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Abstract

Kitaev, Liese, Remmel, and Sagan recently defined generalized factor order on
words comprised of letters from a partially ordered set (P,≤P ) by setting u ≤P w if
there is a contiguous subword v of w of the same length as u such that the i-th character
of v is greater than or equal to the i-th character of u for all i. This subword v is called
an embedding of u into w. For the case where P is the positive integers with the usual
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ordering, they defined the weight of a word w = w1 . . . wn to be wt(w) = tnx
Pn

i=1 wi ,
and the corresponding weight generating function F (u; t, x) =

∑

w≥P u wt(w). They
then defined two words u and v to be Wilf equivalent, denoted u ∽ v, if and only if
F (u; t, x) = F (v; t, x). They also defined the related generating function S(u; t, x) =
∑

w∈S(u) wt(w) where S(u) is the set of all words w such that the only embedding of u

into w is a suffix of w, and showed that u ∽ v if and only if S(u; t, x) = S(v; t, x). We
continue this study by giving an explicit formula for S(u; t, x) if u factors into a weakly
increasing word followed by a weakly decreasing word. We use this formula as an aid
to classify Wilf equivalence for all words of length 3. We also show that coefficients of
related generating functions are well-known sequences in several special cases. Finally,
we discuss a conjecture that if u ∽ v then u and v must be rearrangements, and the
stronger conjecture that there also must be a weight-preserving bijection f on words
over the positive integers such that f(w) is a rearrangement of w for all w, and w

embeds u if and only if f(w) embeds v.

1 Introduction and definitions

Kitaev, Liese, Remmel, and Sagan [2] recently introduced the generalized factor order on
words comprised of letters from a partially ordered set (poset). That is, let P = (P,≤P ) be
a poset and let P ∗ be the Kleene closure of P so that

P ∗ = {w = w1w2 . . . wn | n ≥ 0 and wi ∈ P for all i}.

For w ∈ P ∗, let |w| denote the number of characters in w. Then for any u,w ∈ P ∗, u is less
than or equal to w in the generalized factor order relative to P , written u ≤P w, if there
is a string v of |u| consecutive characters in w such that the i-th character of v is greater
than or equal to the i-th character of u under ≤P for each i, 1 ≤ i ≤ |u|. If u ≤P w, we
will also say that w embeds u, and that v is an embedding of u into w. We will primarily be
interested in the poset P1 = (P,≤), where P is the set of positive integers and ≤ is the usual
total order on P. In this case, for example, u = 321 ≤P1 w = 142322, and 423 and 322 are
embeddings of u into w. Kitaev, Liese, Remmel, and Sagan [2] noted that generalized factor
order is related to generalized subword order, in which the characters of v are not required
to be adjacent [3].

Kitaev, Liese, Remmel, and Sagan [2] defined Wilf equivalence under the generalized
factor order on the positive integers in the following way. For w = w1 . . . wn ∈ P

∗, let
Σ(w) =

∑n

i=1wi and define the weight of w to be wt(w) = tnxΣ(w). Then define

F(u) = {w ∈ P
∗ | u ≤P1 w},

and the related generating function

F (u; t, x) =
∑

w∈F(u)

wt(w).

Two words u, v ∈ P
∗ are then said to be Wilf equivalent, denoted u ∽ v, if and only

if F (u; t, x) = F (v; t, x). Kitaev, Liese, Remmel, and Sagan [2] noted that this idea, while
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inspired by the notion of Wilf equivalence used in the theory of pattern avoidance, is different,
since the partial order in question is not that of pattern containment. More information about
Wilf equivalence in the pattern avoidance context is contained in the survey article by Wilf
[4].

In proving results about Wilf equivalence, it is often convenient to study the sets

S(u) = {w ∈ P
∗ | u ≤P1 w and the last |u| characters of w form the only

embedding of u into w},

W(u) = {w ∈ P
∗ | u ≤P1 w and |w| = |u|}, and

A(u) = {w ∈ P
∗ | u 6≤P1 w}

and the corresponding weight generating functions

S(u; t, x) =
∑

w∈S(u)

wt(w),

W (u; t, x) =
∑

w∈W(u)

wt(w), and

A(u; t, x) =
∑

w∈A(u)

wt(w).

Kitaev, Liese, Remmel, and Sagan [2] proved that F (u; t, x), S(u; t, x), and A(u; t, x)
are rational. They constructed a non-deterministic finite automaton for each u ∈ P

∗ that
recognizes S(u), implying that S(u; t, x) is rational. That the others are rational follows
from the fact that the weight generating function for all words in P

∗ is

∑

w∈P∗

wt(w) =
1

1 −
∑

n≥1 tx
n

=
1

1 − tx/(1 − x)

=
1 − x

1 − x− tx
,

and therefore

F (u; t, x) = S(u; t, x)
1 − x

1 − x− tx
(1)

and

F (u; t, x) =
1 − x

1 − x− tx
− A(u; t, x).

We also note that W (u; t, x) is rational since

W (u; t, x) =
t|u|xΣ(u)

(1 − x)|u|
.

From (1), we have that F (u; t, x) = F (v; t, x) if and only if S(u; t, x) = S(v; t, x), and
therefore u ∽ v if and only if S(u; t, x) = S(v; t, x). Much of our work will be centered
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around computing explicit formulas for S(u; t, x) for certain words u. In particular, Kitaev,
Liese, Remmel and Sagan [2] gave two examples of classes of words u such that S(u; t, x)
has a simple form. That is, they proved that if u = 1 2 3 . . . n − 1 n or u = 1kbℓ for some
k ≥ 0, ℓ ≥ 1, and b ≥ 2, then S(u; t, x) = xstr

P (u;t,x)
for some polynomial P (u; t, x), and

produced an explicit expression for P (u; t, x) in each case. We shall show that there is a
much richer class of of words u such that S(u; t, x) has this same form. Specifically, for any
word u, let uinc be the longest weakly increasing prefix of u. If u = uincv and v is weakly
decreasing, then we shall say that u has an increasing/decreasing factorization and denote
v as udec. Thus if u = u1u2 . . . un has an increasing/decreasing factorization, then either
u1 ≤ · · · ≤ un, in which case uinc = u and udec is the empty string ε, or there is a k < n such
that u1 ≤ · · · ≤ uk > uk+1 ≥ · · · ≥ un, in which case uinc = u1 . . . uk and udec = uk+1 . . . un.
For the theorem that follows, we define

D(i)(u) = {n− i+ j : 1 ≤ j ≤ i and uj > un−i+j}

and di(u) =
∑

n−i+j∈D(i)(u)(uj − un−i+j). For example, if u = 1 2 3 4 4 3 1 1 and i = 5, then
by considering the diagram

1 2 3 4 4 3 1 1
1 2 3 4 4

we see that D(5)(u) = {7, 8} and d5(u) = (4 − 1) + (4 − 1) = 6. One of our main results is
the following theorem.

Theorem 1. Let u = u1u2 . . . un ∈ P
∗ have an increasing/decreasing factorization. For

1 ≤ i ≤ n− 1, let si = ui+1ui+2 . . . un and di = di(u). Also let sn = ε and dn = 0. Then

S(u; t, x) =
tnxΣ(u)

tnxΣ(u) + (1 − x− tx)
∑n

i=1 t
n−ixdi+Σ(si)(1 − x)i−1

.

Since the words u = 1 2 3 . . . n − 1 n or u = 1kbℓ for some k ≥ 0, ℓ ≥ 1, and b ≥ 2
clearly have increasing/decreasing factorizations, Theorem 1 covers both of the cases proved
by Kitaev, Liese, Remmel and Sagan [2].

