Journal of Integer Sequences, Vol. 14 (2011),

Weighted Gcd-Sum Functions

László Tóth ${ }^{1}$
Department of Mathematics
University of Pécs
Ifjúság u. 6
7624 Pécs
Hungary
and
Institute of Mathematics, Department of Integrative Biology
Universität für Bodenkultur
Gregor Mendel-Straße 33
A-1180 Wien
Austria
ltoth@gamma.ttk.pte.hu

Abstract

We investigate weighted gcd-sum functions, including the alternating gcd-sum function and those having as weights the binomial coefficients and values of the Gamma function. We also consider the alternating lcm-sum function.

1 Introduction

The gcd-sum function, called also Pillai's arithmetical function (OEIS A018804) is defined by

$$
\begin{equation*}
P(n):=\sum_{k=1}^{n} \operatorname{gcd}(k, n) \quad(n \in \mathbb{N}:=\{1,2, \ldots\}) \tag{1}
\end{equation*}
$$

The function P is multiplicative and its arithmetical and analytical properties are determined by the representation

$$
\begin{equation*}
P(n)=\sum_{d \mid n} d \phi(n / d) \quad(n \in \mathbb{N}) \tag{2}
\end{equation*}
$$

[^0]where ϕ is Euler's function. See the survey paper [5]. Note that for every prime power p^{a} $(a \in \mathbb{N})$,
\[

$$
\begin{equation*}
P\left(p^{a}\right)=(a+1) p^{a}-a p^{a-1} . \tag{3}
\end{equation*}
$$

\]

Now let

$$
\begin{equation*}
P_{\text {altern }}(n):=\sum_{k=1}^{n}(-1)^{k-1} \operatorname{gcd}(k, n) \quad(n \in \mathbb{N}) \tag{4}
\end{equation*}
$$

be the alternating gcd-sum function. As far as we know, the function (4) was not considered before.

Furthermore, let

$$
\begin{equation*}
P_{\text {binom }}(n):=\sum_{k=1}^{n}\binom{n}{k} \operatorname{gcd}(k, n) \quad(n \in \mathbb{N}) \tag{5}
\end{equation*}
$$

(OEIS A159068), where $\binom{n}{k}$ are the binomial coefficients. Every term of the sum (5) is a multiple of n, since $\operatorname{gcd}(k, n)=k x+n y$ with suitable integers x, y and $k\binom{n}{k}=n\binom{n-1}{k-1}$ $(1 \leq k \leq n)$. Note also the symmetry $\binom{n}{k} \operatorname{gcd}(k, n)=\binom{n}{n-k} \operatorname{gcd}(n-k, n)(1 \leq k \leq n-1)$.

More generally, consider the weighted gcd-sum functions defined by

$$
\begin{equation*}
P_{w}(n):=\sum_{k=1}^{n} w(k, n) \operatorname{gcd}(k, n) \quad(n \in \mathbb{N}) \tag{6}
\end{equation*}
$$

where the weights are functions $w: \mathbb{N}^{2} \rightarrow \mathbb{C}$.
In this paper we evaluate the alternating gcd-sum function $P_{\text {altern }}(n)$, deduce a formula for the function $P_{\text {binom }}(n)$ and investigate other special cases of (6). We also give a formula for the alternating lcm-sum function defined by

$$
\begin{equation*}
L_{\text {altern }}(n):=\sum_{k=1}^{n}(-1)^{k-1} \operatorname{lcm}[k, n] \quad(n \in \mathbb{N}) \tag{7}
\end{equation*}
$$

Similar results can be derived for the weighted versions of certain analogs and generalizations of the gcd-sum function, see [5], but we confine ourselves to the function (6).

