if n ≥ 1 then

Pn =
∑

π∈Ωn

(−1)ℓ(π)

(

n

π

)(

ℓ(π)

δ(π)

)

.f(x)n−ℓ(π).

n
∏

i=1

[f (i)(x)]πi

=
∑

π∈Ωn

(−1)ℓ(π)

(

n

π

)(

ℓ(π)

δ(π)

)

.fn−ℓ(π).

n
∏

i=1

[f (i)]πi (5)

Proof. Let g(u) = 1
u

= u−1 be. Note that

g(n)(u) =
(−1)nn!

un+1
. (6)

Substituting equation (6) into equation (1) we find that

(

1

f

)(n)

= (g ◦ f)(n)(x) =
∑

π∈Ω(n)

(

n

π

)

δ(π)!
.
(−1)ℓ(π)ℓ(π)!

f(x)ℓ(π)+1
.

n
∏

i=1

[f (i)(x)]πi

=
∑

π∈Ω(n)

(

n

π

)

δ(π)!
.
(−1)ℓ(π)ℓ(π)!

f(x)n+1
.f(x)n−ℓ(π).

n
∏

i=1

[f (i)(x)]πi

=
∑

π∈Ω(n)

(

n

π

)(

ℓ(π)

δ(π)

)

(−1)ℓ(π)

f(x)n+1
.f(x)n−ℓ(π).

n
∏

i=1

[f (i)(x)]πi

=

∑

π∈Ωn
(−1)ℓ(π)

(

n

π

)(

ℓ(π)
δ(π)

)

.f(x)n−ℓ(π).
∏n

i=1[f
(i)(x)]πi

f(x)n+1
(7)

=
Pn

fn+1
.
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Using (5) we obtain the first polynomials Pn.

P1 = −f (1)(x) = −f (1), (8)

P2 = −f(x) f (2)(x) + 2f (1)(x)f (1)(x) = −f f (2) + 2f (1)f (1), (9)

P3 = −fff (3) + 6ff (1)f (2) − 6f (1)f (1)f (1), (10)

P4 = −ffff (4) + 8fff (1)f (3) + 6fff (2)f (2) − 36ff (1)f (1)f (2) (11)

+ 24f (1)f (1)f (1)f (1),

P5 = −fffff (5) + 10ffff (1)f (4) − 60fff (1)f (1)f (3) + 20ffff (2)f (3)

− 90fff (1)f (2)f (2) + 240ff (1)f (1)f (1)f (2) − 120f (1)f (1)f (1)f (1)f (1) (12)

In the following theorem we establish some general properties of the polynomials Pn.

Theorem 3. The polynomial Pn (n ≥ 1) has the following properties.
a) Each term (monomial) in the polynomial Pn has n factors and the sum of superscripts

is n. That is, the monomials are of the form f (i1)f (i2) · · · f (in) where i1 + i2 + · · · + in = n
(f = f (0)). Consequently we can establish a correspondence between each monomial and a
partition of n. The number of terms (monomials) in the polynomial Pn is p(n), that is, the
number of partitions of n.

b) If n is even then the sum of the coefficients is 1. On the other hand, if n is odd the
sum of the coefficients is −1. That is, the sum of the coefficients of the polynomial Pn is
(−1)n.

c) If n is even the monomials with an even number of f have positive coefficient and the
monomials with a odd number of f have negative coefficient.

If n is odd the monomials with an even number of f have negative coefficient and the
monomials with a odd number of f have positive coefficient.

d) If An is the sum of the absolute values of the coefficients in the polynomial Pn then
the following formula holds (A0 = 1):

q(x) =
1

2 − ex
=

∞
∑

k=0

Ak

k!
xk. (13)

Therefore, Ak (k ≥ 0) is the kth derivative of the function q(x) = 1
2−ex at x = 0 (Ak =

q(k)(0)). The radius of convergence of (13) is R = log 2. Furthermore,

An =
∑

π∈Ωn

(

n

π

)(

ℓ(π)

δ(π)

)

(n ≥ 1). (14)

e) The coefficient of the monomial f · · · ff (n) is −1.
The coefficient of the monomial f (1) · · · f (1) is (−1)nn!. Consequently An ≥ n! (see part

(d)).
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Proof. Proof of part (a). It is an immediate consequence of equation (5). Part (a) is proved.
Proof of part (b). We apply (7) in the case f(x) = ex. Note that f (i)(0) = 1 for all i ≥ 0.