Theorem 1 will lead us to the other main results in our work. First, we will use Theorem
1, as well as a slight modification in a special case, to completely classify the Wilf equivalence
classes of P1 for all words of length 3. We will also compute S(u; t, x), along with F (u; t, x)
and A(u; t, x), for some simple words and show that the coefficients in these generating
functions are often well-known sequences. Next, Theorem 1 will allow us to show that if
u and v are words with increasing/decreasing factorizations, then u ∽ v if and only if v
is a rearrangement of the letters of u. This shows that words with increasing/decreasing
factorizations satisfy the following conjecture of Kitaev, Liese, Remmel, and Sagan [2].

Conjecture 2 (Kitaev, Liese, Remmel, Sagan). If u ∽ v, then v is a rearrangement of u.

We shall call this conjecture the weak rearrangement conjecture. In fact, we conjecture
something much stronger is true.

Conjecture 3. If u ∽ v, then there is a weight preserving bijection f : P
∗ → P

∗ such that
for all w ∈ P

∗, f(w) is a rearrangement of w and w ∈ F(u) ⇐⇒ f(w) ∈ F(v).
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We will call such a bijection f a rearrangement map that witnesses u ∽ v and refer to
this conjecture as the strong rearrangement conjecture. All the Wilf equivalences proved
by Kitaev, Liese, Remmel, and Sagan in Section 4 of [2] were proved by a constructing a
rearrangement map that witnessed the given Wilf equivalence.

We investigate the rearrangement conjectures by considering the class of finite posets
P[m] = ([m],≤), where [m] = {1, . . . ,m} and ≤ is the usual total order on P. For any word
w ∈ [m]∗ and i ∈ [m], let ci(w) equal the number of occurrences of i in w. Then we introduce

variables x1, x2, . . . , xm, and define the weight of w, W[m](w), to be W[m](w) =
∏m

i=1 x
ci(w)
i .

To define Wilf equivalence in this context, we set

F (u;x1, . . . , xm) =
∑

w∈F(u)∩[m]∗

W[m](w),

and define u, v ∈ [m]∗ to be Wilf equivalent with respect to the poset P[m], denoted u ∽[m] v, if
and only F (u;x1, . . . , xm) = F (v;x1, . . . , xm). We will also have use for the related generating
functions

W (u;x1, . . . , xm) =
∑

w∈W(u)∩[m]∗

W[m](w),

S(u;x1, . . . , xm) =
∑

w∈S(u)∩[m]∗

W[m](w), and

A(u;x1, . . . , xm) =
∑

w∈A(u)∩[m]∗

W[m](w).

Note that we have dropped the t dependence in these generating functions since length is
recorded by the number of variables in a monomial. We now have

∑

w∈[m]∗

W[m](w) =
1

1 −
∑m

i=1 xi

.

Thus since F(u)∩ [m]∗ = (S(u)∩ [m]∗)[m]∗ and A(u)∩ [m]∗ = [m]∗− (F(u)∩ [m]∗), we have
that

F (u;x1, . . . , xm) = S(u;x1, . . . , xm)
1

1 −
∑m

i=1 xi

and

A(u;x1, . . . , xm) =
1

1 −
∑m

i=1 xi

− F (u;x1, . . . , xm)

so that if any one of F (u;x1, . . . , xm), A(u;x1, . . . , xm), or S(u;x1, . . . , xm) is rational, then
so are the other two. It follows from Theorem 8.2 of [2] that S(u;x1, . . . , xm) is rational for
all m ≥ 1, so F (u;x1, . . . , xm) and A(u;x1, . . . , xm) are also rational for all m ≥ 1. Also note
that if u = u1 . . . un, then

W (u;x1, . . . , xm) =
n∏

r=1

m∑

s=ur

xs,
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so W (u;x1, . . . , xm) is rational. We will show that if u ∽[m] v for some m, then there is a
rearrangement map that witnesses the equivalence u ∽ v. This gives us a way to test the
strong rearrangement conjecture for any particular pair of words u, v ∈ P

∗. We will also give
an analogue of Theorem 1 for these posets.

The outline of this paper is as follows. In Section 2, we prove Theorem 1 and show that the
weak rearrangement conjecture holds for words with increasing/decreasing factorizations. In
Section 3, we compute F (u; t, x), S(u; t, x) andA(u; t, x) for some simple words. In particular,
we show that the sequences of coefficients that arise in the expansions around x = 0 of
F (k; 1, x), S(k; 1, x), A(k; 1, x), S(1k1; 1, x) and A(1k1; 1, x) as k varies have appeared in
the On-line Encyclopedia of Integer Sequences (OEIS). We follow this with the classification
of the Wilf equivalence classes of words of length 3 in Section 4. The results of Sections 2
and 4 allow us to compute S(σ; t, x) and A(σ; t, x) for all permutations in the symmetric
group S3 as there are only two Wilf equivalences classes for such permutations. In these
cases, the coefficients that arise in the expansions of S(σ; 1, x) and A(σ; 1, x) around x = 0
do not correspond to any sequences that have appeared in the OEIS. We discuss the strong
rearrangement conjecture in Section 5, as well as the analogue of Theorem 1 for the posets
P[m]. We conclude with a few remarks about further work in Section 6.

2 Words such that S(u; t, x) = xstr

P (u;t,x) where P (u; t, x) is a

polynomial.

In this section we prove Theorem 1, and show that Conjecture 2 holds for words with an
increasing/decreasing factorization.

Proof of Theorem 1. Let u = u1u2 . . . un ∈ P
∗ have an increasing/decreasing factorization.

If w = w1 . . . wm ∈ S(u), then w1 . . . wm−n ∈ A(u) and u ≤ wm−n+1 . . . wm. However if
v ∈ A(u) and z = z1 . . . zn is such that u ≤ z, then it may not be the case that w = vz ∈ S(u)
because there might be another embedding of u in the last 2n− 1 letters of w, starting in v
and ending in z. Of course, there can be no embedding of u which starts to the left of the
last 2n − 1 letters of w since v ∈ A(u). For each 1 ≤ i ≤ n − 1, we define S(i)(u) to be set
of all words w = w1 . . . wm such that

(i) u ≤ wm−n+1 . . . wm (so that u embeds into the suffix of length n of w) and

(ii) the left-most embedding of u into w starts at position m− 2n+ i+ 1.

Note that S(i)(u) is empty when m− 2n+ i+ 1 is non-positive. We then let

S(i)(u; t, x) =
∑

w∈S(i)(u)

wt(w) =
∑

w∈S(i)(u)

xΣ(w)t|w|.

Thus

S(u) = A(u)W(u) −
n−1⋃

i=1

S(i)(u). (2)
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Now,

∑

w∈A(u)W(u)

xΣ(w)t|w| = A(u; t, x)
tnxΣ(u)

(1 − x)n

=
(1 − x)

(1 − x− tx)
(1 − S(u; t, x))

tnxΣ(u)

(1 − x)n
. (3)

We claim that we have the following lemma.

Lemma 4. Let u = u1u2 . . . un ∈ P
∗ have an increasing/decreasing factorization, and define

di and si as in Theorem 1. Then for 1 ≤ i ≤ n− 1,

S(i)(u; t, x) = S(u; t, x)tn−ixdi+Σ(si)

(
1

1 − x

)n−i

.

Given Lemma 4, it is easy to complete the proof of Theorem 1. That is, our definitions
ensure that S(1)(u),S(2)(u), . . . ,S(n−1)(u) are pairwise disjoint, so that

∑

w∈
Sn−1

i=1 S(i)(u)

xΣ(w)t|w| =
n−1∑

i=1

S(i)(u; t, x)

= S(u; t, x)
n−1∑

i=1

tn−ixdi+Σ(si)

(
1

1 − x

)n−i

.

Thus it follows from (2) and (3) that

S(u; t, x) =
(1 − x)

(1 − x− tx)
(1 − S(u; t, x))

tnxΣ(u)

(1 − x)n

−S(u; t, x)
n−1∑

i=1

xdi+Σ(s)itn−i

(1 − x)n−i
.