2 General results

We first give the following simple result.
Proposition 1. i) Let $w: \mathbb{N}^{2} \rightarrow \mathbb{C}$ be an arbitrary function. Then

$$
\begin{equation*}
P_{w}(n)=\sum_{d \mid n} \phi(d) \sum_{j=1}^{n / d} w(d j, n) \quad(n \in \mathbb{N}) \tag{8}
\end{equation*}
$$

ii) Assume that there is a function $g:(0,1] \rightarrow \mathbb{C}$ such that $w(k, n)=g(k / n)(1 \leq k \leq n)$ and let $G(n)=\sum_{k=1}^{n} g(k / n) \quad(n \in \mathbb{N})$. Then

$$
\begin{equation*}
P_{w}(n)=\sum_{d \mid n} \phi(d) G(n / d) \quad(n \in \mathbb{N}) \tag{9}
\end{equation*}
$$

Proof. i) Using Gauss' formula $m=\sum_{d \mid m} \phi(d)$ for $m=\operatorname{gcd}(k, n)$, grouping the terms of (6) and denoting $k=d j$ we obtain at once

$$
P_{w}(n):=\sum_{k=1}^{n} w(k, n) \sum_{d \mid \operatorname{gcd}(k, n)} \phi(d)=\sum_{d \mid n} \phi(d) \sum_{j=1}^{n / d} w(d j, n) .
$$

ii) Use (8) and that

$$
\sum_{j=1}^{n / d} w(d j, n)=\sum_{j=1}^{n / d} g(d j / n)=\sum_{j=1}^{n / d} g(j /(n / d))=G(n / d)
$$

For $w(k, n)=1$ we reobtain formula formula (2). In the next section we investigate other special cases, including those already mentioned in the Introduction.
Remark 2. Consider the function

$$
\begin{equation*}
R_{w}(n):=\sum_{\substack{k=1 \\ \operatorname{gcd}(k, n)=1}}^{n} w(k, n) \quad(n \in \mathbb{N}) \tag{10}
\end{equation*}
$$

Then, similar to the proof of i), now with the Möbius μ function instead of ϕ,

$$
\begin{equation*}
R_{w}(n)=\sum_{k=1}^{n} w(k, n) \sum_{d \mid \operatorname{gcd}(k, n)} \mu(d)=\sum_{d \mid n} \mu(d) \sum_{j=1}^{n / d} w(d j, n) . \tag{11}
\end{equation*}
$$

If condition ii) is satisfied, then we have

$$
\begin{equation*}
R_{w}(n)=\sum_{d \mid n} \mu(d) G(n / d) \quad(n \in \mathbb{N}) \tag{12}
\end{equation*}
$$

We will also point out some special cases of (11) and (12).

3 Special cases

3.1 Alternating gcd-sum function

Let $w(k, n)=(-1)^{k-1}(k, n \in \mathbb{N})$. Then we have the function $P_{\text {altern }}(n)$ defined by (4).
Proposition 3. Let $n \in \mathbb{N}$ and write $n=2^{a} m$, where $a \in \mathbb{N}_{0}:=\{0,1,2, \ldots\}$ and $m \in \mathbb{N}$ is odd. Then

$$
P_{\text {altern }}(n)= \begin{cases}n, & \text { if } n \text { is odd }(a=0) \tag{13}\\ -2^{a-1} a P(m)=-\frac{a}{a+2} P(n), & \text { if } n \text { is even }(a \geq 1)\end{cases}
$$

Proof. Use formula (8). Here

$$
S_{d}(n):=\sum_{j=1}^{n / d} w(d j, n)=\sum_{j=1}^{n / d}(-1)^{d j-1}=-\sum_{j=1}^{n / d}(-1)^{d j} .
$$

If n is odd, then every divisor d of n is also odd and obtain $S_{d}(n)=-\sum_{j=1}^{n / d}(-1)^{j}=1$, where n / d is odd. Hence, $P_{\text {altern }}(n)=\sum_{d \mid n} \phi(d)=n$.