Therefore the left side of (7) at x = 0 becomes

(

1

ex

)(n)

(0) =
dn

dxn
(e−x) |x=0 = (−1)n.

On the other hand the right side of (7) at x = 0 becomes

∑

π∈Ωn
(−1)ℓ(π)

(

n

π

)(

ℓ(π)
δ(π)

)

.f(0)n−ℓ(π).
∏n

i=1[f
(i)(0)]πi

f(0)n+1

=

∑

π∈Ωn
(−1)ℓ(π)

(

n

π

)(

ℓ(π)
δ(π)

)

.1n−ℓ(π).
∏n

i=1(1)πi

1n+1

=
∑

π∈Ωn

(−1)ℓ(π)

(

n

π

)(

ℓ(π)

δ(π)

)

,

which is the sum of the coefficients of the polynomial Pn. Part (b) is proved.
Proof of part (c). It is an immediate consequence of equation (5). Part (c) is proved.
Proof of part (d). We apply (7) in the case f(x) = 2 − ex. Note that f(0) = 1 and

f (i)(0) = −1 for all i > 0. Consequently, the right side of (7) at x = 0 becomes

∑

π∈Ωn
(−1)ℓ(π)

(

n

π

)(

ℓ(π)
δ(π)

)

.f(0)n−ℓ(π).
∏n

i=1[f
(i)(0)]πi

f(0)n+1

=

∑

π∈Ωn
(−1)ℓ(π)

(

n

π

)(

ℓ(π)
δ(π)

)

.1n−ℓ(π).
∏n

i=1(−1)πi

1n+1

=
∑

π∈Ωn

(−1)ℓ(π)

(

n

π

)(

ℓ(π)

δ(π)

)

.(−1)
Pn

i=1 πi

=
∑

π∈Ωn

(−1)ℓ(π)

(

n

π

)(

ℓ(π)

δ(π)

)

.(−1)ℓ(π)

=
∑

π∈Ωn

(

n

π

)(

ℓ(π)

δ(π)

)

. (15)

Note that (15) (see the numerator of (7)) is the sum An of the absolute values of the
coefficients in the polynomial Pn. On the other hand, the left side of (7) at x = 0 becomes

(g ◦ f)(n)(0) = q(n)(0).

Therefore

q(x) = (g ◦ f)(x) =
1

2 − ex
=

∞
∑

k=0

Ak

k!
xk.

Note that the function of the complex variable q(z) = 1
2−ez is analytical in the disk |z| < log 2

and consequently the radius of convergence of (13) is R = log 2. Note also that in terms of
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generating functions (see reference [3]) we have proved that q(x) = 1
2−ex is the exponential

generating function of the sequence An. Part (d) is proved.
Proof of part (e). It is an immediate consequence of equation (5). Part (e) is proved.

Note that the first values of the integer sequence An are (see either (4), (8), (9), (10),
(11) and (12) or use directly equation (14)): A0 = 1, A1 = 1, A2 = 3, A3 = 13, A4 = 75,
A5 = 541.

In the next section we shall prove the following recurrence combinatorial formula.

A0 = 1,

An =
n−1
∑

k=0

(

n

k

)

Ak (n ≥ 1). (16)

A simple consequence of this formula is the inequality

An+1 > An (n ≥ 1).

3 Successive Derivatives of the Function
h(x)
f(x).

We shall need the well-known binomial formula

(a + b)n =
n

∑

k=0

(

n

k

)

an−kbk, (17)

where
(

n

k

)

= n!
(n−k)!k!

and 0! = 1.
We also shall need the following well-known result of Leibniz on the successive derivatives

of the function fg = f(x)g(x).

Lemma 4. Let us consider the function fg. The following formula holds:

(fg)(n) =
n

∑

k=0

(

n

k

)

f (n−k)g(k) (n ≥ 0), (18)

where f (0) = f and g(0) = g.

Theorem 5. Let us consider the function

h(x)

f(x)
=

h

f
.

The following formula holds.

(

h

f

)(n)

=
Qn

fn+1
=

∑n

k=0

(

n

k

)

h(n−k)fn−kPk

fn+1
(n ≥ 0). (19)
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Proof. We have
h

f
= h

1

f
.