Solving for S(u; t, x) will yield the result in the theorem.
Thus we need only prove Lemma 4. To this end, fix i, 1 ≤ i ≤ n − 1, and suppose that

w = w1 . . . wm ∈ S(i)(u). If w̄ = w1 . . . wm−n+i, then our definitions ensure that

1. w̄ ∈ S(u),

2. u1 . . . ui ≤ wm−n+1 . . . wm−n+i and

3. si = ui+1 . . . un ≤ wm−n+i+1 . . . wm.

Now, the generating function of all words v of length n− i such that si ≤ v is xΣ(si)tn−i

(1−x)n−i .

So let S̄(i)(u) denote the set of all words w̄ that satisfy conditions 1 and 2, and let

S̄(i)(u; t, x) =
∑

w̄∈S̄(i)(u)

xΣ(w̄)t|w̄|.
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Then

S(i)(u; t, x) = S̄(i)(u; t, x)
xΣ(si)tn−i

(1 − x)n−i
.

Thus we need only show that

S̄(i)(u; t, x) = xdiS(u; t, x). (4)

Now suppose that v = v1 . . . vp ∈ S̄(i)(u). Then let ṽ = ṽ1 . . . ṽp be the word that results
from v by decrementing vp−i+j by uj − un−i+j if n − i + j ∈ D(i)(u) and leaving all other
letters the same. If n − i + j ∈ D(i)(u), then vp−i+j ≥ uj, and hence ṽp−i+j ≥ un−i+j.
Thus it will still be the case that u embeds in the final segment of ṽ of length n so that
ṽ ∈ S(u). Thus to complete the proof of (4), we need only show that if we start with a word
ṽ = ṽ1 . . . ṽp in S(u) and create a new word v = v1 . . . vp by incrementing ṽp−i+j by uj−un−i+j

if n − i + j ∈ D(i)(u) and leaving all other letters the same, then v ∈ S̄(i)(u). Clearly v
satisfies condition (2) above. The only question is whether v is still in S(u). That is, since
we have incremented some letters in ṽ to get v, we might have created a new embedding of u
which starts to the left of position p−n+1. If so, any such embedding must contain at least
one position of the form p− i+ j where n− i+ j ∈ D(i)(u). However if ur is the letter in this
new embedding of u into v which corresponds to position p− i+ j, then r must be strictly
greater than n − i + j. But if u = u1 ≤ · · · ≤ uk > uk+1 ≥ · · · ≥ un, then it must always
be the case that D(i)(u) ⊆ {k + 1, . . . , n}. That is, if j < n − i + j ≤ k, then uj ≤ un−i+j

and hence n − i + j 6∈ D(i)(u). Hence un−i+j ≥ ur. But then ṽp−i+j ≥ un−i+j ≥ ur which
would mean that there would have been an embedding of u into ṽ which started to the left
of p−n+ 1. Since ṽ was assumed to be in S(u), there can be no such embedding and hence
v ∈ S(u). Thus (4) holds and the lemma is proved.

To illustrate the ideas in the proof, consider u = 1 2 6 5 3 2, so that uinc = 1 2 6 and
udec = 5 3 2, and let i = 5. Then elements of S̄(5)(u) must end in an embedding of u in the
final six characters and an embedding of 1 2 6 5 3 in the final five characters, as shown:

ṽ = · · · • • • ⋆ ⋆ ⋆
1 2 6 5 3 2

1 2 6 5 3
,

where the stars indicate the positions in ṽ that must be increased to form v. Note that the
stars all embed characters of udec, and that d5 = (6− 5) + (5− 3) + (3− 2) = 4. If v were to
contain a new embedding of u to the left of the first original embedding, that new embedding
must end in the second or third position from the end:

v = · · · • • • • ⋆ ⋆ ⋆
1 2 6 5 3 2

1 2 6 5 3 2

or
v = · · · • • • • • ⋆ ⋆ ⋆

1 2 6 5 3 2
1 2 6 5 3 2

.
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But in both cases, the characters below the stars are decreasing, so such an embedding would
have already existed in ṽ.

It is worth noting here that the condition that u has an increasing/decreasing factorization
is necessary for the technique in the proof of Lemma 4 to be valid. That is, if u does not
have an increasing/decreasing factorization, there is always at least one index i where words
counted by S̄(i)(u; t, x) can not be formed by simply starting with a word ṽ ∈ S(u) and
creating a word v = v1 . . . vp by incrementing ṽp−i+j by uj − un−i+j if n − i + j ∈ D(i)(u)
and leaving all other letters the same. For example, consider u = 2112 with i = 2. Then
D(2)(u) = {3} and d2(u) = 1. However if we start with ṽ = 122112 ∈ S(u) and increment
ṽ5 to obtain v, then v = 122122 which is not in S(u) because there is an embedding of u
which starts at position 2. The problem here is that the second 1 in u is followed by a larger
character, and also has a larger character to its left. A similar situation will always occur
for at least one i when u does not have an increasing/decreasing factorization. Experimental
evidence suggests the following conjecture.

Conjecture 5. For u ∈ P
∗, S(u; t, x) = xstr

P (u;t,x)
where P (u; t, x) is a polynomial if and only

if u has an increasing/decreasing factorization.

It is a consequence of Corollary 4.2 in [2] that if u and v have increasing/decreasing fac-
torizations and u is a rearrangement of v, then u ∽ v. We shall give a new proof of that fact
here, as well as prove the converse. That is, if u and v both have increasing/decreasing factor-
izations and u ∽ v, then u and v are rearrangements, showing that the weak rearrangement
conjecture holds for words with increasing/decreasing factorizations.

We begin with the following lemma.

Lemma 6. Suppose u = u1 . . . un is a rearrangement of v = v1 . . . vn and that u and v have
increasing/decreasing factorizations. For each i, 1 ≤ i ≤ n−1, let si(u) = ui+1 . . . un, si(v) =
vi+1 . . . vn, di(u) =

∑

n−i+j∈D(i)(u)(uj−un−i+j), and di(v) =
∑

n−i+j∈D(i)(v)(vj−vn−i+j). Then
for all 1 ≤ i ≤ n− 1,

di(u) + Σ(si(u)) = di(v) + Σ(si(v)).

Proof. First suppose that u = u1 . . . un where u1 ≤ · · · ≤ un. Then for each i, 1 ≤ i ≤ n− 1,
di(u) = 0 and Σ(si(u)) =

∑n

j=i+1 uj. So it suffices to show that di(v) + Σ(si(v)) = Σ(si(u))
for all 1 ≤ i ≤ n − 1 whenever v has an increasing/decreasing factorization and v is a
rearrangement of u. So fix i, 1 ≤ i ≤ n − 1, and let σ = σ1 . . . σn be a permutation of
{1, . . . , n} such that

v = uσ1 ≤ · · · ≤ uσj
> uσj+1

≥ · · · ≥ uσn
.

Then let

Ai = {s : s ≤ i and us ∈ {uσ1 , . . . , uσj
}},

Bi = {s : s > i and us ∈ {uσ1 , . . . , uσj
}},

Ci = {s : s > i and us ∈ {uσj+1
, . . . , uσn

}}, and

Di = {s : s ≤ i and us ∈ {uσj+1
, . . . , uσn

}}.
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For example, suppose u = 1 2 3 3 4 5 5 6 7 7 and σ = 2 3 4 9 10 8 7 6 5 1 so that

v = u2 u3 u4 u9 u10 u8 u7 u6 u5 u1

= 2 3 3 7 7 6 5 5 4 1

and j = 5. Then for i = 6, A6 = {2, 3, 4}, B6 = {9, 10}, C6 = {7, 8}, and D6 = {1, 5, 6}.
Let ai = |Ai|, bi = |Bi|, ci = |Ci|, and di = |Di|. Then our definitions force ai + di = i,
bi +ci = n− i, ai +bi = j, and ci +di = n− j. For any set D = {d1 < · · · < dr} ⊆ {1, . . . , n},
let

D(u)↑ = ud1ud2 . . . udr
and

D(u)↓ = udr
udr−1 . . . ud1 .

