Journal of Integer Sequences, Vol. 14 (2011),

Some Properties of the Multiple Binomial Transform and the Hankel Transform of Shifted Sequences

Jiaqiang Pan
School of Biomedical Engineering and Instrumental Science
Zhejiang University
Hangzhou 210027
China
panshw@mail.hz.zj.cn

Abstract

In this paper, the author studies the multiple binomial transform and the Hankel transform of shifted sequences of an integer sequence, particularly a linear homogeneous recurrence sequence, and some of their properties.

1 Notation

In this paper, we generally use function symbols, like $a(t), b(t)$, etc., to express integer sequences, where $t \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$. However sometimes, to employ matrix tools in deduction process, we also denote the integer sequences by using (infinite-dimensional) vector symbols, like $a=(a(0), a(1), a(2), a(3), \cdots, \cdots)^{T}, b=(b(0), b(1), b(2), b(3), \cdots, \cdots)^{T}$, etc.

2 Multiple binomial transforms of shifted sequences

Definition 1 (Shifting integer sequences). Let $a(t)$ be an integer sequence and σ be the shift operator. Then we define the pth-order shifted sequence $\left.a_{(p)}(t)\right),(p=0,1,2, \ldots)$, of $a(t)$, as follows:

$$
\begin{equation*}
a_{(p)}(t)=\sigma^{p}(a)=a(t+p), \quad t=0,1,2, \ldots, \tag{1}
\end{equation*}
$$

Note that in the case $p=0, a_{(0)}(t)=\sigma^{0}(a)=a(t)$.

Definition 2 (Multiple binomial transforms). Let $a(t)$ be an integer sequence. Then according to Pan [1], we define the n-fold binomial transform of $a(t)$, and denote its image sequence by $\mathcal{B}_{n}(a)$ or $a^{(n)}(t)$, as follows:

$$
\begin{equation*}
a^{(1)}(t)=\mathcal{B}_{1}(a)=\sum_{k=0}^{t}\binom{t}{k} a(k), \quad a^{(n)}(t)=\mathcal{B}_{n}(a)=\overbrace{\mathcal{B}_{1}\left(\mathcal { B } _ { 1 } \left(\cdots \left(\mathcal{B}_{1}\right.\right.\right.}^{n-\text { fold }}(a)))), \tag{2}
\end{equation*}
$$

where $n=0,1,2, \ldots$. Note that in the case $n=0, \mathcal{B}_{0}(a)=a^{(0)}(t)=a(t)$, that is, the transform \mathcal{B}_{0} just is the identity transform.

Definition 3 (Inverse multiple binomial transform). Let $a(t)$ be an integer sequence. Then according to Pan [1], we define the m-fold inverse binomial transform of $a(t)$, and denote its image sequence by $\mathcal{B}_{-m}(a)$ or $a^{(-m)}(t)$, as follows:

$$
\begin{equation*}
a^{(-1)}(t)=\mathcal{B}_{-1}(a)=\sum_{k=0}^{t}(-1)^{t-k}\binom{t}{k} a(k), \quad a^{(-m)}(t)=\mathcal{B}_{-m}(a)=\overbrace{\mathcal{B}_{-1}\left(\mathcal { B } _ { - 1 } \left(\cdots \left(\mathcal{B}_{-1}\right.\right.\right.}^{m-\text { fold }}(a)))), \tag{3}
\end{equation*}
$$

where $m=1,2, \ldots$.
Remark 4. We can express (2) in the matrix form: $a^{(1)}=B_{1} a$, where the transform matrix B_{1} is an infinite-order lower-triangular matrix, as follows:

$$
B_{1}=\left(\begin{array}{cccc}
\binom{0}{0} & & & \tag{4}\\
\binom{1}{0} & \binom{1}{1} & & \\
\binom{2}{0} & \binom{2}{1} & \binom{2}{2} & \\
\binom{3}{0} & \binom{3}{1} & \binom{3}{2} & \binom{1}{3} \\
\vdots & \vdots & \vdots & \vdots \\
1 & & & \\
1 & 1 & & \\
1 & 2 & 1 & \\
1 & 3 & 3 & 1 \\
& \vdots & \vdots & \vdots \\
\vdots & \ddots
\end{array}\right)=
$$

