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Abstract
We show how to construct an exponential Riordan array from a knowledge of its
A and Z sequences. The effect of pre- and post-multiplication by the binomial matrix
on the A and Z sequences is examined, as well as the effect of scaling the A and Z
sequences. FExamples are given, including a discussion of related Sheffer orthogonal
polynomials.

1 Introduction

One of the most fundamental results concerning Riordan arrays is that they have a sequence
characterization [13, 18]. This normally involves two sequences, called the A-sequence and
the Z-sequence. For exponential Riordan arrays [9] (see Appendix), this characterization is
equivalent to the fact that the production matrix [11] of an exponential array (g, f], with
A-sequence A(t) and Z-sequence Z(t) has bivariate generating function

e (Z(t) + A(t)z).

In this case we have "(f(1))
A(t) = fI(f(t), Z(t) = JFD)

Examples of exponential Riordan arrays and their production matrices may be found in the
On-Line Encyclopedia of Integer Sequences [19, 20]. In that database, sequences are referred
to by their A-numbers. For known sequences, we shall adopt this convention in this note.
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A natural question to ask is the following. If we are given two suitable power series A(t)
and Z(t), can we recover the corresponding exponential Riordan array [g(t), f(t)] whose A
and Z sequences correspond to the given power series A(t) and Z(t)?

The next two simple results provide a means of doing this.

Lemma 1. For an exponential Riordan array [g(t), f(t)] with A-sequence A(t), we have

d - 1
%f(t)ZM-

Proof. By definition of the compositional inverse, we have

fUF() =t
Differentiating this with respect to t, we obtain
"(ft)—f(t) =1
() 370

or
1

1
FF) — Ay

]

Lemma 2. For an exponential Riordan array [g(t), f(t)] with A-sequence A(t) and Z-sequence
Z(t), we have

Proof. We have

O

Thus if we can easily carry out the reversion from f(t) to f(t), a knowledge of A(t) and
Z(t), along with the equations

d - 1 d -
d_tf(t) IOk Eln(g(f(t))) = A0 (1)

will allow us to find f(¢) and g(¢). The steps to achieve this are as follows.
e Using the equation %f(t) = ﬁ, solve for f(t).

e Revert f(t) to get f(t).



e Sove the equation £ In(g(f(t))) = % and take the exponential to get g(f(t)).

e Solve for g(t) by substituting f(¢) in place of ¢ in the last found expression.

Constants of integration may be determined using such conditions as f(0) = f(0) = 0, and
9(0) = L.

Example 3. We seek to find [g(t), f(¢)] where

1 1
Alt) = — Z(t) = ———.
®) 1+t (®) 1+t
We start by solving the equation
d
—ft)=1+t.
SO =1+

Since f(0) = 0, we find that

We revert this to get

We now solve the equation

Thus we find that
Thus (since f(f(t)) =t) we get
g(t) = e = el-VIt2t

Hence the exponential Riordan array with the given A and Z sequences is

lg, f] = [elfm, V142t — 1] :

We note that

t2
[97 f]_l = |:6t7 t+ _:|
2
which is the Pascal-like matrix A100862 [6].
In like manner, we can show that
1 1

Alt) = — Z0) =
(t) 1+2¢ ®) 1+2t


http://oeis.org/A100862

corresponds to the exponential Riordan array

1—/1+4t 1+4t—1
o = [o= A=)

whose inverse
lg, f171 = [e" ¢t +17]
is Pascal-like [6]. In general, if A(t) = —Z(t) = =, then

1+4+rt?

9, 1= [ei“v”m’, %(\/1 ot — 1)] .

Then
t2
9. /17" = [et,t+ T—Q]

is a Pascal-type matrix.

2 Effect of the binomial transform

The next proposition shows the effect of changing Z(t) to Z(t) + 1 and to Z(t) + A(t),
respectively. We recall that the binomial matrix B = [e’, ¢].

Proposition 4. Let [g, f] be an exponential Riordan array with A and Z sequences A(t) and
Z(t) respectively. Then the exponential Riordan array B - g, f] has A and Z sequences A(t)
and Z(t)+1 respectively, while the exponential Riordan array [g, f]- B has A and Z sequences
A(t) and Z(t) + A(t) respectively.