Lemma 4 and equation (3) give

(

h

f

)(n)

=
n

∑

k=0

(

n

k

)

h(n−k)

(

1

f

)(k)

=
n

∑

k=0

(

n

k

)

h(n−k) Pk

fk+1

=

∑n

k=0

(

n

k

)

h(n−k)fn−kPk

fn+1
.

That is, equation (19).

Using (19), (4), (8), (9) and (10) we obtain the first polynomials Qn.

Q0 = h,

Q1 = h(1)f − hf (1),

Q2 = h(2)ff − 2h(1)ff (1) − hff (2) + 2hf (1)f (1),

Q3 = h(3)fff − 3h(2)fff (1) − 3h(1)fff (2) + 6h(1)ff (1)f (1) − hfff (3)

+ 6hff (1)f (2) − 6hf (1)f (1)f (1).

In the following theorem we obtain some information on the polynomial Qn.

Theorem 6. Let us consider the polynomial Q(n) (n ≥ 0).
a) The sum of the coefficients of the polynomial Q(n) (n ≥ 1) is zero.
b) If Cn is the sum of the absolute values of the coefficients in the polynomial Qn then

the following formula holds:

Cn =
n

∑

k=0

(

n

k

)

Ak (n ≥ 0). (20)

c) If n is even the monomials with an even number of f have positive coefficient and the
monomials with a odd number of f have negative coefficient.

If n is odd the monomials with an even number of f have negative coefficient and the
monomials with a odd number of f have positive coefficient.

d) If Cn is the sum of the absolute values of the coefficients in the polynomial Qn then
the following formula holds:

p(x) =
ex

2 − ex
=

∞
∑

k=0

Ck

k!
xk. (21)

Therefore, Ck (k ≥ 0) is the kth derivative of the function p(x) = ex

2−ex at x = 0 (Ck =

p(k)(0)). The radius of convergence of (21) is R = log 2.
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e) We have
C0 = A0 = 1,

Cn = 2An (n ≥ 1).

f) The following combinatorial formula holds:

An =
n−1
∑

k=0

(

n

k

)

Ak (n ≥ 1).

g) Each term (monomial) in the polynomial Qn has (n + 1) factors and the sum of
superscripts is n. That is, the monomials are of the form

h(i1)f (i2) · · · f (i(n+1)),

where i1 + i2 + · · · + i(n+1) = n and h = h(0), f = f (0).
The number of term (monomials) in the polynomial Qn is

∑n

k=0 p(k) where p(k) is the
number of partitions of k (p(0) = 1).

Proof. Proof of part (a). The sum of the coefficients in the polynomial Pk is (−1)k ( see part
(b) of Theorem 3). Consequently the sum of the coefficients in the polynomial Qn will be
(see (19) and (17))

n
∑

k=0

(

n

k

)

(−1)k = (1 − 1)n = 0.

Part (a) is proved.
Proof of part (b). The sum of the absolute values of the coefficients in the polynomial

Pk is Ak (see part (d) of Theorem 3). Consequently the sum of the absolute values of the
coefficients in the polynomial Qn will be (20) (see (19)). Part (b) is proved.

Proof of part (c). It is an immediate consequence of (19) and part (c) of Theorem 3.
Part (c) is proved.

Proof of part (d). Let us consider the function f(x) = f = ex − 2. We have f(0) = −1
and since f (n)(x) = f (n) = ex (n ≥ 1) we have f (n)(0) = 1. On the other hand consider the
function h(x) = h = ex. We have h(0) = 1 and since h(n)(x) = h(n) = ex (n ≥ 1) we have

h(n)(0) = 1. Therefore part (c) and equation (19) imply that the function p(x) = −h(x)
f(x)

=

− ex

ex−2
satisfies p(n)(0) = Cn (n ≥ 0). On the other hand the function of the complex variable

p(z) = −h(z)
f(z)

= − ez

ez−2
is analytical in the disk |z| < log 2 and consequently the radius of

convergence of (21) is R = log 2. Part (d) is proved.
Proof of part (e). We have (see part (d) of Theorem 3)

p(x) =
ex

2 − ex
= −1 + 2

(

1

2 − ex

)

= −1 + 2q(x).

Consequently
C0 = p(0) = q(0) = A0 = 1.
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On the other hand we have

p(n)(x) = 2q(n)(x) (n ≥ 1).

Therefore
Cn = p(n)(0) = 2q(n)(0) = 2An (n ≥ 1).

