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Abstract

We consider the distribution defined by the reciprocals of binomial coefficients and
compute the corresponding moments. We find recurrence relations and the relative
ordinary generating functions, which we give explicitly for the first six moments (m =
0, 1, . . . , 5). Finally we give asymptotic approximations of the moments and of related
quantities.

1 Introduction

The present developments on moments of reciprocals of binomial coefficients are motivated
by the paper [1] by H. Belbachir, M. Rahmani, and B. Sury on the same subject. The three
authors obtain several results, but, in my opinion, a different approach to the problem can
conveniently be considered to simplify proofs and to present expansions in a more straight-
forward way. Therefore, the aim of this note is to present this different approach to the
evaluation of the moments in question, that is, the quantities

S(m)
n

=
n
∑

k=0

km

(

n

k

)

−1

. (1)

By using this formula, we obtain the generating functions of the first instances m =
0, 1, · · · , 5, which are as follows:

S(0)(t) = 1 + 2t +
5

2
t2 +

8

3
t3 +

8

3
t4 +

13

5
t5 +

151

60
t6 +

256

105
t7 +

83

35
t8 +

146

63
t9 + · · ·
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S(1)(t) = t +
5

2
t2 + 4t3 +

16

3
t4 +

13

2
t5 +

151

20
t6 +

128

15
t7 +

332

35
t8 +

72

7
t9 + · · ·

S(2)(t) = t +
9

2
t2 +

32

3
t3 +

115

6
t4 +

297

10
t5 +

2527

60
t6 +

1184

21
t7 +

2538

35
t8 +

815

9
t9 + · · · .

S(3)(t) = t +
17

2
t2 + 30 t3 +

217

3
t4 +

283

2
t5 +

4863

20
t6 +

5744

15
t7 +

19832

35
t8 +

5601

7
t9 + · · ·

S(4)(t) = t+
33

2
t2+

260

3
t3+

1675

6
t4+

6861

10
t5+

85351

60
t6+

275776

105
t7+

156078

35
t8+

447725

63
t9+· · ·

S(5)(t) = t+
65

2
t2+254 t3+

3271

3
t4+

6715

2
t5+

167591

20
t6+

271568

15
t7+

1232792

35
t8+

443003

7
t9+· · ·

These values will be useful for checking the formulas obtained below. The only sequence
occurring in Sloane’s Encyclopedia [6] is related to S(0)(t), which is the exponential generating
function of sequence A003149.

2 Basic relations

The first important result was obtained by T. B. Staver [7] more than 60 years ago. It is the

starting point for studying the sums S
(m)
n .

Theorem 1 (Staver, 1947). The following relation holds true for every n ∈ N:

S(1)
n

=
n

2
S(0)

n
.

Proof. By the change of variable k 7→ n − k we obtain:

n
∑

k=0

k

(

n

k

)

−1

=
n
∑

k=0

(n − k)

(

n

k

)

−1

.

From this we get S
(1)
n = nS

(0)
n − S

(1)
n which is the theorem assertion.

The following observation plays a fundamental role in our present approach:

Lemma 2. For every k ≤ n we have:

(

n + 1

k

)

−1

=

(

n

k

)

−1

−
k

n + 1

(

n

k

)

−1

.

Proof. We immediately have:

(

n + 1

k

)

−1

=
k!(n + 1 − k)!

(n + 1)!
=

k!(n − k)!(n + 1 − k)

n!(n + 1)
=

n + 1 − k

n + 1

(

n

k

)

−1

and this is the relation to be proved.

This lemma implies an important recurrence relation, from which the successive results
follow:
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Theorem 3. The following relation holds true for every m,n ∈ N:

S
(m)
n+1 = S(m)

n
−

1

n + 1
S(m+1)

n
+ (n + 1)m.

Proof. We use the previous lemma and obtain:

S
(m)
n+1 =

n+1
∑

k=0

km

(

n + 1

k

)

−1

=
n
∑

k=0

km

(

n + 1

k

)

−1

+ (n + 1)m

(

n + 1

n + 1

)

−1

=

=
n
∑

k=0

km

(

n

k

)

−1

−

n
∑

k=0

km+1

n + 1

(

n

k

)

−1

+ (n + 1)m = S(m)
n

−
1

n + 1
S(m+1)

n
+ (n + 1)m.

