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Abstract

Given a fixed even integer k, we show that Schinzel’s hypothesis H implies that
σ(n) = σ(n + k) infinitely often. We also discuss the case of odd k and the more
general equation σα(n) = σα(n + k).

1 Introduction

Let σ(n) be the sum of the positive divisors of n. Sierpiński [9, p. 166] asked whether

σ(n) = σ(n + 1) (1)

infinitely often. The sequence of solutions (OEIS A002961) begins with

14, 206, 957, 1334, 1364, 1634, 2685, 2974, 4364, 14841, ...

Although Sierpiński’s question has not been answered yet, computational results [5, 6, 7]
seem to suggest that the sequence may have infinitely many terms. Guy and Shanks [3]
constructed a large solution of (1) based on a pattern observed in smaller ones, but they
point out that their construction is unlikely to yield an infinite number of solutions.

More generally, Mientka and Vogt [7] asked for which values of k ≥ 1,

σ(n) = σ(n + k) (2)

has infinitely many solutions. Hunsucker, Nebb and Stearns [6] found at least two solutions
of (2) for each k ≤ 5000.
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Erdős [2] made the much stronger conjecture that for every integer k ≥ 1 there is an n
such that

σ(n) = σ(n + 1) = · · · = σ(n + k),

which would clearly imply that (2) has infinitely many solutions for each k. However, a
computer search showed that there is no solution to σ(n) = σ(n+1) = σ(n+2) for n ≤ 1010.

Let f1(x), f2(x), . . . , fn(x) be irreducible polynomials with integer coefficients and positive
leading coefficients. Schinzel’s hypothesis H [8] says that, if there is no fixed integer greater
than one which divides

f(x) = f1(x)f2(x) · · · fn(x)

for all integers x, then f1(x), . . . , fn(x) are simultaneously prime for infinitely many values
of x.

In Section 2 we show that if k is even, the existence of an infinite number of solutions of
(2) follows from a particular case of Schinzel’s hypothesis H. For k = 1 we show that if odd
multiperfect numbers do not exist, then there are only finitely many solutions n to (1) with
Ω(n) + Ω(n + 1) bounded by an absolute constant, where Ω(n) denotes the number of prime
divisors of n, counted with multiplicity.

In Section 3 we take a look at the corresponding questions for σα(n), the sum of the α-th
powers of the positive divisors of n.

2 The case α = 1.

The first ten solutions to (2) for k = 2 are (OEIS A007373)

33, 54, 284, 366, 834, 848, 918, 1240, 1504, 2910, ....

The following result shows that this sequence, and all other sequences corresponding to even
values of k (A015863 (k = 4), A015866 (k = 6), A015876 (k = 8), A015880 (k = 10),
A015882 (k = 12), A181647 (k = 20)), are infinite sequences, provided Schinzel’s hypothesis
H holds.

Proposition 1. Let k be a fixed even integer. Assuming Schinzel’s hypothesis H, the equation
σ(n) = σ(n + k) has infinitely many solutions.

Proof. We begin with the case k = 2. Define

p = 2x + 1, q = 3x + 8, r = 2x + 5, s = 3x + 2, (3)

n = pq, m = rs,

and
f(x) = pqrs = (2x + 1)(3x + 8)(2x + 5)(3x + 2).

The function f(x) does not have a fixed divisor > 1, since, for example, f(0) = 24 · 5 and
f(3) = 7 · 112 · 17 have no common factor. Schinzel’s hypothesis H says that there are
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infinitely many values of x such that each one of the four numbers p, q, r, and s is prime.
For these values of x we have σ(n) = σ(m), since

σ(n) = (p + 1)(q + 1) = 6(x + 1)(x + 3) = (r + 1)(s + 1) = σ(m).

Furthermore, m = n + 2 for all x. This completes the case k = 2.
If k = 2l with l > 1, let m and n be as above, and write

n′ = ln, m′ = lm.

We have m′ = n′ + 2l and

σ(m′) = σ(l)σ(m) = σ(l)σ(n) = σ(n′),

if gcd(l,mn) = 1, which is the case as soon as p = 2x + 1 > l.

Without Schinzel’s hypothesis H, we have the following unconditional result.

Proposition 2. The equation σ(n) = σ(n + k) has at least one solution for every even k
with 2 ≤ k ≤ 10107

.

