
23 11

Article 12.4.5
Journal of Integer Sequences, Vol. 15 (2012),2

3

6

1

47

On the Sums of Reciprocal Hyperfibonacci

Numbers and Hyperlucas Numbers

Rui Liu1 and Feng-Zhen Zhao
Department of Mathematics

Dalian University of Technology
Dalian, Liaoning 116024

P. R. China
liurui1515@gmail.com

fengzhenzhao@yahoo.com.cn

Abstract

In this paper, we discuss the properties of hyperfibonacci numbers and hyperlucas
numbers. We investigate the sums of reciprocal hyperfibonacci numbers and hyperlucas
numbers. In addition, we establish some identities related to reciprocal hyperfibonacci
numbers and hyperlucas numbers.

1 Introduction

Fibonacci and Lucas sequences {Fn} and {Ln} have fascinated both amateurs and profes-
sional mathematicians for centuries. They are generalized to many forms. Dil and Mezö [4]

introduced the definition of “hyperfibonacci” numbers F
(r)
n and “hyperlucas” numbers L

(r)
n :

F (r)
n =

n
∑

j=0

F
(r−1)
j , with F (0)

n = Fn, F
(r)
0 = 0, F

(r)
1 = 1,

L(r)
n =

n
∑

j=0

L
(r−1)
j , with L(0)

n = Ln, L
(r)
0 = 2, L

(r)
1 = 2r + 1,

where r is a positive integer. It is well known that the Binet forms of {Fn} and {Ln} are

Fn =
αn − (−1)nα−n

√
5

, Ln = αn + (−1)nα−n, (1)
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where α = (1 +
√

5)/2. The sequences {Fn} and {Ln} satisfy the linear recurrence relation

Wn = Wn−1 + Wn−2, n ≥ 2. (2)

It is clear that

F (1)
n = Fn+2 − 1, L(1)

n = Ln+2 − 1. (3)

Some values of {F (1)
n } and {L(1)

n } are given below.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

F
(1)
n 0 1 2 4 7 12 20 33 54 88 143 232 376 609 986

L
(1)
n 2 3 6 10 17 28 46 75 122 198 321 520 842 1363 2206

These are sequences A000071 and A001610 in Sloane’s Encylopedia [11]. Some properties

of {F (r)
n } and {L(r)

n } are studied in the paper of Ning-Ning Cao and Feng-Zhen Zhao [3].
In this paper, we investigate the sums of reciprocal hyperfibonacci numbers and hyperlucas
numbers.

Now we recall some definitions involved in this paper. The Fibonacci and Lucas zeta
functions are defined by

ζF (s) =
∞

∑

n=1

1

F s
n

and ζL(s) =
∞

∑

n=1

1

Ls
n

,

where {Fn} and {Ln} are the Fibonacci and Lucas sequences, respectively. Recently, prop-
erties of ζF (s) and ζL(s) are investigated in several different ways, see for instance [5, 6, 7, 9].
In [5], the partial infinite sums of reciprocal Fibonacci numbers were studied by Ohtsuka
and Nakamura, [10]. They proved that

⌊(

∞
∑

k=n

1

Fk

)

−1⌋

=

{

Fn−2, if n is even and n ≥ 2;

Fn−2 − 1, if n is odd and n ≥ 1,
(4)

where ⌊·⌋ denotes the floor function. In [8], Holliday and Komatsu generalize (4) to the
generalized Fibonacci sequence. They showed that

⌊(

∞
∑

k=1000n

1

Gk

)

−1⌋

=

{

Gn − Gn−1, if n is even and n ≥ 2;

Gn − Gn−1 − 1, if n is odd and n ≥ 1,

where {Gn} is generalized Fibonacci sequence defined by Gk+2 = aGk+1 + Gk(k ≥ 0) with
G0 = 0, G1 = 1, and a is a positive integer. In this paper, we discuss the partial infinite
sums of reciprocal hyperfibonacci numbers and hyperlucas numbers. In the next section, we
investigate the sums of the following forms

⌊(

∞
∑

k=n

1

F
(1)
k

)

−1⌋

,

⌊(

∞
∑

k=n

1

L
(1)
k

)

−1⌋

.