and

$$
\begin{equation*}
a^{(n)}=\left(a^{(n)}(0), a^{(n)}(1), a^{(n)}(2), \cdots, \cdots\right)^{T}=B_{n} a=B_{1}^{n} a, \tag{5}
\end{equation*}
$$

where $n=0,1,2,3, \ldots$. The transform matrix of the n-fold binomial transform $B_{n}\left(=B_{1}^{n}\right)$ is always a lower-triangular transform matrix with each of the diagonal elements being one. Remark 5. We can also express (3) in matrix form, as $a^{(-1)}=B_{-1} a$, where the transform matrix B_{-1} is an infinite-order lower-triangular matrix, as

$$
B^{-1}=\left(\begin{array}{rrrrr}
\binom{0}{0} & & & & \tag{6}\\
-\binom{1}{0} & \binom{1}{1} & & & \\
\binom{2}{0} & -\binom{2}{1} & \left(\begin{array}{l}
2 \\
3 \\
3 \\
0
\end{array}\right) & \binom{3}{1} & -\binom{3}{3} \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{ccccc}
1 & & & & \\
-1 & 1 & & & \\
1 & -2 & 1 & & \\
-1 & 3 & -3 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right),
$$

and

$$
\begin{equation*}
a^{(-m)}=\left(a^{(-m)}(0), a^{(-m)}(1), a^{(-m)}(2), \cdots, \cdots\right)^{T}=B_{-m} a=B_{-1}^{m} a \tag{7}
\end{equation*}
$$

where $m=1,2,3, \ldots$. The transform matrix $B_{-m}\left(=B_{-1}^{m}\right)$ is also always a lower-triangular transform matrix with each of the diagonal elements being one. We see that $B_{1} B_{-1}=$ $B_{-1} B_{1}=E$, where E is the infinite-order unit matrix. It is the matrix form of well-known inversion relation: $\sum_{k=i}^{t}(-1)^{t-k}\binom{t}{k}\binom{k}{i}=\sum_{k=i}^{t}(-1)^{k-i}\binom{t}{k}\binom{k}{i}=\delta_{t i}$, where $t, i=0,1,2, \ldots$
Remark 6. We view the n-fold binomial or inverse binomial transform $\mathcal{B}_{n},(n=0, \pm 1, \pm 2, \pm 3, \ldots)$, to be one simple transform of integer sequences, because such inversion relations as $B_{2} B_{-2}=$ $B_{-2} B_{2}=E, B_{3} B_{-3}=B_{-3} B_{3}=E$ hold, and so forth. For example, for 2-fold binomial and inverse binomial transforms, the transform matrices are respectively

$$
B_{2}=\left(\begin{array}{ccccc}
1 & & & & \tag{8}\\
2 & 1 & & & \\
4 & 4 & 1 & & \\
8 & 12 & 6 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right), \quad B_{-2}=\left(\begin{array}{rrrrr}
1 & & & & \\
-2 & 1 & & & \\
4 & -4 & 1 & & \\
-8 & 12 & -6 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right)
$$

Now, let us give the multiple binomial transforms of the shifting sequences $a_{(p)}(t)$, ($p=$ $0,1,2, \ldots)$, of an integer sequence $a(t)$.

Theorem 7. Let $a(t)$ be an integer sequence. Then

$$
\begin{equation*}
\mathcal{B}_{n}\left(a_{(p)}\right)=(\sigma-n)^{p}\left(\mathcal{B}_{n}(a)\right)=(\sigma-n)^{p}\left(a^{(n)}\right)=\sum_{k=0}^{p}(-n)^{p-k}\binom{p}{k} \sigma^{k}\left(a^{(n)}\right), \tag{9}
\end{equation*}
$$

where $n=0, \pm 1, \pm 2, \ldots$
Proof. Use the mathematical induction. When $n= \pm 1$ and $p=1$,