Now let n be even and let $d \mid n$. For d odd, $S_{d}(n)=-\sum_{j=1}^{n / d}(-1)^{j}=0$, since n / d is even. For d even, $S_{d}(n)=-\sum_{j=1}^{n / d} 1=-n / d$. We obtain that

$$
P_{\text {altern }}(n)=-\sum_{\substack{d \mid n \\ d \text { even }}} \phi(d) \frac{n}{d}=-\sum_{d \mid n} \phi(d) \frac{n}{d}+\sum_{\substack{d \mid n \\ d \text { odd }}} \phi(d) \frac{n}{d},
$$

where the first sum is $P(n)$ (cf. (2)), and the second one is

$$
\sum_{d \mid m} \phi(d) \frac{2^{a} m}{d}=2^{a} P(m)
$$

Using (3), $P(n)=P\left(2^{a}\right) P(m)=2^{a-1}(a+2) P(m)$ and deduce

$$
\begin{aligned}
P_{\text {altern }}(n)= & -P(n)+2^{a} P(m)=P(m)\left(2^{a}-2^{a-1}(a+2)\right) \\
& =-2^{a-1} a P(m)=-\frac{a}{a+2} P(n) .
\end{aligned}
$$

Remark 4. More generally, consider the polynomial

$$
\begin{equation*}
f_{n}(x):=\sum_{k=1}^{n} \operatorname{gcd}(k, n) x^{k-1} \tag{14}
\end{equation*}
$$

i.e., put $w(k, n)=x^{k-1}$ (formally). Then $f_{n}(1)=P(n), f_{n}(-1)=P_{\text {altern }}(n)$ and deduce from Proposition 1,

$$
\begin{equation*}
f_{n}(x):=\left(1-x^{n}\right) \sum_{d \mid n} \frac{\phi(d) x^{d-1}}{1-x^{d}} \tag{15}
\end{equation*}
$$

3.2 Logarithms as weights

Let

$$
\begin{equation*}
P_{\log }(n):=\sum_{k=1}^{n}(\log k) \operatorname{gcd}(k, n) \tag{16}
\end{equation*}
$$

Proposition 5. For every $n \in \mathbb{N}$,

$$
\begin{equation*}
P_{\log }(n)=P(n) \log n+\sum_{d \mid n} \log \left(d!/ d^{d}\right) \phi(n / d) \tag{17}
\end{equation*}
$$

Proof. Apply formula (8). For $w(k, n)=\log k$,

$$
\sum_{j=1}^{n / d} w(d j, n)=\sum_{j=1}^{n / d} \log (d j)=\frac{n}{d} \log d+\log \left(\frac{n}{d}\right)!
$$

hence

$$
P_{\log }(n)=\sum_{d \mid n} \phi(d)\left(\frac{n}{d} \log d+\log \left(\frac{n}{d}\right)!\right)
$$

and a short computation leads to (17).
Remark 6. Writing the exponential form of (17),

$$
\begin{equation*}
\prod_{k=1}^{n} k^{\operatorname{gcd}(k, n)}=n^{P(n)} \prod_{d \mid n}\left(\frac{d!}{d^{d}}\right)^{\phi(n / d)} \tag{18}
\end{equation*}
$$

Compare this to the known formula

$$
\begin{equation*}
\prod_{\substack{k=1 \\ \operatorname{gcd}(k, n)=1}}^{n} k=n^{\phi(n)} \prod_{d \mid n}\left(\frac{d!}{d^{d}}\right)^{\mu(n / d)} \tag{19}
\end{equation*}
$$

cf. [2, p. 197, Ex. 24] (OEIS A001783).

3.3 Discrete Fourier transform of the gcd's

Consider $w(k, n)=\exp (2 \pi i k r / n)(k, n \in \mathbb{N})$, where $r \in \mathbb{Z}$, and denote

$$
\begin{equation*}
P_{\mathrm{DFT}}^{(r)}(n):=\sum_{k=1}^{n} \exp (2 \pi i k r / n) \operatorname{gcd}(k, n), \tag{20}
\end{equation*}
$$

representing the discrete Fourier transform of the function $f(k)=\operatorname{gcd}(k, n)(k \in \mathbb{N})$.
Proposition 7. For every $n \in \mathbb{N}, r \in \mathbb{Z}$,

$$
\begin{equation*}
P_{\mathrm{DFT}}^{(r)}(n)=\sum_{d \mid \operatorname{gcd}(n, r)} d \phi(n / d) . \tag{21}
\end{equation*}
$$