What follows will be derived by Staver’s theorem and Theorem 3. In fact, we are in a
position to prove the recurrence of Staver:

Theorem 4. The sequence (S
(0)
n ) satisfies the recurrence relation:

S
(0)
n+1 =

n + 2

2(n + 1)
S(0)

n
+ 1

with the initial condition S
(0)
0 = 1.

Proof. We specialize the previous theorem by setting m = 0:

S
(0)
n+1 = S(0)

n
−

1

n + 1
S(1)

n
+ (n + 1)0,

and apply Staver’s theorem:

S
(0)
n+1 = S(0)

n
−

n

2(n + 1)
S(0)

n
+ 1.

This is the recurrence we were looking for.

This is a linear recurrence relation of the first order with non-constant coefficients. Knuth
[4, Vol. 1] has shown that these recurrences can be solved with the summing factor method,
but let us proceed in another way, passing through the generating function of our sequence.

Theorem 5. The generating function of the sequence (S
(0)
n )n∈N satisfies the following differ-

ential equation1:

(2 − t)Ṡ(0)(t) = 2S(0)(t) +
2

(1 − t)2

(with S(0)(0) = 1), the solution of which is:

S(0)(t) =
2

(1 − t)(2 − t)
−

2 ln(1 − t)

(2 − t)2
.

1A superscripted dot denotes here differentiation by t.
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Proof. From the recurrence relation found above, we get:

2(n + 1)S
(0)
n+1 = nS(0)

n
+ 2S(0)

n
+ 2(n + 1).

By using the generating function (1 − t)−2 of the sequence (n + 1)n∈N and by applying the
method of coefficients (see, e.g., [5]), we find:

2Ṡ(0)(t) = tṠ(0)(t) + 2S(0)(t) +
2

(1 − t)2

which is the formula in the assertion. This differential equation can be integrated in an
elementary way and the solution is the expression shown.

We now obtain Staver’s formula:

Theorem 6. The numbers S
(0)
n can be computed by the following non-closed formula:

S(0)
n

= [tn]
2

(1 − t)(2 − t)
− [tn]

2 ln(1 − t)

(2 − t)2
=

n + 1

2n+1

n+1
∑

k=1

2k

k
.

Proof. By applying partial fraction decomposition, we find:

2

(1 − t)(2 − t)
=

2

1 − t
−

1

1 − t/2

and we can easily extract the coefficient of tn:

[tn]
2

1 − t
− [tn]

1

1 − t/2
= 2 −

1

2n
.

We now extract the coefficient of the second part:

[tn]
1

2(1 − t/2)2
ln

1

1 − t
=

1

2

n
∑

k=1

1

k

n − k + 1

2n−k
=

n + 1

2n+1

n
∑

k=1

2k

k
−

1

2n+1

n
∑

k=1

2k.

This latter sum can be extended to k = 0 by adding and subtracting 1; by applying the rule
for the sum of a geometric progression, we find:

1

2n+1

n
∑

k=1

2k =
1

2n+1

2n+1 − 1

2 − 1
−

1

2n+1
= 1 −

1

2n
.

Finally, we put everything together:

S(0)
n

= 2 −
1

2n
+

n + 1

2n+1

n
∑

k=1

2k

k
− 1 +

1

2n
=

n + 1

2n+1

n+1
∑

k=1

2k

k
.

The last passage is true since the contribution of the term with k = n + 1 is just 1.

Bender’s theorem (see [2]) gives S
(0)
n ∼ 2, but we can obtain an asymptotic expansion:
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Theorem 7. We have the following asymptotic expansion:

S(0)
n

= 2 +
2

n
+

4

n(n − 1)
+

12

n(n − 1)(n − 2)
+ O

(

1

n4

)

= 2 +
2

n
+

4

n2
+

16

n3
+ O

(

1

n4

)

.

Proof. Since 2−n is exponentially small, in the proof of the previous theorem, we have shown:

[tn]
2

(1 − t)(2 − t)
= 2 −

1

2n
∼ 2.

For the second part, we can expand everything around the dominating singularity t = 1 and
obtain:

(

2 − 4(1 − t) + 6(1 − t)2 + O((1 − t)3)
)

ln

(

1

1 − t

)

.