$$
\begin{aligned}
& \mathcal{B}_{1}(\sigma(a))=\sum_{k=0}^{t}\binom{t}{k} a(k+1)=\sum_{k=1}^{t+1}\binom{t}{k-1} a(k)=\sum_{k=1}^{t+1}\binom{t+1}{k} a(k)-\sum_{k=1}^{t+1}\binom{t}{k} a(k) \\
& =\sum_{k=0}^{t+1}\binom{t+1}{k} a(k)-a(0)-\left[\sum_{k=0}^{t}\binom{t}{k} a(k)-a(0)\right]=\sigma\left(\mathcal{B}_{1}(a)\right)-\mathcal{B}_{1}(a)=(\sigma-1)\left(\mathcal{B}_{1}(a)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathcal{B}_{-1}(\sigma(a))=\sum_{k=0}^{t}(-1)^{t-k}\binom{t}{k} a(k+1)=\sum_{k=1}^{t+1}(-1)^{t+1-k}\binom{t}{k-1} a(k) \\
&=\sum_{k=0}^{t+1}(-1)^{t+1-k}\left[\binom{t+1}{k}-\binom{t}{k}\right] a(k)=\sum_{k=0}^{t+1}(-1)^{t+1-k}\binom{t+1}{k} a(k)+\sum_{k=0}^{t}(-1)^{t-k}\binom{t}{k} a(k) \\
&=\sigma\left(\mathcal{B}_{-1}(a)\right)+\mathcal{B}_{-1}(a)=(\sigma+1)\left(\mathcal{B}_{-1}(a)\right)
\end{aligned}
$$

If for $n= \pm k(k$ is some positive integer $), \mathcal{B}_{ \pm k}(\sigma(a))=(\sigma \mp k)\left(\mathcal{B}_{ \pm k}(a)\right)$ holds, then for $n= \pm(k+1), \mathcal{B}_{ \pm(k+1)}(\sigma(a))=\mathcal{B}_{ \pm 1}\left(\sigma\left(\mathcal{B}_{ \pm k}(a)\right)\right) \mp k \mathcal{B}_{ \pm 1}\left(\mathcal{B}_{ \pm k}(a)\right)=(\sigma \mp 1)\left(\mathcal{B}_{ \pm(k+1)}(a)\right) \mp$ $k \mathcal{B}_{ \pm(k+1)}(a)=(\sigma \mp(k+1))\left(\mathcal{B}_{ \pm(k+1)}(a)\right)$ also holds. Hence, for any integer $n, \mathcal{B}_{n}(\sigma(a))=$
$(\sigma-n)\left(\mathcal{B}_{n}(a)\right)$ holds. On the other hand, if for $p=m(m$ is some positive integer) that $\mathcal{B}_{n}\left(\sigma^{m}(a)\right)=(\sigma-n)^{m}\left(\mathcal{B}_{n}(a)\right)$ holds, then when $p=m+1$, we get that $\mathcal{B}_{n}\left(\sigma^{m+1}(a)\right)=$ $(\sigma-n)^{m}\left(\mathcal{B}_{n}(\sigma(a))\right)=(\sigma-n)^{m}\left((\sigma-n)\left(\mathcal{B}_{n}(a)\right)\right)=(\sigma-n)^{m+1}\left(\mathcal{B}_{n}(a)\right)$. Hence, for any positive integer n and $p, \mathcal{B}_{n}\left(\sigma^{p}(a)\right)=(\sigma-n)^{p}\left(\mathcal{B}_{n}(a)\right)$. Special cases that $n=0$ and/or $p=0$ are trivial.

Corollary 8. Let $a(t)$ be an integer sequence, and $P(\sigma)$ be an integer-coefficient polynomial in σ. Then

$$
\begin{equation*}
\mathcal{B}_{n}(P(\sigma)(a))=P(\sigma-n)\left(\mathcal{B}_{n}(a)\right)=P(\sigma-n)\left(a^{(n)}\right), \tag{10}
\end{equation*}
$$

where $n=0, \pm 1, \pm 2, \ldots$.
Proof. Let $P(\sigma)$ be a integer-coefficient polynomial of degree $p(p=0,1,2, \ldots)$ in $\sigma: P(\sigma)=$ $\sum_{k=0}^{p} c_{k} \sigma^{k}$, where c_{k} s are $(p+1)$ integers. From Theorem 7, we have that $\mathcal{B}_{n}(P(\sigma)(a))=$ $\mathcal{B}_{n}\left(\sum_{k=0}^{p} c_{k} \sigma^{k}(a)\right)=\sum_{k=0}^{p} c_{k} \mathcal{B}_{n}\left(\sigma^{k}(a)\right)=\sum_{k=0}^{p} c_{k}(\sigma-n)^{k}\left(\mathcal{B}_{n}(a)\right)=P(\sigma-n)\left(\mathcal{B}_{n}(a)\right)=$ $P(\sigma-n)\left(a^{(n)}\right)$.