Thus v = Ai(u)↑ Bi(u)↑ Ci(u)↓ Di(u)↓ and Σ(Bi(u)↑) + Σ(Ci(u)↓) = Σ(si(u)). We then
have four cases to consider depending on whether vi ∈ Ai(u)↑, vi ∈ Bi(u)↑, vi ∈ Ci(u)↓, or
vi ∈ Di(u)↓.

Case 1. vi ∈ Ai(u)↑.

In this case, it must be that i = ai and Ai(u)↑= u1 . . . ui. But then Di = ∅ and si(v) =
Bi(u)↑ Ci(u)↓, a rearrangement of si(u). Moreover, it will be the case that vj ≤ vn−i+j for
j = 1, . . . , i so that di(v) = 0. Thus di(v) + Σ(si(v)) = Σ(si(u)) as desired. As an example,
with u as in the previous example, consider

v = u1 u2 u3 u4 u5 u6 u9 u10 u8 u7

= 1 2 3 3 4 5 7 7 6 5

so that j = 8, and again let i = 6. Then as indicated by the dividers, A6(u)↑= u1 . . . u6 so
that ai = i = 6, B6(u)↑= u9u10 and C6(u)↓= u8u7.

Case 2. vi ∈ Bi(u)↑.

In this case ai < i ≤ ai + bi. For example, with the same u as above, let

v = u2 u3 u4 u6 u7 u9 u10 u8 u5 u1

= 2 3 3 5 5 7 7 6 4 1

so that j = 7, and again let i = 6. Then A6(u)↑= u2u3u4u6, B
6(u)↑= u7u9u10, C

6(u)↓= u8,
and D6(u)↓= u5u1, so v6 ∈ B6(u)↑ and a6 = 4 < i ≤ 7 = a6 + b6.

Now let Bi
1(u) = vai+1 . . . vi and Bi

2(u) = vi+1 . . . vai+bi
. Then si(v) = Bi

2(u)C
i(u) ↓

Di(u)↓. When we compare the first i letters of v with the last i letters of v, we see that the
letters in Bi

1(u) are compared with the letters in Di(u)↓ since |Bi
1(u)| = i − ai = |Di(u)↓ |.

But the letters in Di(u)↓ come from {us : s ≤ i} and the letters from Bi
1(u) come from

{us : s > i}. Thus any letter in Bi
1(u) is greater than or equal to every letter in Di(u)↓

so that such letters will contribute Σ(Bi
1(u)) − Σ(Di(u)↓) to di(v). However the letters in

10



Ai(u)↑ will be compared to letters that lie in either Ci(u)↓, Bi(u)↑, or later letters in Ai(u)↑,
and hence they will contribute 0 to di(v). Thus

di(v) + Σ(si(v)) = Σ(Bi
1(u)) − Σ(Di(u)↓) + Σ(Bi

2(u)) + Σ(Ci(u)↓) + Σ(Di(u)↓)

= Σ(Bi(u)↑) + Σ(Ci(u)↓) = Σ(si(u)).

Case 3. vi ∈ Ci(u)↓.

In this case ai + bi < i ≤ ai + bi + ci. For example, with the same u as above let

v = u2 u3 u9 u10 u8 u7 u6 u5 u4 u1

= 2 3 7 7 6 5 5 4 3 1

so that j = 4, and again let i = 6. Then A6(u)↑= u2u3, B
6(u)↑= u9u10, C

6(u)↓= u8u7, and
D6(u)↓= u6u5u4u1, so v6 ∈ C6(u)↑ and a6 + b6 = 4 < i ≤ 6 = a6 + b6 + c6.

Now let Ci
1(u) = vai+bi+1 . . . vi and Ci

2(u) = vi+1 . . . vai+bi+ci
. Then si(v) = Ci

2(u)D
i(u)↓.

When we compare the first i letters of v with the last i letters of v, we see that the letters
in Bi(u)↑ Ci

1(u) are compared with the letters in Di(u)↓ since |Bi(u)↑ |+ |Ci
1(u)| = i− ai =

|Di(u)↓ |. But the letters in Di
i(u)↓ come from {us : s ≤ i} and the letters from Bi(u)↑ Ci

1(u)
come from {us : s > i}. Thus any letter in Bi(u)↑ Ci

1(u) is greater than or equal to every
letter in Di(u)↓ so that such letters will contribute Σ(Bi(u)↑) + Σ(Ci

1(u)) − Σ(Di(u)↓) to
di(v). However the letters in Ai(u)↑ will be compared to letters that lie in either Ci(u)↓,
Bi(u)↑, or later letters in Ai(u)↑, and hence they will contribute 0 to di(v). Thus

di(v) + Σ(si(v)) = Σ(Bi(u)↑) + Σ(Ci
1(u)) − Σ(Di(u)↓) + Σ(Ci

2(u)) + Σ(Di(u)↓)

= Σ(Bi(u)↑) + Σ(Ci(u)↓) = Σ(si(u)).

Case 4. vi ∈ Di(u)↑.

In this case ai + bi + ci < i. For example, with the same u as above, now let

v = u2 u9 u10 u8 u7 u6 u5 u4 u3 u1

= 2 7 7 6 5 5 4 3 3 1

so that j = 3, and once again let i = 6. Then A6(u)↑= u2, B
6(u)↑= u9u10, C

6(u)↓= u8u7,
and D6(u)↓= u6u5u4u3u1, so v6 ∈ D6(u)↑ and a6 + b6 + c6 = 5 < i.

Now let Di
1(u) = vai+bi+ci+1 . . . vi and Di

2(u) = vi+1 . . . vn. Then si(v) = Di
2(u). When

we compare the first i letters of v with the last i letters of v, we see that the letters in
Bi(u)↑ Ci(u)↓ Di

1(u) are compared with the letters in Di(u)↓ since |Bi(u)↑ | + |Ci(u)↓
|+ |Di

1(u)| = i− ai = |Di(u)↓ |. But each letter in Bi(u)↑ Ci(u)↓ Di
1(u) will be greater than

or equal to its corresponding letter in Di(u)↓, so that such letters will contribute

Σ(Bi(u)↑) + Σ(Ci(u)↓) + Σ(Di
1(u)) − (Σ(Di

1(u)) + Σ(Di
2(u))) =

Σ(Bi(u)↑) + Σ(Ci(u)↓) − Σ(Di
2(u))
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to di(v). However the letters in Ai(u)↑ will be compared to letters that lie in either Ci(u)↓,
Bi(u)↑, or later letters in Ai(u)↑ and hence they will contribute 0 to di(v). Thus

di(v) + Σ(si(v)) = Σ(Bi(u)↑) + Σ(Ci(u)↓) − Σ(Di
2(u)) + Σ(Di

2(u))

= Σ(Bi(u)↑) + Σ(Ci(u)↓) = Σ(si(u)).

We are now ready for the result referred to immediately before Lemma 6.

Theorem 7. If u, v ∈ P
∗ have increasing/decreasing factorizations, then u ∽ v if and only

if u is a rearrangement of v.

Proof. Suppose u, v ∈ P
∗ have increasing/decreasing factorizations. If u is a rearrangement

of v, then S(u; t, x) = S(v; t, x) by Theorem 1 and Lemma 6. Hence u ∽ v.
For the converse, suppose u ∽ v. Since we have just shown that a word with an in-

creasing/decreasing factorization is Wilf equivalent to any rearrangement of itself with an
increasing/decreasing factorization, it suffices to consider the case when u and v are both
nondecreasing, and to show that u = v. So let u = u1u2 · · ·un and v = v1v2 · · · vn be nonde-
creasing. First note that u ∽ v implies wt(u) = wt(v) since for any word w, the minimum
powers of x and t in F (w; t, x) are Σ(u) and |u|, respectively. So the numerators of the
expressions for S(u; t, x) = S(v; t, x) in Theorem 1 are equal. Equating the denominators,
and noting that di = 0 for all i for both u and v, we have

tnxΣ(v) + (1 − x− tx)
n∑

i=1

tn−ix
Pn

j=i+1 vj(1 − x)i−1

= tnxΣ(u) + (1 − x− tx)
n∑

i=1

tn−ix
Pn

j=i+1 uj(1 − x)i−1.

