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Abstract

We study the asymptotic behaviour of the classical Dedekind sums s(m/n) for con-
vergents m/n of e, e2, and (e+1)/(e−1), where e = 2.71828 . . . is Euler’s number. Our
main tool is the Barkan-Hickerson-Knuth formula, which yields a precise description
of what happens in all cases.

1 Introduction and results

Dedekind sums have quite a number of interesting applications in analytic number theory
(modular forms), algebraic number theory (class numbers), lattice point problems and alge-
braic geometry (for instance [1, 7, 9, 12]).

Let n be a positive integer and m ∈ Z, (m,n) = 1. The classical Dedekind sum s(m/n)
is defined by

s(m/n) =
n

∑

k=1

((k/n))((mk/n))

where ((. . .)) is the usual sawtooth function (for example, [9, p. 1]). In the present setting
it is more natural to work with

S(m/n) = 12s(m/n)

instead.
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In the previous paper [3] we used the Barkan-Hickerson-Knuth-formula to study the
asymptotic behaviour of S(sk/tk) for the convergents sk/tk of a periodic simple continued
fraction α = [a0, a1, a2, . . .], i. e., for a quadratic irrational α. In this situation two cases
are possible: The sequence S(sk/tk) either remains bounded with a finite number of cluster
points or it essentially behaves like C · k for some constant C depending on α. In the latter
case S(sk/tk) − C · k remains bounded with finitely many cluster points. The former case
occurs, for instance, if the period length of α is odd.

Since the order of magnitude of |S(m/n)| is log2 n on average [4], quadratic irrational-
ities produce Dedekind sums of a considerably smaller size. In fact, the inequality k ≤
2 log tk/ log 2 + 1 was already proved in 1841 [11]. Accordingly, if |S(sk/tk)| is not bounded,
we have |S(sk/tk)| = O(log tk) for a quadratic irrational α.

Because the structure of the continued fraction expansions of transcendental numbers
like e or e2 is similar to that of quadratic irrationals [8, p. 123 ff.], nothing prevents us
from applying the Barkan-Hickerson-Knuth-formula ((2) below) to these cases. It turns out
that the asymptotic behaviour of Dedekind sums is quite similar to the case of quadratic
irrationals. Only the case “S(sk/tk) bounded” cannot occur, as the said formula shows, since
the continued fraction expansions of these numbers have unbounded digits. We shall show

Theorem 1. For a nonnegative integer k put

L(k) =

{

k
3
, if k ≡ 0, 1, 5 (mod 6);

−k
3
, otherwise.

Then we have, for the convergents sk/tk of Euler’s number e,

S(sk/tk) − L(k) = O

(

1

k

)

+































e − 3, if k ≡ 3 (mod 6);

e − 3 − 5
6
, if k ≡ 1 (mod 6);

e − 3 + 2
3
, if k ≡ 2 (mod 6);

e − 3 + 5
6
, if k ≡ 4 (mod 6);

e − 3 − 2
3
, if k ≡ 5 (mod 6).

The continued fraction expansion of e2 = 7.38905 . . . is more complicated than that of e.
This has the effect that the analogue of Theorem 1 also looks more complicated. We obtain

Theorem 2. For a nonnegative integer k put

L(k) =























−3k
5
, if k ≡ 1, 2, 3 (mod 10);

3k
5
, if k ≡ 6, 7, 8 (mod 10);

−6k
5
, if k ≡ 0, 4 (mod 10);

6k
5
, if k ≡ 5, 9 (mod 10).
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Then we have, for the convergents sk/tk of the number e2,

S(sk/tk) − L(k) = O

(

1

k

)

+



















































































e2 − 7, if k ≡ 0 (mod 10);

e2 − 37
5
, if k ≡ 1 (mod 10);

e2 − 29
5
, if k ≡ 2 (mod 10);

e2 − 31
5

+ 1
2
, if k ≡ 3 (mod 10);

e2 − 16
5
, if k ≡ 4 (mod 10);

e2 + 1, if k ≡ 5 (mod 10);

e2 + 7
5
, if k ≡ 6 (mod 10);

e2 − 1
5
, if k ≡ 7 (mod 10);

e2 − 4
5

+ 1
2
, if k ≡ 8 (mod 10);

e2 − 14
5
, if k ≡ 9 (mod 10).