Remark 9. By using Corollary 8, we can more succinctly prove the following known property of recurrence sequences (see [1, Thm. 17]). Let $a(t)$ be a linear homogeneous recurrence sequence of order q with the recurrence equation

$$
\begin{equation*}
P(\sigma)(a)=\sum_{k=0}^{q} b_{k} \sigma^{q-k}(a)=0 \tag{11}
\end{equation*}
$$

where $b_{0}=1, b_{1}, b_{2}, \ldots, b_{q}$ are q given integers. Then its q complex characteristic values λ_{k}, $k=1,2, \ldots, q$, are the roots of polynomial (algebraic) equation:

$$
\begin{equation*}
P(\lambda)=\sum_{k=0}^{q} b_{k} \lambda^{q-k}=0 . \tag{12}
\end{equation*}
$$

On the other hand, by taking transformation \mathcal{B}_{n} of the two sides of (11), and then employing Corollary 8 , we find that sequences $a^{(n)}(t),(n=0, \pm 1, \pm 2, \ldots)$, satisfy recurrence equation:

$$
\begin{equation*}
P(\sigma-n)\left(a^{(n)}\right)=0 \tag{13}
\end{equation*}
$$

This implies that q complex characteristic values $\lambda_{k}^{(n)},(k=1,2, \ldots, q)$, of $a^{(n)}(t)$ are the roots of the algebraic equation:

$$
\begin{equation*}
P\left(\lambda^{(n)}-n\right)=\sum_{k=0}^{q} b_{k}\left(\lambda^{(n)}-n\right)^{q-k}=0 . \tag{14}
\end{equation*}
$$

Comparing (12) with (14), we find that $\lambda_{k}^{(n)}-n=\lambda_{k}$, namely

$$
\begin{equation*}
\lambda_{k}^{(n)}=\lambda_{k}+n, \quad(k=1,2, \ldots, q) \tag{15}
\end{equation*}
$$

3 Shifted sequences and the Hankel transform

Layman proved the invariance of the Hankel transform under applications of the binomial transform or its inverse transform (see [2]). For an integer sequence, the n-fold binomial (or inverse binomial) transform is the same as the n times successive binomial (or inverse binomial) transform operation, Pan [1] pointed out that the invariance of the Hankel transform holds under applications of the n-fold binomial (or n-fold invert binomial) transform. Now by using Theorem 7, we give a more direct and succinct proof of the invariance, as follows.
Remark 10. By using Definition 1, we express the Hankel matrix H_{a} of sequence $a(t)$ as

$$
H_{a}=\left(\begin{array}{ccccc}
a & \sigma(a) & \sigma^{2}(a) & \sigma^{3}(a) & \cdots
\end{array}\right)=\left(\begin{array}{ccccc}
a & a_{(1)} & a_{(2)} & a_{(3)} & \cdots \tag{16}
\end{array}\right),
$$

and Hankel matrix $H_{a^{(n)}}$ of integer sequence $a^{(n)}(t)$ as

$$
H_{a^{(n)}}=\left(\begin{array}{cccc}
a^{(n)} & \sigma\left(a^{(n)}\right) & \sigma^{2}\left(a^{(n)}\right) & \sigma^{3}\left(a^{(n)}\right) \tag{17}
\end{array} \cdots,\right.
$$

According to Theorem 7, we have that

$$
\left.\begin{array}{rl}
B_{n} H_{a}=\left(\begin{array}{llll}
B_{n} a & B_{n} a_{(1)} & B_{n} a_{(2)} & B_{n} a_{(3)}
\end{array} \cdots\right.
\end{array}\right) .
$$

