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Abstract

Plouffe conjectured fast converging series formulas for π2n+1 and ζ(2n+1) for small
values of n. We find the general pattern for all integer values of n and offer a proof.

1 Introduction

It took nearly one hundred years for the Basel Problem — finding a closed form solution to
∑

∞

k=1
1/k2 — to see a solution. Euler solved this in 1735 and essentially solved the problem

where the power of two is replaced with any even power. This formula is now usually written
as

ζ(2n) = (−1)n+1
B2n(2π)2n

2(2n)!
,

where ζ(s) is the Riemann zeta function and Bk is the kth Bernoulli number uniquely defined
by the generating function

x

ex − 1
=

∞
∑

n=0

Bnxn

n!
, |x| < 2π.

and whose first few values are 0,−1/2, 1/6, 0,−1/30, . . .. However, finding a closed form
for ζ(2n + 1) has remained an open problem. Only in 1979 did Apéry show that ζ(3) is
irrational. His proof involved the snappy acceleration

ζ(3) =
5

2

∞
∑

n=1

(−1)n−1

n3
(

2n

n

) .
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This tidy formula does not generalize to the other odd zeta values, but other representations,
such as nested sums or integrals, have been well-studied. The hunt for a clean result like
Euler’s has largely been abandoned, leaving researchers with the goal of finding formulas
which either converge quickly or have an elegant form.

Following his success in discovering a new formula for π, Simon Plouffe[3] postulated
several identities which relate either πm or ζ(m) to three infinite series. Letting

Sn(r) =
∞

∑

k=1

1

kn(eπrk − 1)
,

the first few examples are

π = 72S1(1) − 96S1(2) + 24S1(4)

π3 = 720S3(1) − 900S3(2) + 180S3(4)

π5 = 7056S5(1) − 6993S5(2) + 63S5(4)

π7 =
907200

13
S7(1) − 70875S7(2) +

14175

13
S5(4)

and

ζ(3) = 28S3(1) − 37S3(2) + 7S3(4)

ζ(5) = 24S5(1) −
259

10
S5(2) +

1

10
S5(4)

ζ(7) =
304

13
S7(1) −

103

4
S7(2) +

19

52
S7(4).

Plouffe conjectured these formulas by first assuming, for example, that there exist constants
a, b, and c such that

π = aS1(1) + bS1(2) + cS1(4).

By obtaining accurate approximations of each the three series, he wrote some computer code
to postulate rational values for a, b, c. Today, such integer relations algorithms have been
used to discover many formulas. The widely used PSLQ algorithm, developed by Ferguson
and Bailey[2], is implemented in Maple. The following Maple code (using Maple 14) solves
the above problem:

> with(IntegerRelations):

> Digits := 100;

> S := r -> sum( 1/k/( exp(Pi*r*k)-1 ), k=1..infinity );

> PSLQ( [ Pi, S(1), S(2), S(4) ] );

The PSLQ command returns the vector [−1, 72,−96, 24], producing the first formula.
While the computer can be used to conjecture the coefficients of a specific power, find-

ing the general sequence of rationals has remained an open problem. This note finds the
sequences and offers formal proofs.
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2 Exact Formulas

While it does not seem that ζ(2n+1) is a rational multiple of π2n+1, a result in Ramanujan’s
notebooks gives a relationship with infinite series which converge quickly.

Theorem 1. (Ramanujan) If α > 0, β > 0, and αβ = π2, then

α−n

{

1

2
ζ(2n + 1) + S2n+1(2α)

}

=

(−β)−n

{

1

2
ζ(2n + 1) + S2n+1(2β)

}

− 4n

n+1
∑

k=0

(−1)k
B2kB2n+2−2k

(2k)!(2n + 2 − 2k)!
αn+1−kβk.

Using α = β = π in Proposition 1 and defining

Fn =
n+1
∑

k=0

(−1)k
B2kB2n+2−2k

(2k)!(2n + 2 − 2k)!
,

we have
(

π−n − (−π)−n
)

(

1

2
ζ(2n + 1) + S2n+1(2π)

)

= −4nπn+1Fn.