Part (e) is proved.
Proof of part (f). It is an immediate consequence of part (b) and part (e). Part (f) is

proved.
Proof of part (g). It is an immediate consequence of (19) and part (a) of Theorem 3.

Part (g) is proved.

4 Asymptotic Results on the Sequence An.

Lemma 7. Let us consider the power series (13), that is

∞
∑

k=0

Ak

k!
xk.

The ratio test for power series is valid, that is the following limit holds:

lim
k→∞

Ak

k!
Ak−1

(k−1)!

= lim
k→∞

Ak

kAk−1

=
1

log 2
. (22)

Proof. We have

An =
n−1
∑

k=0

(

n

k

)

Ak =
n−2
∑

k=0

(

n

k

)

Ak + nAn−1.

Consequently
An

An−1

≥ n, (23)

and
An−1

An

≤
1

n
. (24)

Using (24) repeatedly we obtain

A0

An−1

=
A0

A1

A1

A2

· · ·
An−2

An−1

≤
1

1

1

2
· · ·

1

(n − 1)
=

0!

(n − 1)!

A1

An−1

=
A1

A2

A2

A3

· · ·
An−2

An−1

≤
1

2

1

3
· · ·

1

(n − 1)
=

1!

(n − 1)!

A2

An−1

=
A2

A3

A3

A4

· · ·
An−2

An−1

≤
1

3

1

4
· · ·

1

(n − 1)
=

2!

(n − 1)!

9



...

That is,
Ak

An−1

≤
k!

(n − 1)!
(0 ≤ k ≤ n − 1).

This last equation and (16) give,

An

An−1

=
n−1
∑

k=0

(

n

k

)

Ak

An−1

≤

n−1
∑

k=0

n!

(n − k)!k!

k!

(n − 1)!
= n

n−1
∑

k=0

1

(n − k)!

= n

n
∑

k=1

1

k!
≤ n(e − 1). (25)

Finally, (23) and (25) give

1 ≤
An

nAn−1

≤ (e − 1). (26)

Suppose that the following inequality holds from a certain n = n′ + 1.

An

An−1

≥ hn. (27)

That is,
An−1

An

≤
1

hn
. (28)

We obtain,
Ak

An−1

≤
k!

(n − 1)!

(

1

h

)n−k−1

(n′ ≤ k ≤ n − 1). (29)

Equations (16) and (29) give,

An

An−1

=
n−1
∑

k=0

(

n

k

)

Ak

An−1

=
n′
−1

∑

k=0

(

n

k

)

Ak

An−1

+
n−1
∑

k=n′

(

n

k

)

Ak

An−1

≤ C +
n−1
∑

k=n′

n!

(n − k)!k!

k!

(n − 1)!

(

1

h

)n−k−1

= C + n
n−1
∑

k=n′

(

1
h

)n−k−1

(n − k)!

= C + n

n−n′

∑

k=1

(

1
h

)k−1

k!
≤ C + n

∞
∑

k=1

(

1
h

)k−1

k!
= C + n

e
1
h − 1

1
h

, (30)

where C =
∑n′

−1
k=0

(

n

k

)

Ak

An−1
.

Equation (30) gives the inequality (from a certain n)

An

nAn−1

≤
e

1
h − 1

1
h

+ ǫ (ǫ > 0). (31)
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Suppose that the following inequality holds from a certain n = n′ + 1.

An

An−1

≤ pn. (32)

That is,
An−1

An

≥
1

pn
. (33)

We obtain
Ak

An−1

≥
k!

(n − 1)!

(

1

p

)n−k−1

(n′ ≤ k ≤ n − 1). (34)

Equations (16) and (34) give,

An

An−1

=
n−1
∑

k=0

(

n

k

)

Ak

An−1

=
n′
−1

∑

k=0

(

n

k

)

Ak

An−1

+
n−1
∑

k=n′

(

n

k

)

Ak

An−1

≥

n−1
∑

k=n′

n!

(n − k)!k!

k!

(n − 1)!

(

1

p

)n−k−1

= n

n−1
∑

k=n′

(

1
p

)n−k−1

(n − k)!

= n

n−n′

∑

k=1

(

1
p

)k−1

k!
. (35)

Equation (35) gives (from a certain n)

An

nAn−1

≥

n−n′

∑

k=1

(

1
p

)k−1

k!
≥

∞
∑

k=1

(

1
p

)k−1

k!
− λ =

e
1
p − 1

1
p

− λ (λ > 0).