Comparing (18) with (17), we see that the upper-left $(t+1) \times(t+1)(t=0,1,2, \ldots)$ sub-matrix of $B_{n} H_{a}$ has the same determinant to the upper-left sub-matrix of the Hankel matrix $H_{a^{(n)}}$ of sequence $a^{(n)}(t)$. On the other hand, the determinant of the upper-left $(t+1) \times(t+1)$ $(t=0,1,2, \ldots)$ sub-matrix of matrix $B_{n} H_{a}$ is equal to the determinant of the upper-left $(t+1) \times(t+1)(t=0,1,2, \ldots)$ sub-matrix of matrix H_{a}, because the determinant of any upper-left sub-matrices of matrix $B_{n}(n= \pm 1, \pm 2, \pm 3, \ldots)$ is always equal to one. In other words, the sequences a and $a^{(n)}$ both have the same Hankel transform, for any integer n.
Remark 11. This result gives an affirmative answer to one of Layman's two questions raised in [2]: Are there other interesting transforms, T, of an integer sequence S, in addition to the Binomial and Invert transforms, with the property that the Hankel transform of S is the same as the Hankel transform of the T transform of S ? For example, $\mathcal{T}=\mathcal{B}_{2}$ or \mathcal{B}_{-2}, which have transform matrices listed in (8).

Next, we investigate the Hankel transform of recurrence sequences. The following theorem gives a basic property of the Hankel transform of recurrence sequences.

Theorem 12. Let $a(t)$ be a linear homogeneous recurrence sequence of order q, with recurrence equation (11). Then the Hankel transform $h_{a}(t)$ of sequence $a(t)$ is a finite sequence with length q, that is, for $t \geq q, h_{a}(t) \equiv 0$.

Proof. We see from (16) and (11) that if multiplying the first, the second, ..., the q-th column vectors of the Hankel matrix H_{a} by $b_{q}, b_{q-1}, \ldots, b_{1}$ respectively, and then adding them to the $(q+1)$ th column $\sigma^{q}(a)$, we cause the $(q+1)$-th column to be a zero-column. This operation does not change the determinants of principal sub-matrices of H_{a}. On the other hand, for a infinite-order square matrix with its $(q+1)$-th column being a zero-column, determinants of the principal sub-matrices of order $q+1, q+2, q+3, \ldots$, namely $h(q), h(q+1), h(q+2)$, \ldots. are always equal to zeros. That is, the Hankel transform $h(t)$ is a finite integer sequence with the length of q.

Corollary 13. All of the n-fold binomial transforms $a^{(n)}(t)(n=0, \pm 1, \pm 2, \pm 3, \ldots)$ of a q-order recurrence sequence $a(t)$ have identical Hankel transform with the length of q.
Remark 14. For example, as recurrence sequences of order 2 and 3, the Fibonacci sequence $F(t)(\underline{A 000045}$ in [3]) and its multiple binomial transforms A001906, A093131, A039834, etc. (see Pan [1]) all have the same Hankel transform with length 2: $h_{F}(0)=1, h_{F}(1)=1$, and the Tribonacci sequence $T(t)$ (A000073 in [3]) and its multiple binomial transforms A115390, etc. (see Pan [1]) all have the same Hankel transform with length 3: $h_{T}(0)=3, h_{T}(1)=8$, $h_{T}(2)=-44$.

Finally, we give special relations of the Hankel transforms of $a^{(n)}(t),(n=0, \pm 1, \pm 2, \ldots)$, and $a_{(p)}(t),(p=0,1,2, \ldots)$, with the general term formula of the recurrent sequences $a(t)$, respectively.
Theorem 15. Let $a(t)$ be a linear homogeneous recurrence sequence of order q, with the general-term formula: $a(t)=\sum_{i=1}^{q} c_{i} \lambda_{i}^{t}, t \in \mathbb{N}_{0}$. Then the Hankel transforms $h_{a^{(n)}}(t)$, ($n=0, \pm 1, \pm 2, \ldots$), are such that