Proof. Here $\exp (2 \pi i k r / n)=g(k / n)$ with $g(x)=\exp (2 \pi i r x)$. Using formula (9) and that

$$
\sum_{k=1}^{n} \exp (2 \pi i r k / n)= \begin{cases}n, & \text { if } n \mid r \\ 0, & \text { otherwise }\end{cases}
$$

we obtain

$$
P_{\mathrm{DFT}}^{(r)}(n)=\sum_{d|n, n / d| r} \phi(d) \frac{n}{d}=\sum_{d|n, d| r} d \phi(n / d) .
$$

Remark 8. Formula (21) can be written in the form

$$
\begin{equation*}
P_{\mathrm{DFT}}^{(r)}(n)=\sum_{d \mid n} d c_{n / d}(r) \tag{22}
\end{equation*}
$$

where $c_{n}(k)$ are the Ramanujan sums. Furthermore, (22) can be extended for r-even functions. See [4], [6, Prop. 2]. Note that in the present treatment we do not need properties of the Ramanujan sums and of r-even functions.

For $r=0$ (more generally, in case $n \mid r$) we reobtain from (21) formula (2). For $r=1$ we deduce

$$
\begin{equation*}
\sum_{k=1}^{n} \exp (2 \pi i k / n) \operatorname{gcd}(k, n)=\phi(n) \quad(n \in \mathbb{N}) \tag{23}
\end{equation*}
$$

which gives by writing the real and the imaginary parts, respectively,

$$
\begin{gather*}
\sum_{k=1}^{n} \cos (2 \pi k / n) \operatorname{gcd}(k, n)=\phi(n) \quad(n \in \mathbb{N}) \tag{24}\\
\sum_{k=1}^{n} \sin (2 \pi k / n) \operatorname{gcd}(k, n)=0 \quad(n \in \mathbb{N}) \tag{25}
\end{gather*}
$$

similar relations being valid for $\operatorname{gcd}(n, r)=1$.
Formulae (23), (24), (25) were pointed out in [4, Ex. 3].

3.4 Binomial coefficients as weights

Let $w(k, n)=\binom{n}{k}(k, n \in \mathbb{N})$. Then we have the function $P_{\text {binom }}(n)$ defined by (5).
Proposition 9. For every $n \in \mathbb{N}$,

$$
\begin{equation*}
P_{\mathrm{binom}}(n)=2^{n} \sum_{d \mid n} \frac{\phi(d)}{d} \sum_{\ell=1}^{d}(-1)^{\ell} \cos ^{n}(\ell \pi / d)-n . \tag{26}
\end{equation*}
$$

Proof. Let $\varepsilon_{r}^{j}=\exp (2 \pi i j / r)(1 \leq j \leq r)$ denote the r-th roots of unity. Using the known identity

$$
\begin{equation*}
\sum_{k=0}^{\lfloor n / r\rfloor}\binom{n}{k r}=\frac{1}{r} \sum_{j=1}^{r}\left(1+\varepsilon_{r}^{j}\right)^{n}=\frac{2^{n}}{r} \sum_{j=1}^{r} \cos ^{n}(j \pi / r) \cos (n j \pi / r) \quad(n, r \in \mathbb{N}) \tag{27}
\end{equation*}
$$

cf. [1, p. 84] and applying (8) we deduce

$$
\begin{gathered}
P_{\mathrm{binom}}(n)=\sum_{d \mid n} \phi(d) \sum_{j=1}^{n / d}\binom{n}{d j}=\sum_{d \mid n} \phi(d)\left(\frac{2^{n}}{d} \sum_{\ell=1}^{d} \cos ^{n}(\ell \pi / d) \cos (n \ell \pi / d)-1\right) \\
=2^{n} \sum_{d \mid n} \frac{\phi(d)}{d} \sum_{\ell=1}^{d}(-1)^{\ell} \cos ^{n}(\ell \pi / d)-\sum_{d \mid n} \phi(d)
\end{gathered}
$$

giving (26).

