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Abstract

An n-color odd composition is defined as an n-color composition with odd parts,
and an n-color composition with parts 6= 1 is an n-color composition whose parts
are > 1. In this paper, we get generating functions, explicit formulas and recurrence
formulas for n-color odd compositions and n-color compositions with parts 6= 1.

1 Introduction

In the classical theory of partitions, compositions were first defined by MacMahon [1] as or-
dered partitions. For example, there are 5 partitions and 8 compositions of 4. The partitions
are 4, 31, 22, 212, 14 and the compositions are 4, 31, 13, 22, 212, 121, 122, 14.

Agarwal and Andrews [2] defined an n-color partition as a partition in which a part of size
n can come in n different colors. They denoted different colors by subscripts: n1, n2, . . ., nn.
Analogous to MacMahon’s ordinary compositions Agarwal [3] defined an n-color composition
as an n-color ordered partition. Thus, for example, there are 21 n-color compositions of 4,
viz.,

41, 42, 43, 44,

3111, 3211, 3311, 1131, 1132, 1133,

2121, 2122, 2222, 2221,

211111, 221111, 112111, 111121, 112211, 111122,

11111111.

1This work is supported by the Fund of the Education Department of Gansu Province (No. 200809-04)
and the fund of Hexi University.
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More properties of n-color compositions were found in [4, 5]. In 2006, G. Narang and
Agarwal [6, 7] also defined an n-color self-inverse composition and gave some properties. In
2010, Guo [8] defined an n-color even self-inverse composition and proved some properties.

In this paper, we shall study some n-color compositions. We first give the following
definitions.

Definition 1. An n-color odd composition is an n-color composition with odd parts.

Thus, for example, there are 7 n-color odd compositions of 4, viz.,

3111, 3211, 3311,

1131, 1132, 1133, 11111111.

Definition 2. An n-color composition with parts 6= 1 is an n-color composition whose parts
are > 1.

For example, there are 17 n-color compositions with parts 6= 1 of 5, viz.,

51, 52, 53, 54, 55,

2131, 2132, 2133, 2231, 2232, 2233,

3121, 3221, 3321, 3122, 3222, 3322.

In section 2 we shall give generating functions, recurrence formulas and explicit formulas
for n-color compositions above.

Agarwal [3] proved the following theorem.

Theorem 3. ([3]) Let C(m, q) and C(q) denote the enumerative generating functions for
C(m, ν) and C(ν), respectively, where C(m, ν) is the number of n-color compositions of ν

into m parts and C(ν) is the number of n-color compositions of ν. Then

C(m, q) =
qm

(1 − q)2m
, (1)

C(q) =
q

1 − 3q + q2
, (2)

C(m, ν) =

(

ν + m − 1

2m − 1

)

, (3)

C(ν) = F2ν . (4)

2 Main results

We denote the number of n-color odd compositions of ν by C(o, ν) and the number of n-color
odd compositions of ν into m parts by C(m, o, ν), respectively. In this section, we first prove
the following theorem.
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Theorem 4. Let C(m, o, q) and C(o, q) denote the enumerative generating functions for
C(m, o, ν) and C(o, ν), respectively. Then

C(m, o, q) =
qm(1 + q2)m

(1 − q2)2m
, (5)

C(o, q) =
q + q3

1 − q − 2q2 − q3 + q4
, (6)

C(m, o, ν) =
∑

i+j= ν−m

2

(

2m + i − 1

2m − 1

)(

m

j

)

, (7)

C(o, ν) =
∑

m≤ν

∑

i+j= ν−m

2

(

2m + i − 1

2m − 1

)(

m

j

)

. (8)

where (ν − m) is even, and (ν − m) ≥ 0; 0 ≤ i, j are integers.

Proof. Similar to the proof of Agarwal [3], we have

C(m, o, q) =
∞

∑

ν=1

C(m, o, ν)qν = (q + 3q3 + · · ·+)m =
qm(1 + q2)m

(1 − q2)2m
.

This proves (5).

C(o, q) =
∞

∑

m=1

C(m, o, q) =
∞

∑

m=1

qm(1 + q2)m

(1 − q2)2m
=

q + q3

1 − q − 2q2 − q3 + q4
.

We get (6).
On equating the coefficients of qν in (5), we have

C(m, o, ν) =
∑

i+j= ν−m

2

(

2m + i − 1

2m − 1

)(

m

j

)

.

Since ν is even if m is even, and ν is odd if m is odd, then ν − m is even. This proves
(7).

Obviously m ≤ ν, so (8) is also proven.
We complete the proof of this theorem.

In this section, we also prove the following recurrence formula.

