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Abstract

We show how to construct an exponential Riordan array from a knowledge of its

A and Z sequences. The effect of pre- and post-multiplication by the binomial matrix

on the A and Z sequences is examined, as well as the effect of scaling the A and Z

sequences. Examples are given, including a discussion of related Sheffer orthogonal

polynomials.

1 Introduction

One of the most fundamental results concerning Riordan arrays is that they have a sequence
characterization [13, 18]. This normally involves two sequences, called the A-sequence and
the Z-sequence. For exponential Riordan arrays [9] (see Appendix), this characterization is
equivalent to the fact that the production matrix [11] of an exponential array [g, f ], with
A-sequence A(t) and Z-sequence Z(t) has bivariate generating function

ezt(Z(t) + A(t)z).

In this case we have

A(t) = f ′(f̄(t)), Z(t) =
g′(f̄(t))

g(f̄(t))
.

Examples of exponential Riordan arrays and their production matrices may be found in the
On-Line Encyclopedia of Integer Sequences [19, 20]. In that database, sequences are referred
to by their A-numbers. For known sequences, we shall adopt this convention in this note.
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A natural question to ask is the following. If we are given two suitable power series A(t)
and Z(t), can we recover the corresponding exponential Riordan array [g(t), f(t)] whose A
and Z sequences correspond to the given power series A(t) and Z(t)?

The next two simple results provide a means of doing this.

Lemma 1. For an exponential Riordan array [g(t), f(t)] with A-sequence A(t), we have

d

dt
f̄(t) =

1

A(t)
.

Proof. By definition of the compositional inverse, we have

f(f̄(t)) = t.

Differentiating this with respect to t, we obtain

f ′(f̄(t))
d

dt
f̄(t) = 1

or
d

dt
f̄(t) =

1

f ′(f̄(t))
=

1

A(t)
.

Lemma 2. For an exponential Riordan array [g(t), f(t)] with A-sequence A(t) and Z-sequence
Z(t), we have

d

dt
ln(g(f̄(t))) =

Z(t)

A(t)
.

Proof. We have

d

dt
ln(g(f̄(t))) =

g′(f̄(t))

g(f̄(t))

d

dt
f̄(t) = Z(t)

1

A(t)
=

Z(t)

A(t)
.

Thus if we can easily carry out the reversion from f̄(t) to f(t), a knowledge of A(t) and
Z(t), along with the equations

d

dt
f̄(t) =

1

A(t)
,

d

dt
ln(g(f̄(t))) =

Z(t)

A(t)
(1)

will allow us to find f(t) and g(t). The steps to achieve this are as follows.

• Using the equation d
dt
f̄(t) = 1

A(t)
, solve for f̄(t).

• Revert f̄(t) to get f(t).
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• Sove the equation d
dt
ln(g(f̄(t))) = Z(t)

A(t)
and take the exponential to get g(f̄(t)).

• Solve for g(t) by substituting f(t) in place of t in the last found expression.

Constants of integration may be determined using such conditions as f̄(0) = f(0) = 0, and
g(0) = 1.

Example 3. We seek to find [g(t), f(t)] where

A(t) =
1

1 + t
, Z(t) = − 1

1 + t
.

We start by solving the equation
d

dt
f̄(t) = 1 + t.

Since f̄(0) = 0, we find that

f̄(t) = t+
t2

2
= t

(

1 +
t

2

)

.

We revert this to get
f(t) =

√
1 + 2t− 1.

We now solve the equation
d

dt
ln(g(f̄(t))) =

Z(t)

A(t)
= −1.

Thus we find that
ln(g(f̄(t))) = −t ⇒ g(f̄(t)) = e−t.

Thus (since f̄(f(t)) = t) we get

g(t) = e−f(t) = e1−
√
1+2t.

Hence the exponential Riordan array with the given A and Z sequences is

[g, f ] =
[

e1−
√
1+2t,

√
1 + 2t− 1

]

.