Note that (11) and (27) lead to the following formula for the sequence OEIS A056188:

$$
\begin{equation*}
R_{\text {binom }}(n):=\sum_{\substack{k=1 \\ \operatorname{gcd}(k, n)=1}}^{n}\binom{n}{k}=2^{n} \sum_{d \mid n} \frac{\mu(d)}{d} \sum_{\ell=1}^{d}(-1)^{\ell} \cos ^{n}(\ell \pi / d) \quad(n>1) \tag{28}
\end{equation*}
$$

3.5 Weights concerning the Gamma function

Now let

$$
\begin{equation*}
P_{\text {Gamma }}(n):=\sum_{k=1}^{n} \log \Gamma\left(\frac{k}{n}\right) \operatorname{gcd}(k, n), \tag{29}
\end{equation*}
$$

where Γ is the Gamma function.
Proposition 10. For every $n \in \mathbb{N}$,

$$
\begin{equation*}
P_{\text {Gamma }}(n)=\frac{\log 2 \pi}{2}(P(n)-n)-\frac{1}{2} n \log n+\frac{1}{2} \sum_{d \mid n} \phi(d) \log d \tag{30}
\end{equation*}
$$

Proof. This follows by (9) and by

$$
\prod_{k=1}^{n} \Gamma\left(\frac{k}{n}\right)=(2 \pi)^{(n-1) / 2} n^{-1 / 2}, \quad(n \in \mathbb{N})
$$

which is a consequence of Gauss' multiplication formula.
Remark 11. (30) can be written also as

$$
\begin{equation*}
P_{\text {Gamma }}(n)=\frac{\log 2 \pi}{2}(P(n)-n)-\frac{1}{2}(\phi * \log)(n), \tag{31}
\end{equation*}
$$

where $*$ deotes the Dirichlet convolution. Note that $\phi * \log =\mu * \mathrm{id} * \log =\Lambda * \mathrm{id}$, where $\operatorname{id}(n)=n(n \in \mathbb{N})$ and Λ is the von Mangoldt function.

Writing the exponential form,

$$
\begin{equation*}
\prod_{k=1}^{n}\left(\Gamma\left(\frac{k}{n}\right)\right)^{\operatorname{gcd}(k, n)}=(2 \pi)^{(P(n)-n) / 2} n^{-n / 2} \prod_{d \mid n} d^{\phi(d) / 2} \tag{32}
\end{equation*}
$$

Compare this to the following formula given in [3]:

$$
\prod_{\substack{k=1 \tag{33}\\ \operatorname{gcd}(k, n)=1}}^{n} \Gamma\left(\frac{k}{n}\right)=\frac{(2 \pi)^{\phi(n) / 2}}{\exp (\Lambda(n) / 2)}= \begin{cases}(2 \pi)^{\phi(n) / 2} / \sqrt{p}, & n=p^{a} \text { (a prime power) } ; \\ (2 \pi)^{\phi(n) / 2}, & \text { otherwise }\end{cases}
$$

3.6 Further special cases

It is possible to investigate other special cases, too. As examples we give the next ones with weights regarding, among others, the floor function $\lfloor\cdot\rfloor$, and the saw-tooth function ψ defined as $\psi(x)=x-\lfloor x\rfloor-1 / 2$ for $x \in \mathbb{R} \backslash \mathbb{Z}$ and $\psi(x)=0$ for $x \in \mathbb{Z}$.

Proposition 12. For every $n \in \mathbb{N}$,

$$
\begin{equation*}
P_{\mathrm{id}}(n):=\sum_{k=1}^{n} k \operatorname{gcd}(k, n)=\frac{n}{2}(P(n)+n) . \tag{34}
\end{equation*}
$$

Proposition 13. For every $n \in \mathbb{N}$ and $\alpha \in \mathbb{R}$,

$$
\begin{equation*}
P_{\text {floor }}(n):=\sum_{k=1}^{n}\left\lfloor\alpha+\frac{k}{n}\right\rfloor \operatorname{gcd}(k, n)=\sum_{d \mid n} \phi(d)\left\lfloor\frac{n \alpha}{d}\right\rfloor . \tag{35}
\end{equation*}
$$