By extracting coefficients, we obtain the expansion in the assertion.

As an example, by considering n = 100, we have a true value S
(0)
100 = 2.020416947 to be

compared with the approximate value 2.020416000 given by the formula above.

3 The expansions

In their paper [1], Belbachir, Rahmani, and Sury find relations expressing S
(m)
n in terms of

S
(0)
n , although they seem not to give particular relevance to these identities. In our approach

they are very important, so let us prove some results in this direction. We begin with an
apparently obvious fact:

Theorem 8. For every m ∈ N we have:

S(m)
n

= P (m)(n)S(0)
n

+ Q(m)(n) (2)

where P (m)(n) and Q(m)(n) are polynomials in n of degree m, except Q(0)(n) = Q(1)(n) = 0.

Proof. We proceed by mathematical induction on m. When m = 0, we consider the obvious
identity S

(0)
n = S

(0)
n , from which we have the first step of induction and the initial values

P (0)(n) = 1, Q(0)(n) = 0. So, let us suppose that (2) holds true for a given m and consider
the identity in Theorem 3, which we can write as

S(m+1)
n

= (n + 1)S(m)
n

− (n + 1)S
(m)
n+1 + (n + 1)m+1.

By the inductive hypothesis, identity (2) holds true together with the companion formula

S
(m)
n+1 = P (m)(n + 1)S

(0)
n+1 + Q(m)(n + 1).

Let us substitute these values in the previous equation:

S(m+1)
n

= (n + 1)
(

P (m)(n)S(0)
n

+ Q(m)(n)
)

− (n + 1)
(

P (m)(n + 1)S
(0)
n+1 + Q(m)(n + 1)

)

+ (n + 1)m+1. (3)
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Finally, we use the recurrence for S
(0)
n in the form of Theorem 4

S
(0)
n+1 =

n + 2

2(n + 1)
S(0)

n
+ 1;

this is done to eliminate S
(0)
n+1. By rearranging terms, we find:

S(m+1)
n

=

(

(n + 1)P (m)(n) −
n + 2

2
P (m)(n + 1)

)

S(0)
n

+

+(n + 1)Q(m)(n) − (n + 1)
(

P (m)(n + 1) + Q(m)(n + 1)
)

+ (n + 1)m+1.

This is the required expression, as soon as we set:

P (m+1)(n) = (n + 1)P (m)(n) −
n + 2

2
P (m)(n + 1); (4)

Q(m+1)(n) = (n + 1)Q(m)(n) − (n + 1)
(

P (m)(n + 1) + Q(m)(n + 1)
)

+ (n + 1)m+1. (5)

It is obvious that deg(P (m)(n)) = m, while we leave to the reader the task of verifying that
deg(Q(m)(n)) = m for m ≥ 2.

At this point a simple program can be written in any Computer Algebra System com-
puting recursively these polynomials. For example, we have:

S(1)
n

=
n

2
S(0)

n
;

S(2)
n

=
(n + 1)(n − 2)

4
S(0)

n
+

(n + 1)2

2
;

S(3)
n

=
n(n2 − 3n − 6)

8
S(0)

n
+

3n(n + 1)2

4
;

S(4)
n

=
(n + 1)(n3 − 7n2 − 2n + 16)

16
S(0)

n
+

(7n − 8)(n + 1)3

8
;

S(5)
n

=
n(n4 − 10n3 − 5n2 + 70n + 80)

32
S(0)

n
+

5n(3n2 − n − 8)(n + 1)2

16
.

By using this result, we can find recurrence relations for S
(m)
n , m ∈ N. The idea is to

start with the relation S
(m)
n+1 = P (m)(n + 1)S

(0)
n+1 + Q(m)(n + 1) and change S

(0)
n+1 into S

(0)
n by

the recurrence relation of that quantity. At this point, we apply (2) backwards, eliminating

S
(0)
n and inserting S

(m)
n . In this way we obtain the desired recurrence. Formally:

Theorem 9. For every m ∈ N, we have the following recurrence relation:

S
(m)
n+1 =

n + 2

2(n + 1)

P (m)(n + 1)

P (m)(n)
S(m)

n
−

n + 2

2(n + 1)

P (m)(n + 1)

P (m)(n)
Q(m)(n)+P (m)(n+1)+Q(m)(n+1).
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Proof. As announced, we begin with the shifted position:

S
(m)
n+1 = P (m)(n + 1)S

(0)
n+1 + Q(m)(n + 1).