We note that

[g, f ]−1 =

[

et, t+
t2

2

]

which is the Pascal-like matrix A100862 [6].
In like manner, we can show that

A(t) =
1

1 + 2t
, Z(t) = − 1

1 + 2t
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corresponds to the exponential Riordan array

[g, f ] =

[

e
1−

√

1+4t
2 ,

√
1 + 4t− 1

2

]

,

whose inverse
[g, f ]−1 = [et, t+ t2]

is Pascal-like [6]. In general, if A(t) = −Z(t) = 1
1+rt

, then

[g, f ] =

[

e
1
r
(1−

√
1+2rt),

1

r
(
√
1 + 2rt− 1)

]

.

Then

[g, f ]−1 =

[

et, t+ r
t2

2

]

is a Pascal-type matrix.

2 Effect of the binomial transform

The next proposition shows the effect of changing Z(t) to Z(t) + 1 and to Z(t) + A(t),
respectively. We recall that the binomial matrix B = [et, t].

Proposition 4. Let [g, f ] be an exponential Riordan array with A and Z sequences A(t) and
Z(t) respectively. Then the exponential Riordan array B · [g, f ] has A and Z sequences A(t)
and Z(t)+1 respectively, while the exponential Riordan array [g, f ] ·B has A and Z sequences

A(t) and Z(t) + A(t) respectively.

Proof. Firstly, we let the exponential Riordan array [h, l] have A and Z sequences A(t) and
Z(t) + 1 respectively. Then we have d

dt
l̄(t) = 1

A(t)
, which implies that l(t) = f(t) (since

l(0) = f(0) = 0). Now

d

dt
ln(h(l̄(t))) =

d

dt
ln(h(f̄(t))) =

Z(t) + 1

A(t)
=

Z(t)

A(t)
+

1

A(t)
.

Thus
ln(h(f̄(t))) = ln(g(f̄(t))) + f̄(t) ⇒ h(f̄(t)) = g(f̄(t))ef̄(t).

We obtain that
h(t) = g(t)lt

and so
[h(t), l(t)] = [etg(t), f(t)] = [et, t] · [g(t), f(t)] = B · [g(t), f(t)].
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Secondly, we now assume that the exponential Riordan array [h, l] have A and Z sequences
A(t) and Z(t) + A(t) respectively. As before, we see that l(t) = f(t). Also,

d

dt
ln(h(l̄(t))) =

d

dt
ln(h(f̄(t))) =

Z(t) + A(t)

A(t)
=

Z(t)

A(t)
+ 1.

Thus
ln(h(f̄(t))) = ln(g(f̄(t))) + t ⇒ h(f̄(t)) = g(f̄(t))et.

Now substituting f(t) for t gives us

h(t) = ef(t)g(t).

Thus
[h, l] = [ef(t)g(t), f(t)] = [g(t), f(t)] · [et, t] = [g(t), f(t)] ·B.

We shall see examples of these results in the next section.

3 Effect of Scaling

In this section, we will assume that the exponential Riordan array with A and Z sequences
A(t) and Z(t), respectively, is given by [g(t), f(t)]. We wish to characterize the exponential
Riordan array [g∗(t), f ∗(t)] whose A and Z sequences are A∗(t) = rA(t) and Z∗(t) = sZ(t)
respectively.

Proposition 5. We have

[g∗(t), f ∗(t)] =
[

g(rt)
s

r , rf(t)
]

.

Proof. We have
d

dt
f̄ ∗(t) =

1

rA
=

1

r

d

dt
f̄(t).

Thus

f̄ ∗(t) =
1

r
f̄(t) ⇒ f ∗(t) = rf(t).

Then
d

dt
ln(g∗(f̄ ∗(t))) =

sZ

rA
=

s

r

d

dt
ln(g(f̄(t))),

and so
ln(g∗(f̄ ∗(t))) =

s

r
ln(g(f̄(t))) = ln

(

g(f̄(t))
s

r

)

.

Thus

g∗(f̄ ∗(t)) = g(f̄(t))
s

r ⇒ g∗(
1

r
f̄(t)) = g(f̄(t))

s

r ⇒ g∗(
1

r
t) = g(t)

s

r ,

or
g∗(t) = g(rt)

s

r .
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Example 6. We let
A(t) = 1 + t, Z(t) = 1 + 2t.