In addition, we establish some identities related to reciprocal hyperfibonacci numbers and
hyperlucas numbers.
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2 The partial infinite sums of reciprocal hyperfibonacci

numbers and hyperlucas numbers

In this section, we discuss the partial infinite sums of reciprocal hyperfibonacci numbers and
hyperlucas numbers.

Lemma 1. For {Fn} and {Ln}, the following formulas hold:

Fn+1Fn+3 − FnFn+4 = 2(−1)n, (5)

Ln+1Ln+3 − LnLn+4 = 10(−1)n+1, (6)

F 2
n+2 − Fn+1Fn+3 = (−1)n+1, (7)

L2
n+2 − Ln+1Ln+3 = 5(−1)n. (8)

Proof. From (1), we can verify that (5)-(8) hold.

Theorem 2. For {F (1)
n } and {L(1)

n } (n ≥ 3), we have

⌊(

∞
∑

k=n

1

F
(1)
k

)

−1⌋

= Fn − 1, (9)

⌊(

∞
∑

k=n

1

L
(1)
k

)

−1⌋

= Ln − 1, n ≥ 4. (10)

Proof. By using (2)–(3) and (5), we get

1

F
(1)
n − F

(1)
n−1

− 1

F
(1)
n

− 1

F
(1)
n+1

− 1

F
(1)
n+2 − F

(1)
n+1

=
1

Fn

− 1

F
(1)
n

− 1

F
(1)
n+1

− 1

Fn+2

=
F

(1)
n (Fn+1Fn+3 − FnFn+2 − Fn+1) − FnFn+2F

(1)
n+1

FnFn+2F
(1)
n F

(1)
n+1

=
F

(1)
n [2(−1)n + FnFn+3 − Fn+1] − FnFn+2F

(1)
n+1

FnFn+2F
(1)
n F

(1)
n+1

=
F

(1)
n [2(−1)n − Fn+1] + Fn[F

(1)
n Fn+3 − Fn+2F

(1)
n+1]

FnFn+2F
(1)
n F

(1)
n+1

=
F

(1)
n [2(−1)n − Fn+1] − FnFn+1

FnFn+2F
(1)
n F

(1)
n+1

, n ≥ 2,

and

1

F
(1)
n − F

(1)
n−1 − 1

− 1

F
(1)
n

− 1

F
(1)
n+1

− 1

F
(1)
n+2 − F

(1)
n+1 − 1

=
Fn+1F

(1)
n+1 − (Fn − 1)F

(1)
n − (Fn − 1)F

(1)
n+1

(Fn − 1)F
(1)
n F

(1)
n+1

3



=
Fn+1Fn+3 − Fn+1 − FnFn+3 − Fn+1 + 2Fn − FnFn+2 + F

(1)
n + F

(1)
n+1

(Fn − 1)F
(1)
n F

(1)
n+1

=
FnFn+4 + 2(−1)n − FnFn+3 − FnFn+2 − Fn+1 + 2Fn + Fn+2 + Fn+3 − 2

(Fn − 1)F
(1)
n F

(1)
n+1

=
2((−1)n + Fn + Fn+2 − 1)

(Fn − 1)F
(1)
n F

(1)
n+1

, n ≥ 3.

By using (2)–(3) and (6), we get

1

L
(1)
n − L

(1)
n−1

− 1

L
(1)
n

− 1

L
(1)
n+1

− 1

L
(1)
n+2 − L

(1)
n+1

=
(10(−1)n+1 − Ln+1)L

(1)
n − LnLn+1

LnLn+2L
(1)
n L

(1)
n+1

for n ≥ 4 and

1

L
(1)
n − L

(1)
n−1 − 1

− 1

L
(1)
n

− 1

L
(1)
n+1

− 1

L
(1)
n+2 − L

(1)
n+1 − 1

=
10(−1)n+1 + 2(Ln + Ln+2 − 1)