Then use the recurrence relation for S
(0)
n :

S
(m)
n+1 = P (m)(n + 1)

(

n + 2

2(n + 1)
S(0)

n
+ 1

)

+ Q(m)(n + 1) =

=
n + 2

2(n + 1)
P (m)(n + 1)S(0)

n
+ P (m)(n + 1) + Q(m)(n + 1).

We now use the relation found in the previous theorem to change S
(0)
n into S

(m)
n :

S
(m)
n+1 =

n + 2

2(n + 1)
P (m)(n+1)

S
(m)
n

P (m)(n)
−

n + 2

2(n + 1)

P (m)(n + 1)Q(m)(n)

P (m)(n)
+P (m)(n+1)+Q(m)(n+1).

This result is the relation we were looking for.

We expand our examples up to m = 5:

S
(1)
n+1 =

n + 2

2n
S(1)

n
+

n + 1

2
;

S
(2)
n+1 =

(n + 2)2(n − 1)

2(n + 1)2(n − 2)
S(2)

n
+

(n + 2)(n2 − 2n − 2)

2(n − 2)
;

S
(3)
n+1 =

(n + 2)(n2 − n − 8)

2n(n2 − 3n − 6)
S(3)

n
+

(n + 1)(n4 − n3 − 17n2 − 27n − 12)

2(n2 − 3n − 6)
;

S
(4)
n+1 =

(n + 2)2(n3 − 4n2 − 13n + 8)

2(n + 1)2(n3 − 7n2 − 2n + 16)
S(4)

n
+

(n + 2)(n6 − 5n5 − 24n4 − 2n3 + 54n2 + 54n + 16)

2(n3 − 7n2 − 2n + 16)
;

S
(5)
n+1 =

(n + 2)(n4 − 6n3 − 29n2 + 34n + 136)

2n(n4 − 10n3 − 5n2 + 70n + 80)
S(5)

n
+

+
(n + 1)(n8 − 6n7 − 54n6 − 215 + 496n4 + 1345n3 + 1505n2 + 790n + 160)

2(n4 − 10n3 − 5n2 + 70n + 80)
.

Finally, we will find the generating functions S(m)(t). For this purpose, we need the
generating functions of the sequences ((n + 1)m)n∈N. This is a classical result and involves
Eulerian numbers [3, p. 254]. Actually, we have:

G ((n + 1)m) =
E(m)(t)

(1 − t)m+1

and this can be taken as a definition of he polynomials E(m)(t). The first instances are:

E(1)(t) = 1

E(2)(t) = 1 + t
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E(3)(t) = 1 + 4t + t2

E(4)(t) = 1 + 11t + 11t2 + t3

E(5)(t) = 1 + 26t + 66t2 + 26t3 + t4.

It is well-known that E(m)(1) = m!.
Let us begin with the following result:

Theorem 10. For every m ∈ N, the generating functions S(m)(t) have the form:

S(m)(t) =
F (m)(t)

(1 − t)m+1
+

G(m)(t)

(2 − t)m+1
+

H(m)(t)

(2 − t)m+2
ln

(

1

1 − t

)

where F (m)(t), G(m)(t) and H(m)(t) are polynomials in t of degree at most m.

Proof. As we have seen, the generating function S(0)(t) can be written:

S(0)(t) =
2

1 − t
−

2

2 − t
+

2

(2 − t)2
ln

(

1

1 − t

)

.

This proves the first step of induction and gives the initial values F (0)(t) = 2, G(0)(t) = −2
and H(0)(t) = 2. So, let us suppose that our assertion holds true for m and apply Theorem
3; after some rearrangement we obtain:

S(m+1)(t) =
F (m)(t)

(1 − t)m+1
−

Ḟ (m)(t)

(1 − t)m
−

(m + 1)F (m)(t)

(1 − t)m+1
+

E(m+1)(t)

(1 − t)m+2
+

+
G(m)(t)

(2 − t)m+1
−

(1 − t)Ġ(m)(t)

(2 − t)m+1
−

(m + 1)(1 − t)G(m)(t)

(2 − t)m+2
−

H(m)(t)

(2 − t)m+2
+

+

(

H(m)(t)

(2 − t)m+2
−

(1 − t)Ḣ(m)(t)

(2 − t)m+2
−

(m + 2)(1 − t)H(m)(t)

(2 − t)m+3

)

ln

(

1

1 − t

)

.