$$
\begin{equation*}
h_{a^{(n)}}(t)=\sum_{\left(i_{1}, i_{2}, \cdots, i_{t+1}\right)} \prod_{k=1}^{t+1}\left(c_{i_{k}} \lambda_{i_{k}}^{k-1}\right) \prod_{1 \leq k<m \leq(t+1)}\left(\lambda_{i_{k}}-\lambda_{i_{m}}\right), \quad t=0,1, \ldots, q-1, \tag{19}
\end{equation*}
$$

where the summation is over the $q!/(q-t-1)$! different $(t+1)$-permutations $\left(i_{1}, i_{2}, \cdots, i_{t+1}\right)$ of set $\{1,2, \ldots, q\}$. Particularly, the first term $h_{a^{(n)}}(0)=\sum_{i=1}^{q} c_{i}=a(0)$, and the qth (last) term $h_{a^{(n)}}(q-1)=\prod_{i=1}^{q} c_{i} \prod_{1 \leq i<j \leq q}\left(\lambda_{i}-\lambda_{j}\right)^{2}$.
Proof. Denoting j-order vectors $\left(1, \lambda_{i}, \lambda_{i}^{2}, \cdots, \lambda_{i}^{j-1}\right)$ by $\lambda(i, j)$, and $(j \times j)$ Vandermonde square-matrices $\left(\lambda\left(i_{1}, j\right), \lambda\left(i_{2}, j\right), \ldots, \lambda\left(i_{j}, j\right)\right)$ by $\mathbb{V}\left(i_{1}, i_{2}, \cdots, i_{j}\right)$ respectively, where $i \in$ $\{1,2, \ldots, q\}$, and $\left(i_{1}, i_{2}, \cdots, i_{j}\right)$ is a j-permutation of set $\{1,2, \ldots, q\},(1 \leq j \leq q)$, we find that the t-th term of Hankel transform $h_{a}(t)$ of $a(t)$, that is, the determinant of upper-left $(t+1) \times(t+1)$ sub-matrix of Hankel matrix (16), is

$$
\begin{gathered}
h_{a}(t)=\operatorname{det}\left[\begin{array}{llll}
\sum_{i=1}^{q} c_{i} \lambda(i, t+1) & \sum_{i=1}^{q} c_{i} \lambda_{i} \lambda(i, t+1) & \cdots & \sum_{i=1}^{q} c_{i} \lambda_{i}^{t} \lambda(i, t+1)
\end{array}\right] \\
=\sum_{\left(i_{1}, i_{2}, \cdots, i_{(t+1)}\right)}\left(\prod_{k=1}^{t+1}\left(c_{i_{k}} \lambda_{i_{k}}^{k-1}\right)\right) \operatorname{det} \mathbb{V}\left(i_{1}, i_{2}, \cdots, i_{t+1}\right)
\end{gathered}
$$

where the summation is over $q!/(q-t-1)$! different $(t+1)$-permutations $\left(i_{1}, i_{2}, \cdots, i_{t+1}\right)$ of set $\{1,2, \ldots, q\}$. The Vandermonde determinant det $\mathbb{V}\left(i_{1}, i_{2}, \cdots, i_{t+1}\right)$ equals $\prod_{1 \leq k<m \leq(t+1)}\left(\lambda_{i_{k}}-\right.$ $\left.\lambda_{i_{m}}\right)$. Because $h_{a^{(n)}}(t)=h_{a}(t)$, (19) holds. In case $t=0$, we see that $h_{a^{(n)}}(0)=h_{a}(0)=$ $\sum_{i=1}^{q} c_{i}=a(0)$; in the case $t=q-1$, we have that

$$
h_{a^{(n)}}(q-1)=h_{a}(q-1)=\operatorname{det}\left[\begin{array}{llll}
\sum_{i=1}^{q} c_{i} \lambda(i, q) & \sum_{i=1}^{q} c_{i} \lambda_{i} \lambda(i, q) & \cdots & \sum_{i=1}^{q} c_{i} \lambda_{i}^{q-1} \lambda(i, q)
\end{array}\right],
$$