Simplifying, this becomes

n∑

i=1

tn−ix
Pn

j=i+1 vj(1 − x)i−1 =
n∑

i=1

tn−ix
Pn

j=i+1 uj(1 − x)i−1.

Hence for each i, 1 ≤ i ≤ n, we have

x
Pm

j=i+1 vj = x
Pn

j=i+1 uj ,

and therefore u = v.

Since the values of di + Σ(si) determine equivalence for those words with increasing/
decreasing factorizations, it is natural to ask the same question about those that do not.
Unfortunately, equality of di + Σ(si) for all i is not enough to determine equivalence in

12



general. For example, it was shown in [2] that 24153 and 24315 are not Wilf equivalent, but
both have the following values:

i di + Σ(si)
1 13
2 10
3 9
4 8

.

However, we have not found two words that are Wilf equivalent that have different values of
di + Σ(si). In particular, the equivalences proved by Kitaev, Liese, Remmel, and Sagan [2]
all preserve equality between the di + Σ(si)’s.

3 Connections with some known sequences

In this section we show that some well-known sequences occur as coefficients in the generating
functions S(u; 1, x), A(u; 1, x), and F (u; 1, x) for some simple words u. For those sequences
that appear in the OEIS, we provide the sequence number as well as a combinatorial proof
as to why the entries of the sequence count particular words.

3.1 Words consisting of a single digit

The first family of words we will examine is that of words consisting of a single digit i ≥ 1.
From Theorem 1 we obtain that

S(i; t, x) =
txi

txi + (1 − x− tx)

and

A(i; t, x) =
1 − x

1 − x− tx
(1 − S(i; t, x)) =

1

1 − t
∑i−1

j=1 x
j
.

If we let t = 1 and i = 3, 4 . . ., we obtain some familiar generating functions:

A(3; 1, x) =
1

1 − x− x2
= 1 + x+ 2x2 + 3x3 + 5x4 + 8x5 + 13x6 + · · ·

A(4; 1, x) =
1

1 − x− x2 − x3
= 1 + x+ 2x2 + 4x3 + 7x4 + 13x5 + 24x6 + · · ·

A(5; 1, x) =
1

1 − x− x2 − x3 − x4
= 1 + x+ 2x2 + 4x3 + 8x4 + 15x5 + 29x6 + · · ·

A(6; 1, x) =
1

1 − x− x2 − x3 − x4 − x5
= 1 + x+ 2x2 + 4x3 + 8x4 + 16x5 + 31x6 + · · · ..

The coefficients of A(3; 1, x), A(4; 1, x), A(5; 1, x), A(6; 1, x) are the Fibonacci numbers (se-
quence A000045 in OEIS), Tribonacci numbers (A000073) , Tetranacci numbers (A000078),
and Pentanacci numbers (A001591), respectively. In general, the coefficient of xj in A(i; 1, x)
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is F i−1
j+1 ,the (i−1)-step Fibonnaci number. The n-step Fibonacci number is defined by F n

k = 0
for k ≤ 0, F n

1 = F n
2 = 1, and all other terms by the recurrence

F n
k =

n∑

i=1

F n
k−i.

This fact is easily verified by classifying words in A(i) by their last digit. If we expand
S(i; 1, x) as a series we obtain

S(3; 1, x) =
x3

1 − 2x+ x3
= x3(1 + 2x+ 4x2 + 7x3 + 12x4 + 20x5 + 33x6 + · · · )

S(4; 1, x) =
x4

1 − 2x+ x4
= x4(1 + 2x+ 4x2 + 8x3 + 15x4 + 28x5 + 52x6 + · · · )

S(5; 1, x) =
x5

1 − 2x+ x5
= x5(1 + 2x+ 4x2 + 8x3 + 16x4 + 31x5 + 60x6 + · · · )

S(6; 1, x) =
x6

1 − 2x+ x6
= x6(1 + 2x+ 4x2 + 8x3 + 16x4 + 32x5 + 63x6 + · · · ).

The coefficients of S(3; 1, x), S(4; 1, x), S(5; 1, x), and S(6; 1, x) are partial sums of Fibonacci
(A000071), Tribonacci (A008937), Tetranacci (A107066), and Pentanacci (A001949) num-
bers, respectively. In fact, the coefficients of S(i; 1, x) are the partial sums of the (i−1)-step
Fibonacci numbers and can be found in i-th column of the array defined in A172119. It is
also easy to verify this fact by classifying words in S(i) by their last digit.

Lastly, using the relationship

F (u; t, x) =
1 − x

1 − x− tx
− A(u; t, x),

we obtain

F (i; t, x) =
1 − x

1 − x− tx
−

1

1 − t
∑i−1

j=1 x
j
.

With t = 1 this simplifies to

F (i; 1, x) =
xi

1 − 3x+ x2 + · · · + xi−1 + 2xi
.

Expanding F (i; 1, x) as a series we then obtain
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F (3; 1, x) =
x3

1 − 3x+ x2 + 2x3
= x3(1 + 3x+ 8x2 + 19x3 + 43x4 + 94x5 + 201x6 + · · · )

F (4; 1, x) =
x4

1 − 3x+ x2 + x3 + 2x4
= x4(1 + 3x+ 8x2 + 20x3 + 47x4 + 107x5 +

238x6 + · · · )

F (5; 1, x) =
x5

1 − 3x+ x2 + x3 + x4 + 2x5
= x5(1 + 3x+ 8x2 + 20x3 + 48x4 +

111x5 + 251x6 + · · · )

F (6; 1, x) =
x6

1 − 3x+ x2 + x3 + x4 + x5 + 2x6
= x6(1 + 3x+ 8x2 + 20x3 + 48x4 +

112x5 + 255x6 + · · · ).

The coefficient of xj for F (3; 1, x), F (4; 1, x), F (5; 1, x), and F (6; 1, x) is 2j−1 minus F 2
j+1

(A008466), 2j−1 minus F 3
j+1 (A050231), 2j−1 minus F 4

j+1 (A050232) and 2j−1 minus F 5
j+1

(A050233) respectively. In general, the coefficient of xj in F (i; 1, x) is 2j−1 minus F i−1
j+1 .

This fact is also easily verified as the total number of words of weight j is simply 2j−1 (the
number of compositions of j) and we can subtract the number of words that avoid u, which
has already been shown to be an (i − 1)-step Fibonacci number, to obtain the number of
words that embed u.

3.2 Words of the form 1 (1 + s) 1

We now turn to a different family of words. Suppose that u = r (r + s) r where r, s ≥ 1.
Then in the notation of Theorem 1, s1 = (r + s) r, s2 = r and s3 = ε. To compute d1(u)
and d2(u), consider the arrays

r r + s r r r + s r
r r + s r r r + s r.

It is easy to see from these arrays that d1(u) = 0 and ds(u) = s. Thus d1(u)+Σ(s1) = 2r+ s
and d2(u) + Σ(s2) = r + s. By definition d3(u) = 0 so that d3(u) + Σ(s3) = 0. Thus by
Theorem 1

S(r (r + s) r; t, x) =
t3x3r+s

t3x3r+s + (1 − x− xt)(t2x2r+s + txr+s(1 − x) + (1 − x)2)

and

A(r (r + s) r; t, x) =
1 − x

1 − x− xt
(1 − S(r (r + s) r; t, x)).