Proof. Using a computer, we generate a sequence 33 = x1 < x2 < · · · < xN = 146344933173,
with N = 913685 terms, such that pi = 2xi + 1, qi = 3xi + 8, ri = 2xi + 5, and si = 3xi + 2
are distinct primes for 1 ≤ i ≤ N . It is easy to see that xi ≡ 3 (mod 30) if pi, qi, ri and
si are not divisible by 2, 3, or 5. To ensure that we obtain 4N distinct primes in all, we
further restrict the search to xi ≡ 33 (mod 60). As in the proof of Proposition 1, we have
σ(piqi) = σ(risi) = σ(piqi + 2), and therefore σ(piqil) = σ(piqil + 2l) if gcd(l, piqirisi) = 1,
where k = 2l. If this fails for all i ≤ N , then l must be divisible by at least one of the four
primes pi, qi, ri, or si, for each i ≤ N . Thus k > l ≥

∏N
i=1

(2xi + 1) > 10107

.

For odd values of k, the situation is quite different. Assume that there is a sequence nj

of solutions to (2) of the form

nj = a
N
∏

i=1

p
αi,j

i,j , nj + k = b
M
∏

i=1

q
βi,j

i,j , (4)

where a, b,N,M are fixed and the primes pi,j, qi,j satisfy limj→∞ pi,j = ∞ for 1 ≤ i ≤ N and
limj→∞ qi,j = ∞ for 1 ≤ i ≤ M . Then, as nj grows,

σ(nj)

nj

=
σ(a)

a

N
∏

i=1

p
αi,j+1

i,j − 1

(pi,j − 1)p
αi,j

i,j

=
σ(a)

a
(1 + o(1)),

σ(nj + k)

nj + k
=

σ(b)

b

M
∏

i=1

q
βi,j+1

i,j − 1

(qi,j − 1)q
βi,j

i,j

=
σ(b)

b
(1 + o(1)).

Since σ(nj) = σ(nj + k), we also have

σ(nj)

nj

=
σ(nj + k)

nj + k

nj + k

nj

=
σ(nj + k)

nj + k
(1 + o(1)).
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It follows that
σ(a)

a
=

σ(b)

b
, (5)

where one of a and b is even, and the other one is odd, since k is odd. When k = 1 we also
have gcd(a, b) = 1, which means that the fractions in (5) must reduce to integers ≥ 2. Thus a
and b are both multiperfect numbers, with one of them being odd. Since no odd multiperfect
numbers are known, we can not use this approach to show that there are infinitely many
solutions to (1). We summarize this in the following statement.

Proposition 3. Let a, b,N,M be fixed positive integers, such that neither a nor b is an odd
multiperfect number, and let nj be a sequence of the form (4) with k = 1, where the primes
pi,j, qi,j satisfy limj→∞ pi,j = ∞ for 1 ≤ i ≤ N and limj→∞ qi,j = ∞ for 1 ≤ i ≤ M . Then
the sequence nj contains at most a finite number of solutions to (1).

The following result is a consequence of Proposition 3.

Proposition 4. Let C ≥ 1 be fixed. If there are no odd multiperfect numbers, then there are
only finitely many solutions to σ(n) = σ(n + 1) with Ω(n) + Ω(n + 1) ≤ C.

Proof. Assume that nj is an infinite increasing sequence with σ(nj) = σ(nj +1) and Ω(nj)+
Ω(nj + 1) ≤ C. We show that nj has an infinite subsequence of the form (4) with k = 1. By
restricting nj to a subsequence if necessary, we may assume Ω(nj) = µ and Ω(nj +1) = ν, for
some constants µ, ν ∈ N. Write nj = p1,j · · · pµ,j and nj +1 = q1,j · · · qν,j. For each 1 ≤ i ≤ µ,
either lim infj→∞ pi,j = pi for some fixed prime pi, or limj→∞ pi,j = ∞. In the first case we
restrict the sequence nj to an infinite subsequence such that pi,j = pi for all j ≥ 1. Let a
denote the product of all the fixed primes pi. After applying the same process to the prime
divisors of nj + 1, we arrive at an infinite sequence of the form (4) with k = 1. Thus the
result follows from Proposition 3.

For odd values of k ≥ 3, it may still be possible to construct an infinite sequence of
solutions of the form (4), because there are solutions to (5) with a even and b odd, such as

a = 3472 = 24 · 7 · 31, b = 544635 = 32 · 5 · 72 · 13 · 19.