Proof. Firstly, we let the exponential Riordan array [h, 1] have A and Z sequences A(t) and
Z(t) + 1 respectively. Then we have %[(t) = ﬁ, which implies that I(t) = f(t) (since
1(0) = f(0) =0). Now

d . d _
() = Fm(b(F) = s = T

Thus

We obtain that

and so



Secondly, we now assume that the exponential Riordan array [h, (] have A and Z sequences
).

A(t) and Z(t) + A(t) respectively. As before, we see that [(t) = f(t). Also,
d - d _ _Z(t) + A(2) Z(t)
S nn(ie) = () = AL - Z8

Thus
n(h(F(5)) = n(g(F(£)) +t = h(F(2) = g(F(1)e".
Now substituting f(t) for ¢ gives us
h(t) = e’ Wyg(t).

Thus
[h, 1] = [?Wg(t), f(1)] = [g(t), F(B)] - [e', 8] = [9(t), F ()] - B.

We shall see examples of these results in the next section.

3 Effect of Scaling

In this section, we will assume that the exponential Riordan array with A and Z sequences
A(t) and Z(t), respectively, is given by [g(t), f(£)]. We wish to characterize the exponential
Riordan array [¢g*(¢), f*(t)] whose A and Z sequences are A*(t) = rA(t) and Z*(t) = sZ(t)
respectively.

Proposition 5. We have

Proof. We have

dt
Thus .
o)) = —f(t) = £°() = rf (1)
Then p P J
(g (1) = =5 = =2 In(g(J(1).

and so

In(g"(f*(1))) = > In(g(f(1))) = In (g(F(£))")
Thus )

g'(F () = g(F(0)7 = 9" I 1) = g(F ()7 = 9" () = g(1)",



Example 6. We let
A(t) =1+t Z(t) =1+ 2t.

We find that the corresponding exponential array is
[ga f] = e2et—t—2’€t -1 )

which begins

1 0 0O 0 0 0
1 1 0O 0 0 0
3 3 10 0 0
9 13 6 1 0 0 ’
35 59 37 10 1 0
153 301 230 8 15 1
with production matrix which begins
1100 0 O
2210 0 0
0431 0 0
006 4 1 0
0008 5 1
00 00 10 6

We now take
A*(t) = 3(1 + 1), Z*(t) = 5(1 + 2t).

The corresponding exponential Riordan array is then given by

570, 0] = [ () s -]

This array begins

1 0 0 0 0 0

3 0 0 0 0

95 33 9 0 0 0
665 543 162 27 0 0
9895 9033 3573 702 81 0
4

165185 170103 76410 19575 2835 243




with production matrix which begins

5 3 0 0 0 0
10 8 3 0 0 O
0 20 11 3 0 O
0 0 30 14 3 O
0 0 0 40 17 3
0 0 0 0 50 20

4 Further examples
Example 7. We take the Stirling number related choice of

Ay =1+t  Z(t) =1+t

From J .
Ef(t) BEEE
we obtain
f@)=In(1+t)= f(t) =€ —1
Then from p (1)
%m(g(f(t))) =AW 1
we obtain B B
In(g(f(1)) =t = g(f(t)) = ¢,
and hence

Thus we obtain

which is A049020. We have
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where Sy is the matrix of Stirling numbers of the second kind (A048993) and B is the
binomial matrix (A007318). The production array of [g, f] is given by

110000
121000
023100
003410
000451
0000356

Since this production matrix is tri-diagonal, the inverse matrix [g, f]~' is the coefficient

array of a family of orthogonal polynomials [4, 3]. The family in question is the family
of Charlier polynomials, which has the Bell numbers (with e.g.f. ¢ ') as moments. The
Charlier polynomials satisfy the three-term recurrence

Po(t) = (t =n) P (t) = (n = 1) Pua(t),

Example 8. We take
Aty=1+t Z@t)=1+t+1%

Again, we find that

f(t)=¢e" —1.
Then p 201 )
- t 1+t+1¢
—1 t)) = =
o) = T =~
and hence ,
. t
In(g(f(¢))) = £} + In(1 +¢).
Thus 9
g(f(t)) =e>(1+1),
and so
<6t71)2 ¢ ¢ (et71)2
g(t)y=e (I1+e —1)=c¢c'e 2
In this case, the production matrix is four-diagonal and begins
110 0 0O
12 1 0 00
22 3 1 00
06 3 4 10
0 012 4 5 1
00 0 20 5 6
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The exponential Riordan array

begins
1 0 0 0 0 0
1 1 0 0 0 0
2 3 1 0 0 0
7 10 6 1 0 0
29 45 31 10 1 O
1

136 241 180 75 15

The row sums of this array are the Dowling numbers A007405.
We note that the exponential Riordan array