To find formulas for the odd zeta values and powers of π, we will divide these into two
classes: ζ(4m− 1) and ζ(4m + 1). Such distinctions can be seen in other studies; see [1, pp.
137–139].

First we find the formulas for π4m−1 and ζ(4m − 1). If n is odd, then

1

2
ζ(2n + 1) + S2n+1(2π) =

−4n

2
π2n+1Fn (1)

Using α = π/2 and β = 2π in Proposition 1 and defining

Gn =
n+1
∑

k=0

(−4)k
B2kB2n+2−2k

(2k)!(2n + 2 − 2k)!
,

one has
1

2
ζ(2n + 1) =

S2n+1(4π) + 4nS2n+1(π) + 4n

2
π2n+1Gn

−(4n + 1)
.

Combining this with equation (1) yields

4nS2n+1(π) − (4n + 1)S2n+1(2π) + S2n+1(4π)
4n

2
(4n + 1)Fn − 4n

2
Gn

= π2n+1

Substituting n = 2m − 1 and defining

Dm = 42m−1[(42m−1 + 1)F2m−1 − G2m−1]/2

produces
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π4m−1 =
42m−1

Dm

S4m−1(π) −
42m−1 + 1

Dm

S4m−1(2π) +
1

Dm

S4m−1(4π)

This identity may be used in conjunction with equation (1) to obtain

ζ(4m − 1) = −
F2m−14

4m−2

Dm

S4m−1(π) +
G2m−14

2m−1

Dm

S4m−1(2π) −
F2m−14

2m−1

Dm

S4m−1(4π).

To obtain formulas for the 4m + 1 cases, use α = π/2 and β = 2π in Theorem 1 with
n = 2m to obtain

ζ(4m + 1) =
42m

2
π4m+1G2m − S4m+1(4π) + 42mS4m+1(π)

1

2
(1 − 42m)

. (2)

Define Tn(r) (similar to Sn(r)) by

Tn(r) =
∞

∑

k=1

1

kn(erk + 1)

and another finite sum of Bernoulli numbers by

Hn =
n

∑

k=0

(−4)n+k
B4kB4n+2−4k

(4k)!(4n + 2 − 4k)!
.

Vepstas [4] cites an expression credited to Ramanujan:

(1 + (−4)m − 24m+1)ζ(4m + 1) =

2T4m+1(2π) + 2(24m+1 − (−4)m)S4m+1(2π) + 24m+1π4m+1Hm + 24mπ4m+1G2m.

Vepstas also produces a formula to show the relationship between Tk and Sk:

Tk(x) = Sk(s) − 2Sk(2x)

Combining the last two equations produces

1 + (−4)m − 24m+1

1

2
(1 − 42m)

(

42m

2
π4m+1G2m − S4m+1(4π) + 42mS4m+1(π)

)

=

2[24m+1 − (−4)m + 1]S4m+1(2π) − 4S4m+1(4π) + 24m+1π4m+1Hm + 24mπ4m+1G2m

Letting

Km =
1

2
(1 − 42m)

1 + (−4)m − 24m+1

and

Em =
42m

2
G2m − 24m+1KmHm − 24mKmG2m,
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one eventually finds

π4m+1 = −
42m

Em

S4m+1(π) +
2Km[24m+1 − (−4)m + 1]

Em

S4m+1(2π) +
(1 − 4Km)

Em

S4m+1(4π)

Substituting this into equation (2) produces

ζ(4m + 1) = −
16m(G(2m)16m + 2Em)

(−1 + 16m)Em

S4m+1(π)

−
2G2mKm16m(2 · 16m − (−4)m + 1)

(−1 + 16m)Em

S4m+1(2π)

−
G(2m)16m + 4G2m16mKm + 2Em

(−1 + 16m)Em

S4m+1(4π).
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