That is,

An

nAn−1

≥
e

1
p − 1

1
p

− λ (λ > 0). (36)

Note that the function

f(x) =
ex − 1

x
=

∞
∑

k=1

xk−1

k!

is positive and strictly increasing in the interval (−∞,∞) since its derivative is positive in
the interval (−∞,∞). On the other hand its image is the interval (0,∞). Furthermore,
f(0) = 1 and f(1) = e − 1.

Let us consider the inequality (26). That is,

h1 = 1 =
e0 − 1

0
≤

An

nAn−1

≤
e1 − 1

1
= e − 1 = p1. (37)

This inequality is our first inequality.

11



The inequality in the right side (that is, equation (32)) give us the inequality (see (36))

h2 =
e

1
p1 − 1

1
p1

− λ2 ≤
An

nAn−1

. (38)

Note that since p1 > 0 we have the inequality

e
1

p1 − 1
1
p1

> 1 = h1.

Let λ2 be the least number between
1/2

and
e

1
p1 −1

1
p1

− h1

2
.

Consequently
h2 > h1 = 1. (39)

Inequality (38) (that is, equation (27)) give us (see equation (31)) the inequality

An

nAn−1

≤
e

1
h2 − 1

1
h2

+ ǫ2 = p2. (40)

Note that since (see (39)) h2 > 1 we have the inequality

e
1

h2 − 1
1
h2

<
e1 − 1

1
= e − 1 = p1.

Let ǫ2 be the least number between
1/2

and

p1 −
e

1
h2 −1

1
h2

2
.

Consequently
p2 < p1 = e − 1. (41)

On the other hand, inequalities (38) and (40) give us the following second inequality.

h2 =
e

1
p1 − 1

1
p1

− λ2 ≤
An

nAn−1

≤
e

1
h2 − 1

1
h2

+ ǫ2 = p2. (42)

Inequality (40) (that is, equation (32)) give us the inequality (see (36))

h3 =
e

1
p2 − 1

1
p2

− λ3 ≤
An

nAn−1

. (43)

12



Equation (41) implies that

e
1

p2 − 1
1
p2

>
e

1
p1 − 1

1
p1

.

Let λ3 be the least number between
1/3

and
e

1
p2 −1

1
p2

− e
1

p1 −1
1

p1

2
.

Consequently
h3 > h2 > h1 = 1. (44)

Inequality (43) (that is, equation (27)) give us (see equation (31)) the inequality

An

nAn−1

≤
e

1
h3 − 1

1
h3

+ ǫ3 = p3. (45)

Equation (44) implies that

e
1

h3 − 1
1
h3

<
e

1
h2 − 1

1
h2

.

Let ǫ3 be the least number between
1/3

and
e

1
h2 −1

1
h2

− e
1

h3 −1
1

h3

2
.

Consequently
p3 < p2 < p1 = e − 1. (46)

On the other hand, inequalities (43) and (45) give us the third inequality

h3 =
e

1
p2 − 1

1
p2

− λ3 ≤
An

nAn−1

≤
e

1
h3 − 1

1
h3

+ ǫ3 = p3. (47)

In this form we build the following sequence of inequalities (see (37), (42), (47)).

h1 = 1 =
e0 − 1

0
≤

An

nAn−1

≤
e1 − 1

1
= e − 1 = p1

h2 =
e

1
p1 − 1

1
p1

− λ2 ≤
An

nAn−1

≤
e

1
h2 − 1

1
h2

+ ǫ2 = p2

h3 =
e

1
p2 − 1

1
p2

− λ3 ≤
An

nAn−1

≤
e

1
h3 − 1

1
h3

+ ǫ3 = p3

13



h4 =
e

1
p3 − 1

1
p3

− λ4 ≤
An

nAn−1

≤
e

1
h4 − 1

1
h4

+ ǫ4 = p4

...

In this sequence of inequalities we have the strictly increasing and bounded sequence hn

and the strictly decreasing and bounded sequence pn. Consequently hn has limit l1 and pn

has limit l2. Next, we shall prove that l1 = l2 = l = 1
log 2

. Therefore we obtain the desired

limit (22). That is,

lim
n→∞

An

nAn−1

=
1

log 2
.