We find that the corresponding exponential array is

[g, f ] =
[

e2e
t−t−2, et − 1

]

,

which begins






















1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
3 3 1 0 0 0 · · ·
9 13 6 1 0 0 · · ·
35 59 37 10 1 0 · · ·
153 301 230 85 15 1 · · ·
...

...
...

...
...

...
. . .























,

with production matrix which begins























1 1 0 0 0 0 . . .
2 2 1 0 0 0 . . .
0 4 3 1 0 0 . . .
0 0 6 4 1 0 . . .
0 0 0 8 5 1 . . .
0 0 0 0 10 6 . . .
...

...
...

...
...

...
. . .























.

We now take
A∗(t) = 3(1 + t), Z∗(t) = 5(1 + 2t).

The corresponding exponential Riordan array is then given by

[g∗(t), f ∗(t)] =

[

(

e2e
3t−3t−2

) 5
3
, 3(et − 1)

]

.

This array begins























1 0 0 0 0 0 · · ·
5 3 0 0 0 0 · · ·
55 33 9 0 0 0 · · ·
665 543 162 27 0 0 · · ·
9895 9033 3573 702 81 0 · · ·
165185 170103 76410 19575 2835 243 · · ·

...
...

...
...

...
...

. . .























,

6



with production matrix which begins























5 3 0 0 0 0 . . .
10 8 3 0 0 0 . . .
0 20 11 3 0 0 . . .
0 0 30 14 3 0 . . .
0 0 0 40 17 3 . . .
0 0 0 0 50 20 . . .
...

...
...

...
...

...
. . .























.

4 Further examples

Example 7. We take the Stirling number related choice of

A(t) = 1 + t, Z(t) = 1 + t.

From
d

dt
f̄(t) =

1

1 + t
,

we obtain
f̄(t) = ln(1 + t) ⇒ f(t) = et − 1.

Then from
d

dt
ln(g(f̄(t))) =

Z(t)

A(t)
= 1

we obtain
ln(g(f̄(t))) = t ⇒ g(f̄(t)) = et,

and hence
g(t) = ee

t−1.

Thus we obtain
[g, f ] =

[

ee
t−1, et − 1

]

,

which is A049020. We have
[g, f ] = S2 ·B
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where S2 is the matrix of Stirling numbers of the second kind (A048993) and B is the
binomial matrix (A007318). The production array of [g, f ] is given by























1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
0 2 3 1 0 0 . . .
0 0 3 4 1 0 . . .
0 0 0 4 5 1 . . .
0 0 0 0 5 6 . . .
...

...
...

...
...

...
. . .























.

Since this production matrix is tri-diagonal, the inverse matrix [g, f ]−1 is the coefficient
array of a family of orthogonal polynomials [4, 3]. The family in question is the family
of Charlier polynomials, which has the Bell numbers (with e.g.f. ee

t−1) as moments. The
Charlier polynomials satisfy the three-term recurrence

Pn(t) = (t− n)Pn−1(t)− (n− 1)Pn−2(t),

with P0(t) = 1, P1(t) = t− 1.

Example 8. We take
A(t) = 1 + t Z(t) = 1 + t+ t2.

Again, we find that
f(t) = et − 1.

Then
d

dt
ln(g(f̄(t))) =

Z(t)

A(t)
=

1 + t+ t2

1 + t
,

and hence

ln(g(f̄(t))) =
t2

2
+ ln(1 + t).

Thus

g(f̄(t)) = e
t
2

2 (1 + t),

and so

g(t) = e
(et−1)2

2 (1 + et − 1) = ete
(et−1)2

2 .

In this case, the production matrix is four-diagonal and begins






















1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
2 2 3 1 0 0 . . .
0 6 3 4 1 0 . . .
0 0 12 4 5 1 . . .
0 0 0 20 5 6 . . .
...

...
...

...
...

...
. . .























.
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The exponential Riordan array

[g, f ] =

[

ete
(et−1)2

2 , et − 1

]

begins






















1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
2 3 1 0 0 0 · · ·
7 10 6 1 0 0 · · ·
29 45 31 10 1 0 · · ·
136 241 180 75 15 1 · · ·
...