Everything is immediately proven as soon as we set:

F (m+1)(t) = (1 − t)F (m)(t) − (1 − t)2Ḟ (m)(t) − (m + 1)(1 − t)F (m)(t) + E(m+1)(t) (6)

G(m+1)(t) = (2 − t)G(m)(t) − (1 − t)(2 − t)Ġ(m)(t) − (m + 1)(1 − t)G(m)(t) − H(m)(t) (7)

H(m+1)(t) = (2 − t)H(m)(t) − (1 − t)(2 − t)Ḣ(m)(t) − (m + 2)(1 − t)H(m)(t) (8)

8



We easily obtain the following generating functions:

S(1)(t) =
1

(1 − t)2
−

4

(2 − t)2
+

2t

(2 − t)3
ln

(

1

1 − t

)

S(2)(t) =
2t

(1 − t)3
−

6t

(2 − t)3
−

4 − 4t − 2t2

(2 − t)4
ln

(

1

1 − t

)

S(3)(t) = −
1 − 4t − 3t2

(1 − t)4
+

16 − 16t − 8t2

(2 − t)4
−

16t − 16t2 − 2t3

(2 − t)5
ln

(

1

1 − t

)

S(4)(t) = −
2t − 22t2 − 4t3

(1 − t)5
+

80t − 80t2 − 10t3

(2 − t)5
+

32 − 64t − 12t2 + 44t3 + 2t4

(2 − t)6
ln

(

1

1 − t

)

S(5)(t) =
3 − 14t + 48t2 + 78t3 + 5t4

(1 − t)6
−

192 − 384t − 72t2 + 264t3 + 12t4

(2 − t)6
+

+
272t − 544t2 + 168t3 + 104t4 + 2t5

(2 − t)7
ln

(

1

1 − t

)

The interested reader can compare the series expansion of these functions against the
values given in the Introduction, directly obtained from the formula (1).

4 Asymptotics

In the previous section we have found recurrence relations and generating functions; they
become more and more complex as m grows, so it is important to have asymptotic ap-
proximations of our quantities. There are two possible approaches. By using Theorem 8
in conjunction with Theorem 7 (thus taking advantage of our knowledge of the asymptotic

behavior of S
(0)
n ) or by starting with Theorem 10 and reasoning in terms of formal power

series, i.e., our generating functions.
In the first approach, we consider the following lemma, which is a corollary of Theorem

8:

Lemma 11. The leading terms (i.e., the terms of highest degree), L(P (m)(n)) and L(Q(m)(n))
of the polynomials P (m)(n) and Q(m)(n), are respectively:

L(P (m)(n)) =
nm

2m
(m ≥ 1) − L(Q(m)(n)) =

(2m−1 − 1)nm

2m−1
(m ≥ 2).

Proof. The initial step can be verified directly. From the recurrence relation (4) for P (m)(n)
we have:

L(P (m+1)(n)) = n ·
nm

2m
−

n

2

nm

2m
=

nm+1

2m+1
.

This proves the induction step. For Q(m)(n), by using the recurrence (5), we find:

L(Q(m+1)(n)) = n ·
(2m−1 − 1)nm

2m−1
− n ·

nm

2m
− n ·

(2m−1 − 1)nm

2m−1
+ nm+1 =

9



= −
nm+1

2m
+ nm+1 =

(2m − 1)nm+1

2m
.

This completes the proof.

We immediately have the asymptotic behavior of our quantities:

Theorem 12. The following asymptotic approximation holds true for every positive m:

S(m)
n

∼ nm.

Proof. In Theorem 7 we have seen that S
(0)
n ∼ 2 and by Theorem 8 and the preceding lemma

we find the desired result:

S(m)
n

∼
nm

2m
· 2 +

(2m−1 − 1)nm

2m−1
= nm.