Theorem 5. Let Oν denote the number of n-color odd compositions of ν. Then

O1 = 1, O2 = 1, O3 = 4, O4 = 7

and
Oν = Oν−1 + 2Oν−2 + Oν−3 − Oν−4, for ν > 4.
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Proof. (Combinatorial) To prove that Oν = Oν−1 +2Oν−2 +Oν−3−Oν−4, we split the n-color
compositions enumerated by Oν + Oν−4 into four classes:

(A) enumerated by Oν with 11 on the right.
(B) enumerated by Oν with 33 on the right.
(C) enumerated by Oν with ht on the right, h > 1, 1 ≤ t ≤ h − 2 (where, h is odd).
(D) enumerated by Oν with ht on the right, h > 1,h − 1 ≤ t ≤ h except 33 and those

enumerated by Oν−4.
We transform the n-color odd compositions in class (A) by deleting 11 on the right. This

produces n-color compositions enumerated by Oν−1. Conversely, for any n-color composition
enumerated by Oν−1 we add 11 on the right to produce the elements of the class (A). In this
way we prove that there are exactly Oν−1 elements in the class (A).

Similarly, we can produce Oν−3 n-color odd compositions in the class (B) by deleting 33

on the right.
Next, we transform the n-color odd compositions in class (C) by subtracting 2 from h,

that is, replacing ht by (h− 2)t. This transformation also establishes the fact that there are
exactly Oν−2 elements in class (C). This correspondence being one to one.

Finally, we transform the elements in class (D) as follows: Subtract 22 from ht on the right
when h > 3, h− 1 ≤ t ≤ h, that is, replace ht by (h− 2)(t−2); in this way we will get n-color
odd compositions of ν − 2 with part h

′

t
′ on the right, where, h

′

> 1, t
′

≥ h
′

− 1. After that
we replace ht by (h − 2)(t−1) when h = 3, t = 2. This produces n-color odd compositions
of ν − 2 with part 11 on the right. To get the remaining n-color odd compositions from
Oν−4, we add 2 to the right parts, that is, replace ht by (h + 2)t to get the n-color odd
compositions of (ν − 2) with part h

′

t
′ on the right, where, h

′

> 1, 1 ≤ t
′

≤ h
′

− 2. We
see that the number of n-color odd compositions in class (D) is also equal to Oν−2. Hence,
Oν + Oν−4 = Oν−1 + 2Oν−2 + Oν−3. viz.,Oν = Oν−1 + 2Oν−2 + Oν−3 − Oν−4.

Thus, we complete the proof.

We also give another proof of Theorem 5.

Proof. We have

Oν =
∑

m≤ν

∑

i+j= ν−m

2

(

2m + i − 1

2m − 1

)(

m

j

)

=
∑

m≤ν

∑

i+j= ν−m

2

(

2m + (i − 1) − 1

2m − 1

)(

m

j

)

+
∑

m≤ν

∑

i+j= ν−m

2

(

2m + (i − 1) − 1

2m − 2

)(

m

j

)

(by the binomial identity

(

n

m

)

=

(

n − 1

m

)

+

(

n − 1

m − 1

)

)

=
∑

m≤ν−2

∑

i+j=
(ν−2)−m

2

(

2m + i − 1

2m − 1

)(

m

j

)

+

(

2ν − 2

2ν − 1

)(

ν

0

)

+
∑

m≤ν

∑

i+j= ν−m

2

(

2m + i − 1

2m − 1

)(

m

j

)

−
∑

m≤ν

∑

i+j= ν−m

2

(

2m + i − 2

2m − 1

)(

m

j

)
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= Oν−2 +
∑

m≤ν

∑

i+j= ν−m

2

(

2m + i − 1

2m − 1

)(

m

j

)

−
∑

m≤ν

∑

i+j= ν−m

2

(

2m + (i − 2) − 1

2m − 1

)(

m

j

)

−
∑

m≤ν

∑

i+j= ν−m

2

(

2m + i − 3

2m − 2

)(

m

j

)

= Oν−2 +
∑

m≤ν

∑

i+j= ν−m

2

(

2m + i − 1

2m − 1

)(

m

j

)

−
∑

m≤ν−4

∑

i+j=
(ν−4)−m

2

(

2m + i − 1

2m − 1

)(

m

j

)

−

(

2ν − 2 − 1

2ν − 1

)(

ν

0

)

−

(

2(ν − 2) − 2 − 1

2(ν − 2) − 1

)(

ν − 2

1

)

−

(

2(ν − 2) − 1 − 1

2(ν − 2) − 1

)(

ν − 2

0

)

−
∑

m≤ν

∑

i+j= ν−m

2

(

2m + i − 3

2m − 2

)(

m

j

)

= Oν−2 − Oν−4 +
∑

m≤ν

∑

i+j= ν−m

2

(

2m + (i − 1) − 1

2m − 1

)(

m

j

)