...
...

...
...

...
. . .























.

The row sums of this array are the Dowling numbers A007405.
We note that the exponential Riordan array

B−1 · [g, f ] = [e−t, t] · [g, f ] =
[

e
(et−1)2

2 , et − 1

]

has
A(t) = 1 + t Z(t) = t+ t2.

This array begins






















1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
1 1 1 0 0 0 · · ·
3 4 3 1 0 0 · · ·
10 19 13 6 1 0 · · ·
45 91 75 35 10 1 · · ·
...

...
...

...
...

...
. . .























.

The first column of this array is A060311, while its row sums are given by A004211. The
production matrix of this array begins























0 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
2 2 2 1 0 0 . . .
0 6 3 3 1 0 . . .
0 0 12 4 4 1 . . .
0 0 0 20 5 5 . . .
...

...
...

...
...

...
. . .























,

where we see that the effect of the inverse binomial matrix is to subtract 1 from the diagonal.

9

http://oeis.org/A007405
http://oeis.org/A060311
http://oeis.org/A004211


In this example, we have Z(t) = 1 + t + t2 = A(t) + t2. Thus the exponential Riordan
array [g, f ] is equal to the product

[h, l] ·B
where the exponential Riordan array [h, l] has A and Z sequences of 1+t and t2, respectively.

Example 9. We take
A(t) = 1 + t2, Z(t) = 1 + t+ t2.

Then Thus
f(t) = tan(t).

Now
d

dt
ln(g(f̄(t))) =

Z(t)

A(t)
=

1 + t+ t2

1 + t2
= 1 +

t

1 + t2
,

and so
ln(g(f̄(t))) = ln

√
1 + t2 + t.

Thus

g(f̄(t)) = et
√
1 + t2 ⇒ g(t) = etan(t)

√

1 + tan2(t) =
etan(t)

cos(t)
.

Thus the sought-for exponential Riordan array is given by

[g, f ] =
[

etan(t) sec(t), tan(t)
]

.

This matrix begins






















1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
2 2 1 0 0 0 · · ·
6 8 3 1 0 0 · · ·
20 32 20 4 1 0 · · ·
92 156 100 40 5 1 · · ·
...

...
...

...
...

...
. . .























,

with production matrix that begins























1 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
2 4 1 1 0 0 . . .
0 6 9 1 1 0 . . .
0 0 12 16 1 1 . . .
0 0 0 20 25 1 . . .
...

...
...

...
...

...
. . .























.
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The first column is A009244. We note that we have the following factorization

[g, f ] =
[

etan(t) sec(t), tan(t)
]

= [sec(t), tan(t)] · B.

Thus we can say that the exponential Riordan array [sec(t), tan(t)], which begins























1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
1 0 1 0 0 0 · · ·
0 5 0 1 0 0 · · ·
5 0 14 0 1 0 · · ·
0 61 0 30 0 1 · · ·
...

...
...

...
...

...
. . .























,

has A sequence defined by 1 + t2 and Z sequence defined by t. Thus its production matrix
is given by























0 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
0 4 0 1 0 0 . . .
0 0 9 0 1 0 . . .
0 0 0 16 0 1 . . .
0 0 0 0 25 0 . . .
...

...
...

...
...

...
. . .























.

We can infer from this that the inverse array

[sec(t), tan(t)]−1 =

[

1√
1 + t2

, tan−1(t)

]

is the coefficient array of the family of orthogonal polynomials

Pn(t) = tPn−1(t)− (n− 1)2Pn−2(t),

with P0(t) = 1 and P1(t) = t.

Example 10. In this example, we let

A(t) = 1 + t, Z(t) =
1

1− t
.

As before, we get f(t) = et − 1. Now

d

dt
ln(g(f̄(t))) =

Z(t)

A(t)
=

1

1− t2
,

11
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and hence

ln(g(f̄(t))) =
1

2
ln

(

1 + t

1− t

)

.

We infer that

g(t) =

√

et

2− et
.