As an example, we considered n = 100 and in Table 1 we give the exact value S
(m)
100 , its

approximate value according to the previous theorem, and the relative error.

m true value asymptotic value relative error approx. Th. 13
1 101.0208474 100 1.02% 101.0208000
2 10,100.02174 10,000 1.00% 10100.02
3 1,009,899.024 1,000,000 0.99% 1009899
4 100,979,800.0 100,000,000 0.98% 100979800
5 1.009698040 · 1010 1010 0.97% 1.00969800 · 1010

Table 1: The case n = 100

The asymptotic approximation could be improved by considering other terms, but we
wish to quote just the expressions obtained by the first four terms given in Theorem 7 (for
n = 100, see last column in Table 1):

Theorem 13. The following approximations hold true

S(1)
n

∼ n + 1 +
2

n
+

8

n2

S(2)
n

∼ n2 + n +
2

n

S(3)
n

∼ n3 + n2 − n − 1

S(4)
n

∼ n4 + n3 − 2n2 − 2n

S(5)
n

∼ n5 + n4 − 3n3 − 2n2.

Proof. These values are derived directly from the formulas after Theorem 8.
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For the second approach, let us refer to Theorem 10. The dominating singularity of the
generating functions S(m)(t) is t = 1, which is a pole in F (m)(t)/(1− t)m+1 and a logarithmic
singularity in the term containing ln(1/(1 − t)). In order to apply Bender’s theorem for
asymptotic evaluation, let us compute the values of the polynomials F (m)(t), G(m)(t) and
F (m)(t) at t = 1:

Lemma 14. For every m ∈ N we have:

F (m)(1) = m!, G(m)(1) = −2(n + 1). H(m)(1) = 2.

Proof. By using the recurrence (6), we find immediately F (m)(1) = E(m)(1) = m!. By (8)
we have H(m+1)(1) = H(m)(1); since H(0)(1) = 2 we find H(m)(1) = 2, for every m ∈ N.
Finally, by (7) we have G(m+1)(1) = G(m)(1)− 2, and since G(0)(1) = −2, the formula in the
assertion follows.

We conclude with another proof of the asymptotic value for S
(m)
n :

Theorem 15. For every m ≥ 1, we have the asymptotic approximation:

S(m)
n

∼ nm.

Proof. Let us consider the decomposition given in Theorem 10. The term with G(m)(t) has
the only singularity t = 2 and therefore its contribution is asymptotically small. The term
containing the logarithm behaves as H(m)(1) ln(1/(1 − t)) and therefore contributes as 2/n.
In conclusion, the relevant part is the term containing F (m)(t) which, however, is dominated
by E(m)(t)/(1 − t)m+1, and we find;

S(m)
n

∼ [tn]
E(m)(t)

(1 − t)m+1
∼ E(m)(1)

(

−m − 1

n

)

(−1)n = m!

(

n + m

m

)

∼ nm.

It is possible to improve our estimates of the asymptotic value of S
(m)
n by approaching in

a different way a property considered by Belbachir, Rahmani, and Sury. We begin with the
following result:

Theorem 16. The term with k = n−m in the sum (1) defining S
(m)
n is asymptotically m!.

More exactly:

(n − m)m

(

n

n − m

)

−1

∼ m!

(

1 −
m2 + m

2n

)

.

Proof. In fact we have the desired result:

(n − m)m

(

n

n − m

)

−1

= (n − m)m
m!

(n)m

∼
nm exp(−m2/n) · m!

nm exp(−(0 + 1/n + 2/n + · · · + (m − 1)/n))
=

=
exp(−m2/n) · m!

exp(−m(m − 1)/(2n))
= m! exp

(

−
m2 + m

2n

)

∼ m!

(

1 −
m2 + m

2n

)

∼ m!.
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For example, we consider m = 4 and n = 1000; the true value of 9964
(

1000
996

)−1
is

23.76060024. The approximate value obtained by the previous theorem is 23.76000000.
The two terms preceding k = n − m are asymptotically small:

Lemma 17. For fixed m, the terms with k = n − m − 1 and k = n − m − 2 in the sum (1)
are O(1/n) and O(1/n2), respectively.