Finally, we consider the case of e∗ = (e + 1)/(e − 1), which is fairly simple.

Theorem 3. For a nonnegative integer k put

L(k) =

{

−2k, if k is even;

2k, if k is odd.

Then we have, for the convergents sk/tk of e∗,

S(sk/tk) − L(k) = O

(

1

k

)

+

{

e∗ − 2, if k is even;

e∗ − 1, if k is odd.

2 Proofs

We start with the continued fraction expansion [a0, a1, a2, . . .] of an arbitrary irrational num-
ber. The numerators and denominators of its convergents sk/tk are defined by the recursion
formulas

s−2 = 0, s−1 = 1, sk = aksk−1 + sk−2 and

t−2 = 1, t−1 = 0, tk = aktk−1 + tk−2, for k ≥ 0. (1)

The Barkan-Hickerson-Knuth formula says that for k ≥ 0

S(sk/tk) =
k

∑

j=1

(−1)j−1aj +











(s′k + t′k−1)/t
′

k − 3, if k is odd;

(s′k − t′k−1)/t
′

k, if k is even;

(2)

[2], [5], [6]. Here s′k and t′k are defined as in (1), but for the number [0, a1, a2, . . .] instead of
[a0, a1, a2, . . .]. We prove the simplest case first.
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Proof of Theorem 3. The digits aj of the continued fraction expansion of e∗ are aj = 4j + 2,
j = 0, 1, 2, . . . [8, p. 124]. An easy calculation shows that for k ≥ 0

k
∑

j=1

(−1)j−1aj =

{

−2k, if k is even;

2k + 4, if k is odd.
(3)

Now s′k/t
′

k converges against [0, a1, a2, . . .] = e∗−2, and |e∗−2−s′k/t
′

k| < 1/t′2k [8, p. 37]. We
remarked in the Introduction that k = O(log t′k). Hence we also have |e∗−2−s′k/t

′

k| = O(1/k).
Finally, (1) gives t′k−1/t

′

k = t′k−1/(akt
′

k−1 + t′k−2) ≤ 1/ak = O(1/k). These observations,
together with (2) and (3), prove the theorem.

Proof of Theorem 1. In the case of e = [a0, a1, a2, . . .] one easily derives from [8, p. 124] that

aj =











2, if j = 0;

2(j − 1)/3 + 2, if j ≡ 2 (mod 3);

1, otherwise.

An elementary computation with arithmetic series (which is more laborious than that of the
proof of Theorem 3) yields

k
∑

j=1

(−1)j−1aj =















































k
3
, if k ≡ 0 (mod 6);

−k
3

+ 1, if k ≡ 3 (mod 6);
k−1
3

+ 1, if k ≡ 1 (mod 6);

−k−1
3

, if k ≡ 4 (mod 6);

−k−2
3

− 1, if k ≡ 2 (mod 6);
k−2
3

+ 2, if k ≡ 5 (mod 6).

(4)

In the same way as in the proof Theorem 3 we have s′k/t
′

k → e−2 and |e−2−s′k/t
′

k| = O(1/k).
If k ≡ 2 (mod 3), we note t′k−1/t

′

k ≤ 1/ak = O(1/k). If k ≡ 0 (mod 3) and k ≥ 3, we have

t′k−1

t′k
=

t′k−1

t′k−1 − t′k−2

=
1

1 + t′k−2/t
′

k−1

. (5)

Since t′k−2/t
′

k−1 = O(1/k), this shows t′k−1/t
′

k = 1 + O(1/k). If k ≡ 1 (mod 3) and k ≥ 4,
formula (5) also holds. Together with t′k−2/t

′

k−1 = 1+O(1/k), it gives t′k−1/t
′

k = 1/2+O(1/k).
These observations, combined with (2) and (4), prove the theorem.