+
∑

m≤ν

∑

i+j= ν−m

2

(

2m + i − 2

2m − 2

)(

m

j

)

−
∑

m≤ν

∑

i+j= ν−m

2

(

2m + i − 3

2m − 2

)(

m

j

)

= 2Oν−2 − Oν−4 +
∑

m≤ν

∑

i+j= ν−m

2

(

2m + i − 3

2m − 3

)(

m

j

)

= 2Oν−2 − Oν−4 +
∑

m≤ν

∑

i+j= ν−m

2

(

2(m − 1) + i − 1

2(m − 1) − 1

)(

m − 1

j

)

+
∑

m≤ν

∑

i+j= ν−m

2

(

2(m − 1) + i − 1

2(m − 1) − 1

)(

m − 1

j − 1

)

= 2Oν−2 − Oν−4 +
∑

m≤ν−1

∑

i+j=
(ν−1)−m

2

(

2m + i − 1

2m − 1

)(

m

j

)

+
∑

m≤ν−3

∑

i+j=
(ν−3)−m

2

(

2m + i − 1

2m − 1

)(

m

j

)

= Oν−1 + 2Oν−2 + Oν−3 − Oν−4.

So we have Oν = Oν−1 + 2Oν−2 + Oν−3 − Oν−4.

From recurrence formula above we have the following corollary easily.
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Corollary 6. If ν > 4, then

∑

m≤ν−4

(
∑

i+j= ν−m

2

(

2m + i − 1

2m − 1

)(

m

j

)

−
∑

i+j= ν−1−m

2

(

2m + i − 1

2m − 1

)(

m

j

)

− 2
∑

i+j= ν−2−m

2

(

2m + i − 1

2m − 1

)(

m

j

)

−
∑

i+j= ν−3−m

2

(

2m + i − 1

2m − 1

)(

m

j

)

+
∑

i+j= ν−4−m

2

(

2m + i − 1

2m − 1

)(

m

j

)

) = 0.

Next, we shall study n-color compositions with parts 6= 1. We denote the number of
n-color compositions with parts 6= 1 of ν by C 6=1(ν) and the number of n-color compositions
with parts 6= 1 of ν into m parts by C 6=1(m, ν), respectively. In this section, we present the
following theorem.

Theorem 7. Let C6=1(m, q) and C 6=1(q) denote the enumerative generating functions for
C6=1(m, ν) and C 6=1(ν), respectively. Then

C6=1(m, q) =
q2m(2 − q)m

(1 − q)2m
, (9)

C6=1(q) =
2q2 − q3

1 − 2q − q2 + q3
, (10)

C6=1(m, ν) =
∑

i+j=ν−2m

(−1)j2m−j

(

2m + i − 1

2m − 1

)(

m

j

)

, (11)

C6=1(ν) =
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2m + i − 1

2m − 1

)(

m

j

)

. (12)

where (ν − 2m) is an integer, and (ν − 2m) ≥ 0; 0 ≤ i, j are integers.

Proof. Similar to the proof of Agarwal [3], we have

C6=1(m, q) =
∞

∑

ν=1

C6=1(m, ν)qν = (2q2 + 3q3 + · · ·+)m =
q2m(2 − q)m

(1 − q)2m
.

This proves (9).

C6=1(q) =
∞

∑

m=1

C6=1(m, q) =
∞

∑

m=1

q2m(2 − q)m

(1 − q)2m
=

2q2 − q3

1 − 2q − q2 + q3
.

This proves (10).
On equating the coefficients of qν in (9), we have

C6=1(m, ν) =
∑

i+j=ν−2m

(−1)j2m−j

(

2m + i − 1

2m − 1

)(

m

j

)

.
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Since ν ≥ 2m, then ν − 2m ≥ 0, i + j ≥ 0, and 0 ≤ i, j are integers. This proves (11).
Obviously m ≤ ν

2
, therefore (12) is also proven.

We complete the proof of this theorem.

In this section, we also prove the following recurrence formula.

Theorem 8. Let C6=1(ν) denote the number of n-color compositions with parts 6= 1 of ν.
Then

C6=1(2) = 2, C 6=1(3) = 3, C 6=1(4) = 8,

and
C6=1(ν) = 2C 6=1(ν − 1) + C 6=1(ν − 2) − C 6=1(ν − 3) for ν > 4.

Proof. (Combinatorial) To prove that C 6=1(ν) = 2C 6=1(ν − 1) + C 6=1(ν − 2)−C 6=1(ν − 3), we
split the n-color compositions enumerated by C 6=1(ν) + C6=1(ν − 3) into three classes:

(A) enumerated by C6=1(ν) with 21 on the right.
(B) enumerated by C6=1(ν) with ht on the right, h > 2,1 ≤ t ≤ h − 1.
(C) enumerated by C6=1(ν) with hh on the right, h ≥ 2 and those enumerated by C 6=1(ν−

3).
We transform the n-color compositions in class (A) by deleting 21 on the right. This

produces n-color compositions enumerated by C 6=1(ν − 2). Conversely, for any n-color com-
position enumerated by C 6=1(ν − 2) we add 21 on the right to produce the elements of the
class (A). In this way we prove that there are exactly C 6=1(ν − 2) elements in the class (A).