The matrix in the right side of the above equality just equals a product of three square matrices: $\mathbb{V}(1,2, \cdots, q) \cdot \operatorname{diag}\left\{c_{1}, c_{2}, \ldots, c_{q}\right\} \cdot \mathbb{V}^{T}(1,2, \cdots, q)$. Hence, we have that
$h_{a^{(n)}}(q-1)=\operatorname{det} \mathbb{V}(1, \cdots, q) \times \operatorname{det} \operatorname{diag}\left\{c_{1}, \ldots, c_{q}\right\} \times \operatorname{det} \mathbb{V}^{T}(1, \cdots, q)=\prod_{i=1}^{q} c_{i} \prod_{1 \leq i<j \leq q}\left(\lambda_{i}-\lambda_{j}\right)^{2}$

Theorem 16. Let $a(t)$ be a linear homogeneous recurrence sequence of order q, with a general-term formula: $a(t)=\sum_{i=1}^{q} c_{i} \lambda_{i}^{t}, t \in \mathbb{N}_{0}$. Then the Hankel transform $h_{a_{(p)}}(t)$ of the shifted sequence $a_{(p)}$, $(p=0,1,2, \ldots)$, of sequence $a(t)$ are given by

$$
\begin{equation*}
h_{a_{(p)}}(t)=\sum_{\left(i_{1}, i_{2}, \cdots, i_{t+1}\right)} \prod_{k=1}^{t+1}\left(c_{i_{k}} \lambda_{i_{k}}^{k-1+p}\right) \prod_{1 \leq k<m \leq(t+1)}\left(\lambda_{i_{k}}-\lambda_{i_{m}}\right), \quad t=0,1, \ldots, q-1, \tag{20}
\end{equation*}
$$

where summarizing is over $q!/(q-t-1)$! different $(t+1)$-permutations $\left(i_{1}, i_{2}, \cdots, i_{t+1}\right)$ of set $\{1,2, \ldots, q\}$. Particularly, the first term $h_{a_{(p)}}(0)=\sum_{i=1}^{q} c_{i} \lambda_{i}^{p}$, and the q-th (last) term $h_{a_{(p)}}(q-1)=\prod_{i=1}^{q}\left(c_{i} \lambda_{i}^{p}\right) \prod_{1 \leq i<j \leq q}\left(\lambda_{i}-\lambda_{j}\right)^{2}$.
Proof. The general term of $a_{(p)}(t)$ is $a_{(p)}(t)=\sum_{i=1}^{q} c_{i} \lambda_{i}^{t+p}=\sum_{i=1}^{q} d_{i} \lambda_{i}^{t}, t \in \mathbb{N}_{0}$, where $d_{i}=c_{i} \lambda_{i}^{p}(i=1,2, \ldots, q)$. We see from Theorem 15 that the Hankel transform $h_{a_{(p)}}(t)$ of sequence $a_{(p)}$ (note that it is also a recurrence sequence of order q) is

$$
h_{a_{(p)}}(t)=\sum_{\left(i_{1}, i_{2}, \cdots, i_{t+1}\right)} \prod_{k=1}^{t+1}\left(d_{i_{k}} \lambda_{i_{k}}^{k-1}\right) \prod_{1 \leq k<m \leq(t+1)}\left(\lambda_{i_{k}}-\lambda_{i_{m}}\right),
$$

where summarizing is over $q!/(q-t-1)$! different $(t+1)$-permutations $\left(i_{1}, i_{2}, \cdots, i_{t+1}\right)$ of set $\{1,2, \ldots, q\}$. Replacing $d_{1}, d_{2}, \ldots, d_{q}$ by $c_{1} \lambda_{1}^{p}, c_{2} \lambda_{2}^{p}, \ldots, c_{1} \lambda_{q}^{p}$ respectively, we obtain (20). From Theorem 15, we obtain that $h_{a_{(p)}}(0)=\sum_{i=1}^{q} d_{i}=\sum_{i=1}^{q} c_{i} \lambda_{i}^{p}$, and

$$
h_{a_{(p)}}(q-1)=\prod_{i=1}^{q} d_{i} \prod_{1 \leq i<j \leq q}\left(\lambda_{i}-\lambda_{j}\right)^{2}=\prod_{i=1}^{q}\left(c_{i} \lambda_{i}^{p}\right) \prod_{1 \leq i<j \leq q}\left(\lambda_{i}-\lambda_{j}\right)^{2}
$$