Now, when t = 1 and r = 1 these simplify to

S(1 (1 + s) 1; 1, x) =
x3+s

(1 − x)3(1 −
∑s

i=1 x
i)

A(1 (1 + s) 1; 1, x) =
1 − 2x+ x2 + xs+1

(1 − x)2(1 −
∑s

i=1 x
i)
.
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We can expand these functions as power series around x = 0 and find that

S(121; 1, x) = x4 + 4x5 + 10x6 + 20x7 + 35x8 + 56x9 + 84x10 + 120x11 + 165x12 +

220x13 + 286x14 + 364x15 + 455x16 + 560x17 + 680x18 + · · · ,

S(131; 1, x) = x5 + 4x6 + 11x7 + 25x8 + 51x9 + 97x10 + 176x11 + 309x12 + 530x13 +

894x14 + 1490x15 + 2462x16 + 4043x17 + 6610x18 + · · · ,

S(141; 1, x) = x6 + 4x7 + 11x8 + 26x9 + 56x10 + 114x11 + 224x12 + 430x13 + 813x14 +

1522x15 + 2831x16 + 5244x17 + 9688x18 + · · · , and

S(151; 1, x) = x7 + 4x8 + 11x9 + 26x10 + 57x11 + 119x12 + 241x13 + 479x14 + 941x15 +

1835x16 + 3562x17 + 6895x18 + · · · .

Now, the sequence 1, 4, 10, 20, 35, 56, . . . of coefficients starting at x4 for S(121; 1, x) is the
sequence of tetrahedral numbers (A000292), defined by a(n) =

(
n+2

3

)
. Thus we obtain a new

combinatorial interpretation of these numbers. That is, a(n) equals the number of words u
such that

∑
(u) = n+3 and u ∈ S(121). In fact, there is a simple bijective proof of this fact.

It is well known that the tetrahedral numbers count the number of weak compositions of
n−1 into 4 parts. Given such a weak composition of n−1 into 4 parts, say c = (c1, c2, c3, c4)
we can define f(c) to be the word

f(c) := (c1 + 1) 1 1 . . . 1
︸ ︷︷ ︸

c2

(c3 + 2) (c4 + 1).

Note that
∑
f(c) = n + 3 and f(c) ∈ S(121). It is a simple verification that f is indeed a

bijection.
Similarly the sequence of coefficients starting at x5 for S(131; 1, x) appears in the OEIS

as sequence A014162. In this case, with an off-set of 4, these numbers b(n) count the number
of 132-avoiding two-stack sortable permutations which contain exactly one subsequence of
type 51234. See Egge and Mansour [1]. Again, we obtain a new combinatorial interpretation
of these numbers. That is, b(n) equals the number of words u such that

∑
(u) = n+ 4 and

u ∈ S(131). A bijective proof of this connection is an interesting open problem.
The sequences of coefficients for S(141, 1, x) and S(151, 1, x) have not previously appeared

in the OEIS.
Similarly, one can expand A(1 (1+ s) 1; 1, x) as a power series about x = 0 and find that

A(121; 1, x) = 1 + x+ 2x2 + 4x3 + 7x4 + 11x5 + 16x6 + 22x7 + 29x8 + 37x9 + 46x10 +

56x11 + 67x12 + 79x13 + 92x14 + 106x15 + · · · ,

A(131; 1, x) = 1 + x+ 2x2 + 4x3 + 8x4 + 15x5 + 27x6 + 47x7 + 80x8 + 134x9 + 222x10 +

365x11 + 597x12 + 973x13 + 1582x14 + 2568x15 + · · · ,

A(141; 1, x) = 1 + x+ 2x2 + 4x3 + 8x4 + 16x5 + 31x6 + 59x7 + 111x8 + 207x9 + 384x10 +

710x11 + 1310x12 + 2414x13 + 4445x14 + 8181x15 + · · · , and

A(151; 1, x) = 1 + x+ 2x2 + 4x3 + 8x4 + 16x5 + 32x6 + 63x7 + 123x8 + 239x9 + 463x10 +

895x11 + 1728x12 + 3334x13 + 6430x14 + 12398x15 + · · · .
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The coefficient of xn in A(121; 1, x) is a(n) =
(

n

2

)
+1. These numbers are the central polygonal

numbers (A000124) and one interpretation of a(n+1) is the number of length n binary words
that have no 0-digits between any pair of consecutive 1-digits. There is a simple bijective
proof of this fact which we will present at the end of this subsection. Another interpretation
is the maximal number of pieces obtained when slicing a pancake with n cuts.

The sequence of coefficients in the expansion of A(131; 1, x) starting at x is A000126 and
counts the number of length n binary words with fewer than two 0-digits between any pair
of consecutive 1-digits. It also counts the number of ternary numbers with no 0-digit and at
least one 2-digit.

The sequence of coefficients in the expansion of A(141; 1, x) starting at x is A007800
counts the number of length n binary words with fewer than three 0-digits between any pair
of consecutive 1-digits. It is also said to have come from a problem in AI planning and satisfies
a recurrence a(n) = 4+a(n−1)+a(n−2)+a(n−3)+a(n−4)−a(n−5)−a(n−6)−a(n−7)
for n > 7.

The sequences of coefficients in the expansion of A(151; 1, x) and A(161; 1, x) starting at
x are A145112 and A145113 respectively, and count the number of length n binary words
with fewer than four (resp. five) 0-digits between any pair of consecutive 1-digits.

In general, the sequence of coefficients in the expansion of A(1i1; 1, x) for i ≥ 2 starting at
x counts the number of length n binary words with fewer than i−1 0-digits between any pair
of consecutive 1-digits. We then obtain a new combinatorial interpretation of these numbers
as the number of words of u such that

∑
(u) = n+ 1 and u does not embed 1i1. There is a

simple bijective proof of this fact. Given a binary word w of length n with fewer than i− 1
0-digits between any pair of consecutive 1-digits, we define f(w) to be the word obtained by
adding a 1 to the end of w and then replacing every maximal run of k consecutive 0-digits
followed by a 1 by the single digit k + 1. For example, suppose w = 01000111010000100100
then

f(w) = 2 4 1 1 2 5 3 3.

Note that
∑
f(w) = n+1 and the condition of having fewer than i−1 0-digits in w guarantees

that f(w) ∈ A(1i1). It is a simple verification that f is indeed a bijection between length n
binary words having fewer than i − 1 0-digits between any pair of consecutive 1-digits and
words of weight n+ 1 in A(1i1).

Finally, we note that as in the previous subsection, we can also compute the coefficients
in the expansion of F (1 (1 + s) 1; 1, x) for various s. However, these do not appear in the
OEIS, and therefore we omit them here.

3.3 The word 123

Another simple example is S(123; t, x). In this case it is easy to see that d1(123) = d2(123) =
d3(123) = 0. Thus it follows that

S(123; t, x) =
t3x6

t3x6 + (1 − x− xt)(t2x5 + tx3(1 − x) + (1 − x)2)
and

A(123; t, x) =
1 − x

1 − x− xt
(1 − S(123; t, x)).
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One can compute that

S(123; t, x) =
x6

(1 − x)2(x4 − x3 + 2x− 1)
and

A(123; t, x) =
1 − 2x+ x2 + x3 − x4 + x5

(1 − x)2(x4 − x3 + 2x− 1)
.

Expanding these functions as power series about x = 0 and letting t = 1, we obtain that

S(123; 1, x) = x6 + 4x7 + 11x8 + 25x9 + 52x10 + 103x11 + 199x12 + · · · and

A(123; 1, x) = 1 + x+ 2x2 + 4x3 + 8x4 + 16x5 + 31x6 + 59x7 + 111x8 +

208x9 + 389x10 + 727x11 + 1358x12 + · · · .

In this case, neither sequence of coefficients have appeared in the OEIS.