Next, we transform the n-color compositions in class (B) by subtracting 1 from h, that is,
replacing ht by (h − 1)t; this transformation also establishes the fact that there are exactly
C6=1(ν − 1) elements in class (B). This correspondence being one to one.

Finally, we transform the elements in class (C) as follows: Subtract 11 from hh on the
right when h > 2, that is, replace hh by (h − 1)(h−1); in this way we will get n-color
compositions of ν − 1 with part h

′

h
′ (h

′

> 1) on the right. We also replace hh by (h− 1)(h−1)

when h = 2. This produces n-color compositions of ν − 1 with part 11 on the right. Now
we delete 11 and add 1 to the preceding part of it. For example, 212222−→212211−→2132;
4122−→4111−→51. Then we have n-color compositions of ν − 1 with part h

′

t on the right,
where, h

′

> 2, 1 ≤ t ≤ h
′

− 1. To get the remaining n-color compositions from C 6=1(ν − 3),
we set 21 on the right. This produces n-color compositions with parts 6= 1 of ν − 1 with
21 on the right. We see that the number of n-color compositions in class (C) is also equal
to C6=1(ν − 1). Hence, C6=1(ν) + C6=1(ν − 3) = 2C6=1(ν − 1) + C6=1(ν − 2). viz., C6=1(ν) =
2C6=1(ν − 1) + C 6=1(ν − 2) − C 6=1(ν − 3).

Thus, we complete the proof.

We also give another proof of Theorem 8.

Proof. We have

C6=1(ν) =
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2m + i − 1

2m − 1

)(

m

j

)
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=
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2m + (i − 1) − 1

2m − 1

)(

m

j

)

+
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2m + i − 1

2m − 2

)(

m

j

)

(by the binomial identity

(

n

m

)

=

(

n − 1

m

)

+

(

n − 1

m − 1

)

)

=
∑

m≤ ν−1
2

∑

i+j=(ν−1)−2m

(−1)j2m−j

(

2m + i − 1

2m − 1

)(

m

j

)

+
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2m + i − 2 − 1

2m − 2

)(

m

j

)

+
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2m + i − 2 − 1

2m − 3

)(

m

j

)

= C6=1(ν − 1) +
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2m + i − 2 − 1

2m − 2

)(

m

j

)

+
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2m + i − 2 − 1

2m − 3

)(

m − 1

j

)

+
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2(m − 1) + i − 1

2(m − 1) − 1

)(

m − 1

j − 1

)

= C6=1(ν − 1) +
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2m + i − 2 − 1

2m − 2

)(

m

j

)

+
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2m + i − 2

2m − 2

)(

m − 1

j

)

−
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2m + i − 2 − 1

2m − 2

)(

m − 1

j

)

+
∑

m≤
(ν−3)

2

∑

i+j=(ν−3)−2m

(−1)j+12m−j

(

2m + i − 1

2m − 1

)(

m

j

)

= C6=1(ν − 1) − C 6=1(ν − 3)

+
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2m + i − 2 − 1

2m − 2

)(

m − 1

j − 1

)

+
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2m + i − 2 − 1

2m − 2

)(

m − 1

j

)
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+
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2m + i − 2 − 1

2m − 3

)(

m − 1

j

)

= C6=1(ν − 1) − C 6=1(ν − 3)

+
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2m + i − 2 − 1

2m − 2

)(

m

j

)

+
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2(m − 1) + i − 1

2(m − 1) − 1

)(

m − 1

j

)

= C6=1(ν − 1) − C 6=1(ν − 3)

+
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2m + i − 2

2m − 1

)(

m

j

)

−
∑

m≤ ν

2

∑

i+j=ν−2m

(−1)j2m−j

(

2m + i − 2 − 1

2m − 1

)(

m

j

)

+
∑

m≤ ν−2
2

∑

i+j=(ν−2)−2m

(−1)j2m+1−j

(

2m + i − 1

2m − 1

)(

m

j

)

= C6=1(ν − 1) − C 6=1(ν − 3) + C 6=1(ν − 1) − C 6=1(ν − 2) + 2C 6=1(ν − 2)

= 2C6=1(ν − 1) + C 6=1(ν − 2) − C 6=1(ν − 3).

Thus we have C6=1(ν) = 2C6=1(ν − 1) + C 6=1(ν − 2) − C6=1(ν − 3).
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