Proof of Theorem 2. The proof follows the above pattern. One obtains from [8, p. 125]

aj =































7, if j = 0;

(3j + 7)/5, if j ≡ 1 (mod 5);

(3j + 3)/5, if j ≡ 4 (mod 5);

12j/5 + 6, if j ≡ 0 (mod 5), j > 0;

1, otherwise.
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Further,

k
∑

j=1

(−1)j−1aj =























































































−6k
5
, if k ≡ 0 (mod 10);

6k
5

+ 11, if k ≡ 5 (mod 10);

−3(k−1)
5

+ 2, if k ≡ 1 (mod 10);
3(k−1)

5
+ 9, if k ≡ 6 (mod 10);

−3(k−2)
5

+ 1, if k ≡ 2 (mod 10);
3(k−2)

5
+ 10, if k ≡ 7 (mod 10);

−3(k−3)
5

+ 2, if k ≡ 3 (mod 10);
3(k−3)

5
+ 9, if k ≡ 8 (mod 10);

−6(k−4)
5

− 1, if k ≡ 4 (mod 10);
6(k−4)

5
+ 12, if k ≡ 9 (mod 10).

(6)

In the same way as in the proof of Theorem 1 we observe |e2 − 7 − s′k/t
′

k| = O(1/k) and

t′k−1

t′k
= O

(

1

k

)

+











0, if k ≡ 0, 1, 4 (mod 5);

1, if k ≡ 2 (mod 5);
1
2
, if k ≡ 3 (mod 5).

Thereby, and by (6), we obtain the theorem.

Remark 4. 1. It is easy to see that the error term O(1/k) in the theorems cannot be made
smaller. Accordingly, the convergence is rather slow, which is a further difference between
the present cases and the case of quadratic irrationals.

2. The continued fraction expansions of e2/q and (e2/q + 1)/(e2/q − 1) for integers q ≥ 1
have a shape similar to that of e, e2, and e∗ [8, p. 124 f.]. The same holds for the the
numbers tan(1/q). Therefore, similar theorems about Dedekind sums can be expected for
the convergents of these numbers.

3. Due to a theorem of Hurwitz [8, p. 119] one may even hope for similar results for the
numbers

ae2/q + b

ce2/q + d
,

where the integer q is ≥ 1 and a, b, c, d ∈ Z are such that ad − bc 6= 0. It seems, however,
that not all continued fraction expansions of these numbers are explicitly known.

4. The continued fraction expansions of the numbers

∞
∑

j=0

b−2j

, b ∈ Z, b ≥ 3,

are also known [10]. They are, however, much more involved than those considered here.
Accordingly, the asymptotic behaviour of the corresponding Dedekind sums seems to be far
more complicated.

5



References

[1] T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer,
1976.

[2] Ph. Barkan, Sur les sommes de Dedekind et les fractions continues finies, C. R. Acad.

Sci. Paris Sér. A-B 284 (1977) A923–A926.

[3] K. Girstmair, Dedekind sums in the vicinity of quadratic irrationals, J. Number Th.

132 (2012), 1788–1792.

[4] K. Girstmair and J. Schoißengeier, On the arithmetic mean of Dedekind sums, Acta

Arith. 116 (2005), 189–198.

[5] D. Hickerson, Continued fractions and density results for Dedekind sums, J. Reine

Angew. Math. 290 (1977), 113–116.

[6] D. E. Knuth, Notes on generalized Dedekind sums, Acta Arith. 33 (1977), 297–325.

[7] C. Meyer, Die Berechnung der Klassenzahl Abelscher Körper über quadratischen

Zahlkörpern, Akademie-Verlag, 1957.

[8] O. Perron, Die Lehre von den Kettenbrüchen, vol. I (3rd ed.), Teubner, 1954.
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