4 Wilf equivalence for words of length 3

We now turn to the classification of the Wilf equivalence classes for all words of length 3
in P1 = (P,≤). Theorem 1 will provide the necessary information for words with increas-
ing/decreasing factorizations. The only words of length 3 without increasing/decreasing
factorizations are words of the form bac or cab where a < b ≤ c. But Kitaev, Liese, Rem-
mel, and Sagan (Lemma 4.1 of [2]) show that any word is Wilf equivalent to its reverse, so
it suffices to consider bac. To that end, we give an explicit formula for S(bac; t, x) where
a < b ≤ c.

Theorem 8. For positive integers a < b ≤ c,

S(bac; t, x) =
t3xa+b+c(1 + txc(1 + x+ · · · + xb−a−1))

(1 − x− tx)ψa,b,c(t, x) + t3xa+b+c(1 + txc(1 + x+ · · · + xb−a−1))

where

ψa,b,c(t, x) = (1 − x)2 + txc(1 − x) + t2xa+c + t3xa+2c(1 + x+ · · · + xb−a−1).

Proof. We start with the following expression, which follows from (2) and Lemma 4, with
extra terms to account for the fact that bac does not have an increasing/decreasing factor-
ization:

S(bac; t, x) = A(bac; t, x) t3
xa+b+c

(1 − x)3
− S(bac; t, x) t2

xa+c

(1 − x)2
− S(bac; t, x) t

xc

1 − x

+A(bac; t, x) t4
xb+2c

(1 − x)3
(xa + · · · + xb−1)

−S(bac; t, x) t3
x2c

(1 − x)2
(xa + · · · + xb−1).
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The first term,

A(bac; t, x) t3
xa+b+c

(1 − x)3
,

is the generating function for words consisting of an embedding of bac appended to a word
that avoids bac. This includes the words in S(bac), but also includes words that end in
overlapping embeddings of bac, either in the last four or five characters (and do not embed
bac prior to those embeddings). So we need to remove the terms associated with these words.
First consider words w that end in overlapping embeddings in the last five characters, as
shown:

w = · · · b+ a+ c+ a+ c+

b a c
b a c

,

where for a positive integer m, m+ represents any integer greater than or equal to m. Since
b ≤ c, these words can be formed by appending an embedding of ac to words in S(bac). So
the second term on the right hand side,

S(bac; t, x) t2
xa+c

(1 − x)2
,

accounts for these words.
Now consider words that end in overlapping embeddings in the final four characters only:

w = · · · b+ b+ c+ c+

b a c
b a c

.

The third term,

S(bac; t, x) t
xc

1 − x
,

removes the terms associated with these words by appending an embedding of c to words
in S(bac). However, because a < b, this also includes terms associated with words of the
following form:

w = · · · b+ [a, b) c+ c+

b a c
b a c

,

that is, words that first embed bac starting at the fourth character from the end, and end in
an embedding of bacc but not bbcc. To correct for these terms, consider the fourth term on
the right hand side:

A(bac; t, x) t4
xb+2c

(1 − x)3
(xa + · · · + xb−1).

This is the generating function for those words that end in an embedding of bacc but not
bbcc (hence the xa + · · · + xb−1 term), appended to words that avoid bac. So this includes
the words that we want, but also may include words that first embed bac beginning at the
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fifth or sixth character from the end. However, the first of these situations is impossible, as
shown,

w = · · · • b+ [a, b) c+ c+

b a c
b a c

b a c

,

since a character in [a, b) cannot embed c. The final term,

S(bac; t, x) t3
x2c

(1 − x)2
(xa + · · · + xb−1),

accounts for the second possibility,

w = · · · b+ a+ c+ [a, b) c+ c+

b a c
b a c

b a c

,

by appending an embedding of acc, whose first character is in [a, b), to words in S(bac).
We can now solve for S(bac; t, x):

S(bac; t, x) =
t3 xa+b+c

(1−x)3
+ t4 xb+2c

(1−x)3
(xa + · · · + xb−1)

1 + t xc

1−x
+ t2 xa+c

(1−x)2
+ t3 x2c

(1−x)2
(xa + · · · + xb−1)

A(bac; t, x)

=
t3xa+b+c + t4xb+2c(xa + · · · + xb−1)

(1 − x)3 + txc(1 − x)2 + t2xa+c(1 − x) + t3x2c(1 − x)(xa + · · · + xb−1)

·A(bac; t, x).

Substituting A(bac; t, x) = 1−x
1−x−tx

(1 − S(bac; t, x)), we obtain

S(bac; t, x) =
t3xa+b+c + t4xb+2c(xa + · · · + xb−1)

(1 − x)2 + txc(1 − x) + t2xa+c + t3x2c(xa + · · · + xb−1)

·
1

1 − x− tx
(1 − S(bac; t, x)).

Solving for S(bac; t, x) and factoring appropriate terms gives the result.

As a corollary, we can now classify Wilf equivalence for words of the form bac with
a < b ≤ c.

Corollary 9. For positive integers a < b ≤ c, the only words Wilf equivalent to bac are bac
and cab.

Proof. As noted previously, bac ∽ cab since they are reverses of each other. So it remains to
show that no other words of length three are Wilf equivalent to these two. First, note that
1+ txc(1+x+ · · ·+xb−a−1) does not divide the denominator of the expression for S(bac; t, x)
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in Theorem 8 since, for example, it does not divide it when x = 1. So S(bac; t, x) does not
have a single monomial in the numerator, and therefore is not equal to S(u; t, x) for any u
that has an increasing/decreasing factorization by Theorem 1. So suppose bac ∽ b′a′c′ with
a′ < b′ ≤ c′. We will show that a = a′, b = b′ and c = c′.

Equating S(bac; t, x) and S(b′a′c′; t, x) from Theorem 8, we have

φa,b,c(t, x)
[
(1 − x− tx)ψ(a′,b′,c′)(t, x) + φa′,b′,c′(t, x)

]

= φa′,b′,c′(t, x)
[
(1 − x− tx)ψ(a,b,c)(t, x) + φa,b,c(t, x)

]
,

where φa,b,c(t, x) = t3xa+b+c(1+txc(1+x+ · · ·+xb−a−1)), and similarly for φa′,b′,c′(t, x). Since
bac ∽ b′a′c′, we have a+ b+ c = a′ + b′ + c′, so we may simplify to

(1 + txc(1 + x+ · · · + xb−a−1))ψ(a′,b′,c′)(t, x)

= (1 + txc′(1 + x+ · · · + xb′−a′−1))ψ(a,b,c)(t, x).

Recalling that

ψ(a,b,c)(t, x) = (1 − x)2 + txc(1 − x) + t2xa+c + t3x2c(xa + · · · + xb−1),

and equating powers of t2 on both sides, we have

xa′+c′ + xc+c′(1 − x)(1 + x+ · · · + xb−a−1) = xa+c + xc+c′(1 − x)(1 + x+ · · · + xb′−a′−1)

Since a < c, the smallest power of x on the left is a′ + c′, and the smallest on the right is
a+ c. So

a′ + c′ = a+ c.

Since we know a+ b+ c = a′ + b′ + c′, this gives b = b′. Now equating the largest powers of
x, we have

c+ c′ + b− a = c+ c′ + b′ − a′,

which gives a = a′, and therefore c = c′.

We are now ready to completely classify Wilf equivalence of words of length 3.

Theorem 10. Wilf equivalence relative to P1 partitions P
3 into the following equivalence

classes.

1. {aaa} for any a ∈ P

2. {aab, aba, baa} if a < b

3. {aab, baa} and {aba} if a > b

4. {bac, cab} and {abc, acb, cba, bca} if a < b < c.