In this case gcd(a, b) = 7, so it may be possible to use this as a starting point to show that
σ(n) = σ(n + 7) has infinitely many solutions, assuming Schinzel’s hypothesis H, although
we were not able to do so.

While we can’t prove or disprove that there is at least one solution of (2) for every odd
value of k, in some cases a solution is easy to find. For example, n = 14k is a solution to
(2) if gcd(k, 14 · 15) = 1, since n = 14 is a solution to (1). The same idea can be applied to
other solutions of (1).

3 The case α ≥ 2.

The case α = 2 was treated by De Koninck [1] with the following result.

Proposition 5 (De Koninck). Let k be a fixed positive integer.
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(i) If k is odd, then σ2(n) = σ2(n + k) has at most a finite number of solutions.

(ii) If k is even, then Schinzel’s hypothesis H implies that σ2(n) = σ2(n+k) has an infinite
number of solutions.

The only solution to σ2(n) = σ2(n + 1) is n = 6. According to [1], σ2(n) = σ2(n + k) has
no solution when k = 3, 9, 15, 27, 33, 35, 39, 45, 51, 57, 69, 75, 81, 87, 93 or 99. Assuming
Schinzel’s hypothesis H, a sequence of solutions to σ2(n) = σ2(n + 2) given in [1] can be
written as

n = x3 − 1 = (x − 1)(x2 + x + 1), n + 2 = x3 + 1 = (x + 1)(x2 − x + 1).

It is easy to verify that σ2(n) = σ2(n+2) as long as the four quantities x−1, x2 +x+1, x+1
and x2 − x + 1 are all prime.

We can extend the first half of Proposition 5 to α ≥ 3.

Proposition 6. For every α ≥ 2 there is a constant cα > 0 such that if σα(n) = σα(n + k)
for an odd value of k, then k > cαn.

Proof. We first show that

1 +
1

2α
>

∑

j≥0

1

(2j + 1)α
(α ≥ 2). (6)

For α = 2, (6) simplifies to 5

4
> (1 − 1/22)ζ(2) = π2

8
= 1.2337... If we subtract 1 from both

sides of (6) and then multiply by 2α, we see that (6) is equivalent to

1 >
∑

j≥1

1

(j + 1/2)α
(α ≥ 2).

Note that the right-hand side is decreasing in α. Since the inequality is valid for α = 2, it is
valid for all α ≥ 2.

Now let m = n+k. Since k is odd, one of m, n is even and the other one is odd. Without
loss of generality we assume 2|n and 2 6 |m, allowing k < 0 if necessary. Then

σα(n)

nα
≥

σα(2)

2α
= 1 +

1

2α
,

and
σα(m)

mα
<

∑

j≥0

1

(2j + 1)α
.

If σα(n) = σα(m),
(

1 +
1

2α

)(

n

n + k

)α

≤
σα(n)

nα

nα

mα
=

σα(m)

mα
<

∑

j≥0

1

(2j + 1)α
,

or
(

1

1 + k/n

)α

<
1 − 1

2α

1 + 1

2α

ζ(α) =: bα,
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say. From (6) we have bα < 1 for α ≥ 2, hence

k

n
> b−1/α

α − 1 =: cα > 0.

The remaining case is where α ≥ 3 and k is even. Guy [4, Problem B13] writes, “Erdős
thinks that σ3(n) = σ3(n + 2) has no solution at all”. A computer search showed that there
is in fact no solution to σ3(n) = σ3(n + 2) for n ≤ 1010. Although we are not able to prove
that there are no solutions in this case, we have the following partial result. We omit the
proof since the ideas are similar to those of Proposition 6.

Proposition 7. If n is a solution of σ3(n) = σ3(n + 2), then neither n nor n + 2 is divisible
by 2, 3, 5 or 7.

For α ≥ 3, solutions to σα(n) = σα(n + k) are quite rare even if k is allowed to vary.
There are only three primitive solutions to σ3(n) = σ3(n + k) with n ≤ 5 · 106 and k ≥ 1,
namely

(n, k) = (184926, 9389), (291741, 3560), (1880574, 6346),

while the other fourteen solutions in the same range are obtained from these by multiplying
both n and k by some l with gcd(l, nk) = 1.

There are no solutions to σα(n) = σα(n + k) for α ≥ 4, n ≤ 106 and k ≥ 1.
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