The function g(t) generates the sequence A014307 which begins

1, 1, 2, 7, 35, 226, 1787, 16717, 180560, 2211181, 30273047, . . . .

It has many combinatorial interpretations [7, 15, 17].
The exponential Riordan array

[g, f ] =

[

√

et

2− et
, et − 1

]

begins






















1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
2 3 1 0 0 0 · · ·
7 10 6 1 0 0 · · ·
35 45 31 10 1 0 · · ·
226 271 180 75 15 1 · · ·
...

...
...

...
...

...
. . .























,

with production matrix that begins






















1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
2 2 3 1 0 0 . . .
6 6 3 4 1 0 . . .
24 24 12 4 5 1 . . .
120 120 60 20 5 6 . . .
...

...
...

...
...

...
. . .























.

In general, the exponential Riordan array with

A(t) = 1 + t, Z(t) =
r

1− t
,

is given by

[g, f ] =

[

(

et

2− et

)r/2

, et − 1

]

.
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Example 11. For this example, we take

A(t) = e−t, Z(t) = et.

Then
d

dt
f̄(t) =

1

A(t)
=

1

e−t
= et,

and so we get
f̄(t) = et + C = et − 1

since f̄(0) = 0. Thus
f(t) = ln(1 + t).

Now
d

dt
ln(g(f̄(t))) =

Z(t)

A(t)
=

et

e−t
= e2t,

and so

ln(g(f̄(t))) =
e2t

2
− 1

2
⇒ g(f̄(t)) = e

1
2
(e2t−1).

Substituting f(t) for t we get

g(t) = e
1
2
(e2 ln(1+t)−1) = et+

t
2

2 .

Thus

[g, f ] =
[

et+
t
2

2 , ln(1 + t)
]

.

We note that if we have
A(t) = Z(t) = e−t,

then we obtain
[g, f ] = [1 + t, ln(1 + t)].

Interestingly, this last exponential Riordan array has a production matrix that is equal the
ordinary Riordan array

(

1 + 2t

1 + t
,

t

1 + t

)

with its first row removed.

13



5 Orthogonal polynomials

When Z(t) = α + βt and A(t) = 1 + γt + δt2, the production matrix of the corresponding
exponential Riordan array [g, f ] is tri-diagonal, beginning as follows.























α 1 0 0 0 0 . . .
β α + γ 1 0 0 0 . . .
0 2(β + δ) α + 2γ 1 0 0 . . .
0 0 3(β + 2δ) α + 3γ 1 0 . . .
0 0 0 4(β + 3δ) α + 4γ 1 . . .
0 0 0 0 5(β + 4δ) α + 5γ . . .
...

...
...

...
...

...
. . .























.

As a consequence, [g, f ]−1 is the coefficient array of the family of orthogonal polynomials
Pn(t) defined by the three-term recurrence [8, 12, 21]

Pn(t) = (t− (α + (n− 1)γ))Pn−1(t)− (n− 1)(β + (n− 2)δ)Pn−2(t),

with P0(t) = 1 and P1(t) = x − α. These are precisely the Sheffer orthogonal polynomials
[1, 13].

Example 12. We take the case of

A(t) = 1 + t+ t2, Z(t) = 1 + t.

We have
d

dt
f̄(t) =

1

1 + t+ t2
.

Choosing the constant of integration so that f̄(0) = 0, we get

f̄(t) =
2√
3
tan−1

(

2t+ 1√
3

)

− π

3
√
3
.

Thus

f(t) =

√
3

2
tan

(√
3t

2
+

π

6

)

− 1

2

=
2 sin

(√
3t
2

)

√
3 cos

(√
3t
2

)

− sin
(√

3t
2

)

=
2 tan

(√
3t
2

)

√
3− tan

(√
3t
2

) .

14



We now have
d

dt
ln(g(f̄(t))) =

Z(t)

A(t)
=

1 + t

1 + t+ t2
,

and hence

ln(g(f̄(t))) =
1√
3
tan−1

(

2t+ 1√
3

)

+
1

2
ln(1 + t+ t2)− π

6
√
3
.

From this we infer that

g(t) =

√
3e

x

2

√
3 cos

(√
3t
2

)

− sin
(√

3t
2

) .