(Ln − 1)L
(1)
n L

(1)
n+1

,

for n ≥ 2.
From the inequalities

(2(−1)n − Fn+1)F
(1)
n − FnFn+1 < 0, n ≥ 2,

(10(−1)n+1 − Ln+1)L
(1)
n − LnLn+1 < 0, n ≥ 4,

(−1)n + Fn + Fn+2 − 1 > 0, n ≥ 3,

10(−1)n+1 + 2(Ln + Ln+2 − 1) > 0, n ≥ 2,

we obtain

1

F
(1)
n − F

(1)
n−1

<
∞

∑

k=n

1

F
(1)
k

<
1

F
(1)
n − F

(1)
n−1 − 1

, n ≥ 3,

Fn − 1 <

(

∞
∑

k=n

1

F
(1)
k

)

−1

< Fn, n ≥ 3,

1

L
(1)
n − L

(1)
n−1

<
∞

∑

k=n

1

L
(1)
k

<
1

L
(1)
n − L

(1)
n−1 − 1

, n ≥ 4,

Ln − 1 <

(

∞
∑

k=n

1

L
(1)
k

)

−1

< Ln, n ≥ 4.

Hence the relations (9)–(10) hold.

Theorem 3. For {F (1)
n } (n ≥ 2) we have

⌊(

∞
∑

k=n

1

(F
(1)
k )2

)⌋

=

{

F
(1)
n−1F

(1)
n + F

(1)
n−1 − 1, if n is even and n ≥ 2;

F
(1)
n−1F

(1)
n + F

(1)
n−1, if n is odd and n ≥ 1.

(11)

⌊(

∞
∑

k=n

1

(L
(1)
k )2

)⌋

= L
(1)
n−1L

(1)
n + L

(1)
n−1 − 1, if n is odd and n > 1. (12)
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Proof. By applying (2)–(3) and (7), we get

1

F
(1)
n−1F

(1)
n + F

(1)
n−1 − 1

− 1

(F
(1)
n )2

− 1

F
(1)
n F

(1)
n+1 + F

(1)
n − 1

=
1

F
(1)
n−1Fn+2 − 1

− 1

(F
(1)
n )2

− 1

F
(1)
n Fn+3 − 1

=
(F

(1)
n )2(F

(1)
n Fn+3 − F

(1)
n−1Fn+2) − (F

(1)
n−1Fn+2 − 1)(F

(1)
n Fn+3 − 1)

(F
(1)
n−1Fn+2 − 1)(F

(1)
n )2(F

(1)
n Fn+3 − 1)

=
F

(1)
n

2
(F 2

n+2 − Fn+1) − F
(1)
n−1F

(1)
n Fn+2Fn+3 + F

(1)
n−1Fn+2 + F

(1)
n Fn+3 − 1

(F
(1)
n−1Fn+2 − 1)(F

(1)
n )2(F

(1)
n Fn+3 − 1)

=
(Fn+3 + (−1)n+1Fn+2)F

(1)
n + F

(1)
n Fn+1 + F

(1)
n−1Fn+2 − 1

(F
(1)
n−1Fn+2 − 1)(F

(1)
n )2(F

(1)
n Fn+3 − 1)

> 0.

Thus, we have

∞
∑

k=n

1

(F
(1)
k )2

<
1

F
(1)
n−1F

(1)
n + F

(1)
n−1 − 1

.

Similarly, we can prove that

∞
∑

k=n

1

(F
(1)
k )2

>
1

F
(1)
n−1F

(1)
n + F

(1)
n−1 + 1

.

On the other hand, we have

1

F
(1)
n−1F

(1)
n + F

(1)
n−1

− 1

(F
(1)
n )2

− 1

F
(1)
n F

(1)
n+1 + F

(1)
n

=
1

F
(1)
n−1Fn+2

− 1

(F
(1)
n )2

− 1

F
(1)
n Fn+3

=
(F

(1)
n )2Fn+3 − F

(1)
n−1F

(1)
n Fn+2 − F

(1)
n−1Fn+2Fn+3

F
(1)
n−1(F

(1)
n )2Fn+2Fn+3

=
F

(1)
n (F

(1)
n Fn+3 − F

(1)
n−1Fn+2) − F

(1)
n−1Fn+2Fn+3

F
(1)
n−1(F

(1)
n )2Fn+2Fn+3

=
(−1)n+1Fn+2 + Fn+1

F
(1)
n−1(F

(1)
n )2Fn+2Fn+3

.