Remark 17. We take the generalized Lucas sequence $s(t)=3,1,3,7,11,21,39, \ldots$ (sequence A001644 in [3]) as an example used for verification. The third order recurrent sequence has a general term formula that $s(t)=\lambda_{1}^{t}+\lambda_{2}^{t}+\lambda_{3}^{t}$ (Note that $c_{1}=c_{2}=c_{3}=1$), where three characteristic values $\lambda_{i}(i=1,2,3)$ are the roots of algebraic equation $\lambda^{3}-\lambda^{2}-\lambda-1=0$. They are that

$$
\lambda_{1}=\frac{1}{3}(1+\alpha+\beta), \quad \lambda_{2}=\frac{1}{3}\left(1+\omega_{1} \alpha+\omega_{2} \beta\right), \quad \lambda_{2}=\frac{1}{3}\left(1+\omega_{2} \alpha+\omega_{1} \beta\right) .
$$

where two real numbers $\alpha=\sqrt[3]{19+\sqrt{297}}, \beta=\sqrt[3]{19-\sqrt{297}}$; and $1, \omega_{1}, \omega_{2}$ are three complex cubic roots of 1 . Hence, noting that $\omega_{1}+\omega_{2}=-1$ and $\omega_{1} \omega_{2}=1$, we get that the Hankel transform of $s(t)$ (and any of its multiple binomial transforms) has the three terms:

$$
\begin{gathered}
h_{s}(0)=c_{1}+c_{2}+c_{3}=1+1+1=3, \\
h_{s}(1)=c_{1} c_{2} \lambda_{2}\left(\lambda_{2}-\lambda_{1}\right)+c_{2} c_{1} \lambda_{1}\left(\lambda_{1}-\lambda_{2}\right)+c_{1} c_{3} \lambda_{3}\left(\lambda_{3}-\lambda_{1}\right)+c_{3} c_{1} \lambda_{1}\left(\lambda_{1}-\lambda_{3}\right)+c_{2} c_{3} \lambda_{3}\left(\lambda_{3}-\lambda_{2}\right) \\
+c_{3} c_{2} \lambda_{2}\left(\lambda_{2}-\lambda_{3}\right)=\left(\lambda_{1}-\lambda_{2}\right)^{2}+\left(\lambda_{1}-\lambda_{3}\right)^{2}+\left(\lambda_{2}-\lambda_{3}\right)^{2}=2 \alpha \beta=8, \\
h_{s}(2)=c_{1} c_{2} c_{3}\left(\lambda_{1}-\lambda_{2}\right)^{2}\left(\lambda_{1}-\lambda_{3}\right)^{2}\left(\lambda_{2}-\lambda_{3}\right)^{2}=\left(\lambda_{1}-\lambda_{2}\right)^{2}\left(\lambda_{1}-\lambda_{3}\right)^{2}\left(\lambda_{2}-\lambda_{3}\right)^{2} \\
=-\frac{1}{27}\left(\alpha^{2}+\beta^{2}+\alpha \beta\right)^{2}(\alpha-\beta)^{2}=-\frac{1}{27}\left(\alpha^{3}+\beta^{3}+16\right)\left(\alpha^{3}+\beta^{3}-16\right)=-44 .
\end{gathered}
$$

4 Acknowledgement

I would like to thank the referee for his/her useful suggestions and improvements.

References

[1] J.-Q. Pan, Multiple binomial transforms and families of integer sequences, J. Integer Seq., 13 (2010), Article 10.4.2.
[2] J. W. Layman, The Hankel transform and some of its properties, J. Integer Seq., 4 (2001), Article 01.1.5.
[3] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org/.

2010 Mathematics Subject Classification: Primary 11B65; Secondary 11B75.
Keywords: shifted sequences, multiple binomial transforms, Hankel transform.
(Concerned with sequences $\underline{A 000045}, \underline{A 000073}, \underline{A_{001906}^{A}}, \underline{A 001644}, \underline{A 039834}, \underline{A 093131}$, and A115390.)

Received January 22 2011; revised version received February 22 2011. Published in Journal of Integer Sequences, March 252011.

Return to Journal of Integer Sequences home page.