The function g(t) generates the sequence A049774, which counts the number of permutations
of n elements not containing the consecutive pattern 123.

The sought-for matrix is thus

[g, f ] =





√
3e

x

2

√
3 cos

(√
3t
2

)

− sin
(√

3t
2

) ,
2 sin

(√
3t
2

)

√
3 cos

(√
3t
2

)

− sin
(√

3t
2

)



 .

This exponential Riordan array is A182822, which begins























1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
2 3 1 0 0 0 · · ·
5 12 6 1 0 0 · · ·
17 53 39 10 1 0 · · ·
70 279 260 95 15 1 · · ·
...

...
...

...
...

...
. . .























,

with production matrix that begins























1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
0 4 3 1 0 0 . . .
0 0 9 4 1 0 . . .
0 0 0 16 5 1 . . .
0 0 0 0 25 6 . . .
...

...
...

...
...

...
. . .























.

Example 13. We change the previous example slightly by taking

A(t) = 1 + 2t+ t2 = (1 + t)2, Z(t) = 1 + t.
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Then we have
d

dt
f̄(t) =

1

(1 + t)2
⇒ f̄(t) = − 1

1 + t
+ 1 =

t

1 + t
.

This means that

f(t) =
t

1− t
.

Now we have
d

dt
ln(g(f̄(t))) =

Z(t)

A(t)
=

1

1 + t
,

and hence
ln(g(f̄(t))) = ln(1 + t) ⇒ g(f̄(t)) = 1 + t.

This implies that

g(t) = 1 + f(t) = 1 +
t

1− t
=

1

1− t
.

Thus

[g, f ] =

[

1

1− t
,

t

1− t

]

.

Thus [g, f ]−1 is the coefficient array of the Laguerre polynomials [5].
We finish by noting that the simple addition of t to A(t) has allowed us to go from the

relatively complicated exponential Riordan array





√
3e

x

2

√
3 cos

(√
3t
2

)

− sin
(√

3t
2

) ,
2 sin

(√
3t
2

)

√
3 cos

(√
3t
2

)

− sin
(√

3t
2

)





to the simple exponential Riordan array
[

1

1− t
,

t

1− t

]

.

6 Appendix: exponential Riordan arrays

The exponential Riordan group [6, 9, 11], is a set of infinite lower-triangular integer matrices,
where each matrix is defined by a pair of generating functions g(t) = g0 + g1t + g2t

2 + · · ·
and f(t) = f1t+ f2t

2 + · · · where g0 6= 0 and f1 6= 0. We usually assume that

g0 = f1 = 1.

The associated matrix is the matrix whose i-th column has exponential generating function
g(t)f(t)i/i! (the first column being indexed by 0). The matrix corresponding to the pair f, g
is denoted by [g, f ]. The group law is given by

[g, f ] · [h, l] = [g(h ◦ f), l ◦ f ].
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The identity for this law is I = [1, t] and the inverse of [g, f ] is [g, f ]−1 = [1/(g ◦ f̄), f̄ ] where
f̄ is the compositional inverse of f .

If M is the matrix [g, f ], and u = (un)n≥0 is an integer sequence with exponential gener-
ating function U (t), then the sequence Mu has exponential generating function g(t)U(f(t)).
Thus the row sums of the array [g, f ] have exponential generating function given by g(t)ef(t)

since the sequence 1, 1, 1, . . . has exponential generating function et.
As an element of the group of exponential Riordan arrays, the binomial matrix B with

(n, k)-th element
(

n
k

)

is given by B = [et, t]. By the above, the exponential generating
function of its row sums is given by etet = e2t, as expected (e2t is the e.g.f. of 2n).

To each exponential Riordan array L = [g, f ] is associated [10, 11] a matrix P called its
production matrix, which has bivariate g.f. given by

ezt(Z(t) + A(t)z)

where

A(t) = f ′(f̄(t)), Z(t) =
g′(f̄(t))

g(f̄(t))
.

We have
P = L−1L̄

where L̄ [16, 22] is the matrix L with its top row removed.
The ordinary Riordan group is described in [18].
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