When n ≥ 2 is even, we can verify that

∞
∑

k=n

1

(F
(1)
k )2

>
1

F
(1)
n−1F

(1)
n + F

(1)
n−1

,

and when n ≥ 1 is odd
∞

∑

k=n

1

(F
(1)
k )2

<
1

F
(1)
n−1F

(1)
n + F

(1)
n−1

.
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Hence when n is even, we obtain

F
(1)
n−1F

(1)
n + F

(1)
n−1 − 1 <

(

∞
∑

k=n

1

(F
(1)
k )2

)

−1

< F
(1)
n−1F

(1)
n + F

(1)
n−1,

and when n is odd, we have

F
(1)
n−1F

(1)
n + F

(1)
n−1 <

(

∞
∑

k=n

1

(F
(1)
k )2

)

−1

< F
(1)
n−1F

(1)
n + F

(1)
n−1 + 1.

Then (11) holds.
By applying (2)–(3) and (8), we get

∞
∑

k=n

1

(L
(1)
k )2

<
1

L
(1)
n−1L

(1)
n + L

(1)
n−1 − 1

,

∞
∑

k=n

1

(L
(1)
k )2

>
1

L
(1)
n−1L

(1)
n + L

(1))
n−1

, n is odd.

Then (12) holds.

In the final part of this section, we consider the generalized hyperfibonacci numbers
{U (r)

n }:

U (r)
n =

n
∑

j=0

U
(r−1)
j , with U (0)

n = Un, U
(r)
0 = 0, U

(r)
1 = 1.

where

Un =
τn − (−1)nτ−n

√
∆

, τ = (p +
√

∆)/2, ∆ = p2 + 4,

and p is a positive integer. It is evident that

U (1)
n =

Un + Un+1 − 1

p
. (13)

And {Un} satisfy that

Wn = pWn−1 + Wn−2, n ≥ 2. (14)

When p = 1, U
(1)
n = F

(1)
n .

Now we discuss the partial infinite sum of reciprocal generalized hyperfibonacci numbers.

Lemma 4. For {Un}, the following formulas hold:

U2
n+1 − UnUn+2 = (−1)n, (15)
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From the definition of {Un} , we can prove that (15) holds.

Theorem 5. When n ≥ 2,

⌊(

∞
∑

k=n

1

U
(1)
k

)

−1⌋

= Un − 1, (16)

Proof. It follows from (13) and (14)–(15) that

1

U
(1)
n − U

(1)
n−1

− 1

U
(1)
n

− 1

U
(1)
n+1

− 1

U
(1)
n+2 − U

(1)
n+1

=
pUn+1

UnUn+2

− U
(1)
n + U

(1)
n+1

U
(1)
n U

(1)
n+1

=
Un+1(Un + Un+1 − 1)(Un+1 + Un+2 − 1) − UnUn+2(Un + 2Un+1 + Un+2 − 2)

pUnUn+2U
(1)
n U

(1)
n+1

=
(Un + Un+1 − 1)((−1)n + Un+1Un+2 − Un+1) − UnUn+2(Un+1 + Un+2 − 1)

pUnUn+2U
(1)
n U

(1)
n+1

=
(Un + Un+1 − 1)((−1)n − Un+1) + Un+2(U

2
n+1 − Un+1 − UnUn+2 + Un)

pUnUn+2U
(1)
n U

(1)
n+1

=
(Un + Un+1 − 1)((−1)n − Un+1) + Un+2((−1)n − (p − 1)Un − Un−1)

pUnUn+2U
(1)
n U

(1)
n+1

< 0,

and

1

U
(1)
n − U

(1)
n−1 − 1

− 1

U
(1)
n

− 1

U
(1)
n+1

− 1

U
(1)
n+2 − U

(1)
n+1 − 1

=
pUn+1

(Un − 1)(Un+2 − 1)
− 1

U
(1)
n

− 1

U
(1)
n+1

=
U

(1)
n+1(Un+2 + Un − Un+1 − 1 + (−1)n) + U

(1)
n (Un + Un+2 − 1)

(Un − 1)(Un+2 − 1)U
(1)
n U

(1)
n+1

+
Un(U

(1)
n+1Un+1 − U

(1)
n Un+2)

(Un − 1)(Un+2 − 1)U
(1)
n U

(1)
n+1

=
U

(1)
n+1(Un+2 + Un − Un+1 − 1 + (−1)n) + U

(1)
n (Un + Un+2 − 1)

(Un − 1)(Un+2 − 1)U
(1)
n U

(1)
n+1

+
Un((−1)n − Un+1 + Un+2)

p(Un − 1)(Un+2 − 1)U
(1)
n U

(1)
n+1

> 0.