Proof. By a straight-forward computation we find:

(n − m − 1)m

(

n

n − m − 1

)

∼
m + 1

n
(n − m)m

(

n

n − m

)

−1

∼
(m + 1)!

n
.

This is found when we use the previous theorem. The proof for k = n−m−2 is analogous.

For fixed m, at the other end of the sum (1), the terms with k = 1 and k = 2 are small.
Actually, we have:

1m

(

n

1

)

−1

=
1

n
and 2m

(

n

2

)

−1

=
2m+1

n(n − 1)
= O

(

1

n2

)

.

The following observation now becomes very important:

Theorem 18. The distribution of the terms in the sum (1) is unimodal and attains its
minimum near k = (n − m − 1)/2.

Proof. Let us observe that:

(k + 1)m

(

n

k + 1

)

−1

= (k + 1)m
k + 1

n − k

(

n

k

)

−1

;

and consider the difference of two consecutive terms:

(k + 1)m

(

n

k + 1

)

−1

− km

(

n

k

)

−1

=

(

n

k

)

−1
km

n − k

(

(k + 1)

(

1 +
1

k

)m

− n + k

)

.

The terms are increasing when the quantity between parentheses is positive and decreasing
when negative. The threshold value is obtained when

n ≈ (k + 1)

(

1 +
1

k

)m

+ k ≈ (k + 1)
(

1 +
m

k

)

+ k.

For fixed m, when n and k are large, we are reduced to the equation n = 2k + m + 1,
the solution of which is our assertion. In our hypotheses, the solution is unique and the
distribution is unimodal.

We are now in a position to prove the theorem:

Theorem 19 (Belbachir, Rahmani, and Sury). We have:

n−m
∑

k=0

km

(

n

k

)

−1

∼ m!.
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Proof. The sum is composed: (1) of the term with k = n−m, the asymptotic value of which
is m!; (2) of the terms with k = 1 and k = n−m−1 which are O(1/n); (3) of the terms with
k = 2 and k = n − m − 2 which are O(1/n2); (4) of all the terms with 2 < k < n − m − 2
which are all O(1/n2) by unimodality. Summing all these contributions, we conclude:

n−m
∑

k=0

km

(

n

k

)

−1

= O

(

1

n

)

+ (n − m − 2)O

(

1

n2

)

+ O

(

1

n

)

+ m! = m! + O

(

1

n

)

.

This proves our assertion.

For our purposes it is sufficient to observe that the central terms of the sum are O(1/n2),
but in reality they are much smaller. To have an idea thereof, we can consider the central
term, which, as we have seen, is not too far from the smallest term; we immediately have
the value:

(n

2

)m
(

n

n/2

)

−1

∼
nm

2n+m

√

πn

2
,

where we used the classical approximation of the central binomial coefficients. For m = 4
and n = 1000 the true value of the central term is 0.23117682× 10−288 and the approximate
value is 0.23123462×10−288, both values close to the minimum 0.22938294×10−288 attained
at k = 498.

The fact that the term distribution is unimodal and all the terms from k = 1 to k =
n − m − 1 are smaller and smaller as n → ∞ suggests another approach to the evaluation
of the asymptotic value of S

(m)
n , when m > 0: it is sufficient to consider the last terms of

the sum, which are dominating due to the lemmas and theorems we have just proved. In
particular, we obtain the following result by using the last four terms of the sum (1):

Theorem 20. The asymptotic value of the sum (1) is:

S(m)
n

∼ nm + nm−1 − (m − 2)nm−2 +
m2 − 9m + 16

2
nm−3.

Proof. The leading term, obtained by setting k = n, is obviously nm. The second term,
corresponding to k = n − 1 is:

(n−1)m
1

n
=

nm(1 − 1/n)m

n
∼ nm−1

(

1 −
m

n
+

m(m − 1)

2n2

)

= nm−1−mnm−2+
m(m − 1)

2
nm−3.

The next term gives:

2(n − 2)m

n(n − 1)
∼ 2nm

(

1 −
2m

n

)(

1 +
1

n

)

∼ 2nm−2 − (4m − 2)nm−3.

Finally, the fourth term contributes for 6nm−3, and putting everything together we find the
expression in the assertion.

We observe that these values agree with the formulas obtained in Theorem 13.
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