Proof. Theorem 7 establishes the equivalence among words in the sets {aab, aba, baa} in case
2, the sets {aab, baa} in case 3, and {abc, acb, cba, bca} in case 4, as well as the fact that these
sets are all in distinct Wilf equivalences classes. The remaining cases, {bac, cab} in case 4
and {aba} in case 3, follow from Corollary 9.
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Note that when we consider the permutations of S3, there are only two Wilf equiva-
lence classes, namely, {123, 132, 321, 231} and {213, 312}. We computed S(123; t, x) and
A(123; t, x) in the previous section. Thus to complete the possibilities for S(σ; t, x) for
σ ∈ S3, we need only compute S(213; t, x) and A(213; t, x). In this case, we must use
Theorem 8 from which we obtain that

S(213; t, x) =
t3x6(1 + tx3)

(1 − x− xt)((1 − x)2 + tx3(1 − x) + t2x4 + t3x7) + t3x6(1 + tx3)
and

A(213; t, x) =
1 − x

1 − x− xt
(1 − S(213; t, x)).

One can compute that

S(213; 1, x) =
x6 + x8

1 − 4x+ 5x2 − x3 − 2x4 + 2x6 + x7 − 2x8
and

A(213; 1, x) =
(1 − x)(1 − 4x+ 5x2 − x3 − 2x4 + x6 + x7 − 3x8)

(1 − 2x)(1 − 4x+ 5x2 − x3 − 2x4 + 2x6 + x7 − 2x8)
.

In this case, if one expands these functions as power series about x = 0, one obtains

S(213; 1, x) = x6 + 4x7 + 11x8 + 26x9 + 55x10 + 109x11 + 207x12 + 381x13 +

684x14 + 1201x15 +O[x]16 and

A(213; 1, x) = 1 + x+ 2x2 + 4x3 + 8x4 + 16x5 + 31x6 + 59x7 + 111x8 + 207x9 +

385x10 + 716x11 + 1334x12 + 2494x13 + 4685x14 + 8853x15 +O[x]16.

However, neither of the two sequence of coefficients have appeared in the OEIS.

5 The strong rearrangement conjecture

In this section we discuss the strong rearrangement conjecture and its connection to the
family of finite posets P[m] = ([m]∗,≤). We also give an analogue of Theorem 1 for
S(u;x1, . . . , xn). Our first result relates Wilf equivalence in [m]∗ to Wilf equivalences in
P
∗ that are witnessed by rearrangement maps.

Theorem 11. Suppose u, v ∈ [m]∗ for some positive integer m. Then u ∽[m] v if and only
if there exists a rearrangement map f : P

∗ → P
∗ that witnesses the Wilf equivalence u ∽ v.

Proof. First note that if there is a rearrangement map f : P
∗ → P

∗ that witnesses the Wilf
equivalence u ∽ v, then the restriction of f to [m]∗ is a W[m]-preserving bijection that shows
u ∽[m] v.

For the converse, suppose u, v ∈ [m]∗ and u ∽[m] v, so that F (u;x1, . . . , xm) = F (v;x1, . . . , xm).
Then there is a W[m]-preserving bijection g : F(u) ∩ [m]∗ → F(v) ∩ [m]∗. So g(w) is a re-
arrangement of w for all w. This bijection can then be lifted to the desired rearrangement
f , as follows. Suppose w = w1 · · ·wn ∈ P

∗ and 1 ≤ i1 < · · · < il ≤ n is the sequences of
indices i such that wi ≥ m. Then let w be the word in [m]∗ that results by replacing each
wik with m. Then u ≤ w if, and only if, u ≤ w. Now apply g to w. Then since z = g(w) is
a rearrangement of w, there is a sequence 1 ≤ j1 < · · · < jl ≤ n consisting of all the indices
j such that zj = m. Then let f(w) be the result of replacing zjk

by wik for k = 1, . . . , l.
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Theorem 11 shows that the question of whether u ∽ v implies a rearrangement witnessing
the equivalence can be answered by restricting to a finite alphabet. We have computed
S(u;x1, . . . , x5) for all permutations in Sn for n ≤ 5 and indeed, if u ∽ v in this case, then
S(u;x1, . . . , x5) = S(v;x1, . . . , x5). Thus the strong rearrangement conjecture holds for these
words.

Next we consider an analogue of Theorem 1 for the more refined generating functions
S(u;x1, . . . , xm). It is still the case that

S(u) ∩ [m]∗ = (A(u) ∩ [m]∗)(W(u) ∩ [m]∗) −

(
n−1⋃

i=1

(S(i)(u) ∩ [m]∗)

)

. (5)

It is easy to see that

∑

w∈A(u)W(u)∩[m]∗

W[m](w) = A(u;x1, . . . , xm)
n∏

r=1

m∑

s=ui

xj

=
1

1 −
∑m

i=1 xi

(1 − S(u;x1, . . . , xm))
n∏

r=1

m∑

s=ur

xs. (6)

We also have that
S(i)(u) ∩ [m]∗ = S̄(i)(u)W(si(u)) ∩ [m]∗.

Thus if

S(i)(u, x1, . . . , xm) =
∑

w∈S(i)(u)∩[m]∗

W[m](w) and

S̄(i)(u, x1, . . . , xm) =
∑

w∈S̄(i)(u)∩[m]∗

W[m](w),

then we will have

S(i)(u, x1, . . . , xm) = S̄(i)(u, x1, . . . , xm)
n∏

r=i+1

m∑

s=ur

xs.

The only step in our proof of Theorem 1 which does not have an analogue in this case is the
fact that

S̄(i)(u; t, x) = xdi(u)S(u; t, x).

It will no longer be the case that S̄(i)(u;x1, . . . , xm) is a multiple of S(u;x1, . . . , xm) if di(u) >
0. However, if di(u) = 0, then it will be the case that S̄(i)(u) ∩ [m]∗ = S(i)(u) ∩ [m]∗ so that

S̄(i)(u, x1, . . . , xm) = S(u, x1, . . . , xm).

Thus if di(u) = 0 for all i = 1, . . . , n− 1, then we will have

S(i)(u, x1, . . . , xm) = S(u, x1, . . . , xm)
n∑

r=i+1

m∑

s=ur

xs (7)
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for all i. However, it is easy to see that di(u) = 0 for all i = 1, . . . , n − 1 if and only if
u1 ≤ · · · ≤ un. In that case, we can see from (5), (6), and (7) that

S(u, x1, . . . , xm) =
1

1 −
∑m

i=1 xi

(1 − S(u;x1, . . . , xm))
n∑

r=1

m∑

s=ur

xs

−
n−1∑

i=1

S(u, x1, . . . , xm)
n∑

r=i+1

m∑

s=ur

xs.

Solving for S(u, x1, . . . , xm) will then result in the following theorem.

Theorem 12. Suppose u = u1 . . . un ∈ [m]∗ is weakly increasing. Then

S(u;x1, . . . , xm) =

∏n

i=1

∑m

j=ui
xj

(

1 +
∑n−1

i=1

∏n

j=i+1

∑m

l=uj
xl

)

(1 −
∑m

i=1 xi) +
∏n

i=1

∑m

j=ui
xj

.

6 Further work

Many of the ideas in this paper can be extended to generalized factor order on P
∗ with other

partial orders. In particular, in [5] we consider the mod k partial order on P
∗ defined by

setting m ≤k n if m ≤ n and m = n mod k. For example, the Hasse diagram for the mod 3
partial order consists of the three chains

1 ≤3 4 ≤3 7 ≤3 · · · ,

2 ≤3 5 ≤3 8 ≤3 · · · , and

3 ≤3 6 ≤3 9 ≤3 · · · .

An generalization of Theorem 1 in this context applies to a rich class of words that generalizes
the set of words in P

∗ with increasing/decreasing factorizations. One interesting result of
this theorem is that the rearrangement conjectures do not hold in general for the mod k
partial order with k ≥ 2, however we can identify those words for which we believe the
rearrangement conjectures do hold. We refer the reader to [5] for details.
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