Then we obtain

1

U
(1)
n − U

(1)
n−1

<

∞
∑

k=n

1

U
(1)
k

<
1

U
(1)
n − U

(1)
n−1 − 1

.

Hence (16) holds.

7



3 Some identities related to reciprocal hyperfibonacci

numbers and hyperlucas numbers

In this section, we give some identities related to inverse of hyperfibonacci and hyperlu-
cas numbers. There are some identities containing the reciprocals of Fibonacci and Lucas
numbers (see [1, 2]):

∞
∑

n=0

1

F2n+1 + Fs

=

√
5s

2Ls

, s odd,

∞
∑

n=0

1

F2n+1 + Ls/
√

5
=

s

2Fs

, s > 0 is even.

For hyperfibonacci and hyperlucas numbers F
(1)
n L

(1)
n , we have

Theorem 6. Let m be a positive integer. For F
(1)
n and L

(1)
n , we have

∞
∑

n=1

Ln+2m+2

F
(1)
n F

(1)
n+4m

=
1

F2m

4m
∑

k=1

1

F
(1)
k

, (17)

∞
∑

n=1

Fn+2m+2

L
(1)
n L

(1)
n+4m

=
1

5F2m

4m
∑

n=1

1

L
(1)
k

, (18)

∞
∑

n=1

Fn+2m+3

F
(1)
n F

(1)
n+4m+2

=
1

L2m+1

4m+2
∑

k=1

1

F
(1)
k

, (19)

∞
∑

n=1

Ln+2m+3

L
(1)
n L

(1)
n+4m+2

=
1

L2m+1

4m+2
∑

k=1

1

L
(1)
k

. (20)

Proof. It follows from (2) that

1

F
(1)
n

− 1

F
(1)
n+4m

=
F

(1)
n+4m − F

(1)
n

F
(1)
n F

(1)
n+4m

,

1

L
(1)
n

− 1

L
(1)
n+4m

=
L

(1)
n+4m − L

(1)
n

L
(1)
n − L

(1)
n+4m

,

1

F
(1)
n

− 1

F
(1)
n+4m+2

=
Fn+4m+4 − Fn+2

F
(1)
n F

(1)
n+4m+2

,

1

L
(1)
n

− 1

L
(1)
n+4m+2

=
Ln+4m+4 − Ln+2

L
(1)
n L

(1)
n+4m+2

.

From

F
(1)
n+4m − F (1)

n = F2mLn+2m+2,

L
(1)
n+4m − L(1)

n = 5F2mFn+2m+2,

Fn+4m+4 − Fn+2 = Fn+2m+3L2m+1,

Ln+4m+4 − Ln+2 = Ln+2m+3L2m+1.

8



we obtain the formula (17)–(20).

We can give other identities for F
(1)
n and L

(1)
n . The following lemma will be used (see

[12]).

Lemma 7. Let t be a real number with |t| > 1, s and a be positive integers, and b be a
nonnegative integer. Then one has that

∞
∑

n=0

1

t2an+b + t−2an−b − (tas + t−as)
=

1

tas − t−as

s−1
∑

n=0

1

1 − t2an+b−as
(21)

Theorem 8. Suppose that a, b and s are positive integers with b > as. For F
(1)
n and L

(1)
n ,

we have:
(i) when a, b and s are odd,

∞
∑

n=0

1

F
(1)
2an+b−2 − F

(1)
as−2

=

√
5

Las

s−1
∑

n=0

1

1 − α2an+b−as
, (22)

(ii) when b and s are both even,

∞
∑

n=0

1

L
(1)
2an+b−2 − L

(1)
as−2

=
1√
5Fas

s−1
∑

n=0

1

1 − α2an+b−as
. (23)

Proof. By means of (22) and F
(1)
n = Fn+2 − 1, L

(1)
n = Ln+2 − 1, we can easily prove that (22)

and (23) hold.
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