Note that the sequence λn has limit zero since λn ≤ 1
n

and the sequence ǫn has also limit
zero since ǫn ≤ 1

n

The sequence hn satisfies (see the sequence of inequalities) the following recurrence rela-
tion

hn =
e

1
pn−1 − 1

1
pn−1

− λn =
e

1

e

1
hn−1 −1

1
hn−1

+ǫn−1

− 1
1

e

1
hn−1 −1

1
hn−1

+ǫn−1

− λn.

Consequently if we take limits in both sides we obtain that l1 satisfies the equation

l1 =
e

1

e

1
l1 −1
1
l1 − 1

1

e

1
l1 −1
1
l1

. (48)

The sequence pn satisfies (see the sequence of inequalities) the following recurrence rela-
tion

pn =
e

1
hn − 1

1
hn

+ ǫn =
e

1

e

1
pn−1 −1

1
pn−1

−λn

− 1
1

e

1
pn−1 −1

1
pn−1

−λn

+ ǫn.

Consequently if we take limits in both sides we obtain that l2 satisfies the equation

l2 =
e

1

e

1
l2 −1
1
l2 − 1

1

e

1
l2 −1
1
l2

. (49)
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That is, l1 and l2 satisfy the same equation (see (48) and (49))

l =
e

1

e
1
l −1
1
l − 1

1

e
1
l −1
1
l

. (50)

This equation has the solution

l =
1

log 2
.

We shall prove that this solution is the unique positive solution to equation (50). Conse-
quently l1 = l2 = l = 1

log 2
.

Equation (50) is,

l =
e

1
 

e
1
l −1

!

l

− 1
1

„

e
1
l −1

«

l

.

That is,

1

e
1
l − 1

= e

1
 

e
1
l −1

!

l

− 1.

That is,
(

e
1
l − 1

)



e

1
 

e
1
l −1

!

l

− 1



 = 1.

That is,

e
1
l e

1
 

e
1
l −1

!

l

− e
1
l − e

1
 

e
1
l −1

!

l

= 0.

That is,

e

1
 

e
1
l −1

!

l

− e−
1
l e

1
 

e
1
l −1

!

l

= 1.

That is,

e

1
 

e
1
l −1

!

l
(

1 − e−
1
l

)

= 1.

Let us write x = 1
l

and consider the function

f(x) = e
x

ex
−1 (1 − e−x).

We have to prove that the unique positive solution to the equation

f(x) = e
x

ex
−1 (1 − e−x) = 1

15



is x = log 2. Note that f(0) = 0 and if x > 0 then f(x) > 0. On the other hand

lim
x→∞

f(x) = 1.

If x > 0 the derivative of f(x) is

f ′(x) = e
x

ex
−1

−x + 2 − 2e−x

ex − 1
.

Let us consider the function
g(x) = −x + 2 − 2e−x.

We have
g(0) = 0,

g(log 2) > 0,

lim
x→∞

g(x) = −∞.

Its derivative is
g′(x) = 2e−x − 1.

On the interval [0, log 2) we have g′(x) > 0.
In x = log 2 we have g′(x) = 0.
On the interval (log 2,∞] we have g′(x) < 0.
Therefore there exists a > log 2 such that g(a) = 0 . On the interval (0, a) is g(x) > 0

and on the interval (a,∞) is g(x) < 0.
Hence f(x) is strictly increasing in the interval [0, a) and f(x) is strictly decreasing and

greater than 1 in the interval [a,∞). Consequently the unique positive solution to (50) is
x = log 2.

Theorem 8. The following asymptotic formulae hold

An

An−1

∼
n

log 2
, (51)

lim
n→∞

An+1

An

= ∞, (52)

(An+1 − An) ∼ An+1, (53)

lim
n→∞

n

√

A1

A0

A2

A1
· · · An

An−1

An

An−1

=
1

e
, (54)

An+1 ∼ eA
1+ 1

n
n , (55)

log An = n log n − (1 + log log 2)n + o(n), (56)
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log An ∼ n log n, (57)

An =
nn

(log 2)ne(1+o(1))n
. (58)

Proof. Equation (51) is an immediate consequence of limit (22). Equations (54), (55), (56)
and (58) can be proved from limit (22) (see reference [1, Theorem 1.3]). Equation (52) is
an immediate consequence of equation (51). Equation (53) is an immediate consequence of
equation (52). Equation (57) is an immediate consequence of equation (56).
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