Proposition 14. For every $n, r \in \mathbb{N}$,

$$
\begin{equation*}
P_{\text {saw-tooth }}^{(r)}(n):=\sum_{k=1}^{n} \psi(k r / n) \operatorname{gcd}(k, n)=0 . \tag{36}
\end{equation*}
$$

Proposition 15. For every $n \in \mathbb{N}, n>1$,

$$
\begin{equation*}
P_{\sin }(n):=\sum_{k=1}^{n-1}(\log \sin (k \pi / n)) \operatorname{gcd}(k, n)=(\phi * \log)(n)-(\log 2)(P(n)-n) . \tag{37}
\end{equation*}
$$

Proposition 16. For every $n \in \mathbb{N}$ and $\alpha \in \mathbb{R}$ with $\alpha+k / n \notin \mathbb{Z}(1 \leq k \leq n)$,

$$
\begin{equation*}
P_{\mathrm{cot}}(n):=\sum_{k=1}^{n} \cot \pi(\alpha+k / n) \operatorname{gcd}(k, n)=n \sum_{d \mid n} \frac{\phi(d)}{d} \cot (\pi n \alpha / d) . \tag{38}
\end{equation*}
$$

These follow from Proposition 1 using the following well-known formulae:

$$
\begin{align*}
& \sum_{k=1}^{n}\left\lfloor\alpha+\frac{k}{n}\right\rfloor=\lfloor n \alpha\rfloor, \quad(n \in \mathbb{N}), \tag{39}\\
& \sum_{k=1}^{n} \psi(k r / n)=0 \quad(n, r \in \mathbb{N}), \tag{40}\\
& \prod_{k=1}^{n-1} \sin (k \pi / n)=\frac{n}{2^{n-1}} \quad(n \in \mathbb{N}) \tag{41}
\end{align*}
$$

(for $n=1$ the empty product is 1),

$$
\begin{equation*}
\sum_{k=1}^{n} \cot \pi(\alpha+k / n)=n \cot \pi n \alpha \quad(n \in \mathbb{N}, \alpha \in \mathbb{R}, \alpha+k / n \notin \mathbb{Z}, 1 \leq k \leq n) \tag{42}
\end{equation*}
$$

4 The alternating lcm-sum function

Some of the previous results have counterparts for the lcm-sum function (OEIS A051193)

$$
\begin{equation*}
L(n):=\sum_{k=1}^{n} \operatorname{lcm}[k, n]=\frac{n}{2}\left(1+\sum_{d \mid n} d \phi(d)\right) \quad(n \in \mathbb{N}) \tag{43}
\end{equation*}
$$

We consider here the alternating lcm-sum function defined by (7) and then the analog of (18).

Let $F(n):=\frac{1}{n} \sum_{d \mid n} d \phi(d)$. Note that $F(n)=\sum_{k=1}^{n}(\operatorname{gcd}(k, n))^{-1}$ representing the arithmetic mean of the orders of elements in the cyclic group of order n, cf. [5, p. 3]. Furthermore, let $\beta(n):=(\mathbf{1} * \mu \mathrm{id})(n)=\prod_{d \mid n}(1-p)$ and let $h(n):=\prod_{k=1}^{n} k^{k}$ be the sequence of hyperfactorials (OEIS A002109).

Proposition 17. Let $n \in \mathbb{N}$. If n is odd, then

$$
\begin{equation*}
L_{\mathrm{altern}}(n)=\frac{n}{2}\left(1+\sum_{d \mid n} d \mu(d) \tau(n / d)\right)=\frac{n}{2}\left(1+\prod_{p^{a} \| n}(a(1-p)+1)\right) \tag{44}
\end{equation*}
$$

where τ is the divisor function.
If n is even of the form $n=2^{a} m$, where $a \geq 1$ and $m \in \mathbb{N}$ is odd, then

$$
\begin{equation*}
L_{\text {altern }}(n)=2^{a-1} m\left(\frac{2^{2 a}-1}{3} m F(m)-1\right)=\frac{n}{2}\left(\frac{2^{2 a}-1}{2^{2 a+1}+1} n F(n)-1\right) . \tag{45}
\end{equation*}
$$

Proof. Let $i d_{-1}(n)=n^{-1}$ and $\mathbf{1}(n)=1(n \in \mathbb{N})$. We have

$$
\begin{array}{rl}
L_{\text {altern }}(n)=n \sum_{k=1}^{n}(-1)^{k-1} & k \frac{1}{\operatorname{gcd}(k, n)}=n \sum_{k=1}^{n}(-1)^{k-1} k \sum_{d \mid \operatorname{gcd}(k, n)}\left(\operatorname{id}_{-1} * \mu\right)(d) \\
= & n \sum_{d \mid n} \beta(d) \sum_{j=1}^{n / d}(-1)^{d j-1} j .
\end{array}
$$

Now using that $\sum_{k=1}^{n}(-1)^{k-1} k=(-1)^{n-1}\lfloor(n+1) / 2\rfloor(n \in \mathbb{N})$ the given formulae are obtained along the same lines with the proof of Proposition 3.

Proposition 18. For every $n \in \mathbb{N}$,

$$
\begin{equation*}
\left(\prod_{k=1}^{n} k^{\operatorname{lcm}[k, n]}\right)^{1 / n}=\prod_{d \mid n} h(n / d)^{\beta(d)}\left(\prod_{d \mid n} d^{\beta(d) / d}\right)^{n / 2}\left(\prod_{d \mid n} d^{\beta(d) / d^{2}}\right)^{n^{2} / 2} \tag{46}
\end{equation*}
$$

Proof. Similar to the proofs of above,

$$
\begin{gathered}
\sum_{k=1}^{n}(\log k) \operatorname{lcm}[k, n]=n \sum_{k=1}^{n}(k \log k) \frac{1}{\operatorname{gcd}(k, n)} \\
=n \sum_{k=1}^{n}(k \log k) \sum_{d \mid \operatorname{gcd}(k, n)}\left(\mathrm{id}_{-1} * \mu\right)(d)=n \sum_{d \mid n}\left(\mathrm{id}_{-1} * \mu\right)(d) \sum_{j=1}^{n / d} j d \log (j d) \\
=n \sum_{d \mid n} \beta(d) \log h(n / d)+\frac{n^{2}}{2} \sum_{d \mid n} \beta(d) \frac{\log d}{d}+\frac{n^{3}}{2} \sum_{d \mid n} \beta(d) \frac{\log d}{d^{2}}
\end{gathered}
$$

equivalent to (46).

References

[1] L. Comtet, Advanced Combinatorics. The Art of Finite and Infinite Expansions, D. Reidel Publishing Co., 1974.
[2] I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, 5th ed., John Wiley \& Sons, 1991.
[3] J. Sándor and L. Tóth, A remark on the gamma function, Elem. Math. 44 (1989), 73-76.
[4] W. Schramm, The Fourier transform of functions of the greatest common divisor, Integers 8 (2008), \#A50.
[5] L. Tóth, A survey of gcd-sum functions, J. Integer Sequences 13 (2010), Article 109.8.1.
[6] L. Tóth and P. Haukkanen, The discrete Fourier transform of r-even functions, submitted, http://arxiv.org/abs/1009.5281v1

2010 Mathematics Subject Classification: Primary 11A25; Secondary 05A10, 33B15.
Keywords: gcd-sum function, lcm-sum function, Euler's function, Möbius function, binomial coefficient, Gamma function.
(Concerned with sequences $\underline{A 001783}, \underline{A 002109}, \underline{A 018804}, \underline{A 051193}, \underline{A 056188}$, and $\underline{A 159068}$.

Received May 11 2011; revised version received July 18 2011. Published in Journal of Integer Sequences, September 52011.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ The author gratefully acknowledges support from the Austrian Science Fund (FWF) under the project Nr. P20847-N18.