B (g f) =[] [g. f] = [ o= 1]

has
Aty=1+t  Z(t)=t+t%

This array begins

10 0 0 0 0
o 1 0 0 0 O
1 1 1 0 0 0
3 4 3 1 0 O
10 19 13 6 1 O
45 91 75 35 10 1

The first column of this array is A060311, while its row sums are given by A004211. The
production matrix of this array begins

01 0 000
111 000
22 2 1 00
06 3 3 10 7
0012 4 41
00 0 2 55

where we see that the effect of the inverse binomial matrix is to subtract 1 from the diagonal.
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In this example, we have Z(t) = 1+t + t* = A(t) + t*. Thus the exponential Riordan

array [g, f] is equal to the product
[h,l]- B

where the exponential Riordan array [h, ] has A and Z sequences of 1+t and ¢2, respectively.

Example 9. We take
Aty =1+, Z{t)=1+t+1t%

Then Thus
f(t) = tan(t).
now d | o _Z(t)_1+t+t2_1 t
and so
In(g(f(t)) =Inv1+2+t.
Thus

6tan(t)

g(f(t) = V1 +12 = g(t) = et ®, /1 4 tan?(t) =

cos(t)’

Thus the sought-for exponential Riordan array is given by

(g, f] = [e"*"®) sec(t), tan(t)] .

This matrix begins

(@) I NI
o N = O
w = oo
_ O O O

20 32 20 4
92 156 100 40

RO O O OO

with production matrix that begins

— = O
— = O O
— =0 O O

12 16
0 20 25

O OO N =
O OO
N
R = O O OO

10



The first column is A009244. We note that we have the following factorization
lg, f] = [etan(t) sec(t), tan(t)] = [sec(t), tan(t)] - B.

Thus we can say that the exponential Riordan array [sec(t), tan(t)], which begins

10 0 000
001 0 000
10 1 000
05 0 1 00 ,
50 14 0 10
061 0 30 0 1

has A sequence defined by 1 + t? and Z sequence defined by ¢. Thus its production matrix
is given by

01 0 0 0 O
101 0 0 O
040 1 00
009 0 1 0
00016 0 1
000 0 250
We can infer from this that the inverse array
[sec(t), tan(t)] ™ = o tan~*(t)
) m)

is the coefficient array of the family of orthogonal polynomials
Po(t) = tP,_1(t) — (n — 1)*P,_5(1),
with Py(t) = 1 and Py (t) = t.

Example 10. In this example, we let

Ay =141,  2Z(1) = %_t
As before, we get f(t) = e’ — 1. Now

d . _Zt) 1

5 mg(f (1)) = a0 1o
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and hence . -
. -
o) = 51 (174 )
We infer that
ot

9O =1\ 5

The function g(t) generates the sequence A014307 which begins

1,1,2,7,35,226,1787,16717, 180560, 2211181, 30273047, . . ..

It has many combinatorial interpretations [7, 15, 17].
The exponential Riordan array

[g,szl Qi—et,ef—ll

begins
1 0 0 0 0 0
1 1 0 0 0 0
2 3 10 0 O
7 10 6 1 0 0 7
35 45 31 10 1 0
226 271 180 75 15 1

with production matrix that begins

1 10 0 00
1 2 1 0 00
2 2 3 1 00
6 6 3 4 10
24 24 12 4 5 1
120 120 60 20 5 6

In general, the exponential Riordan array with

Aty =1+t,  Z(t)=

9. f] = [(2 itet)m,et - 1] .

12
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Example 11. For this example, we take

Then

and so we get
since f(0) = 0. Thus

Now

and so

e2 1n(1+t)_1) .

g(t) = e3! =elta.

Thus

We note that if we have
then we obtain

lg, f] =[1+t,In(1 + t)].

Interestingly, this last exponential Riordan array has a production matrix that is equal the

ordinary Riordan array
1+2t ¢t
1+t 1+t

with its first row removed.
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5 Orthogonal polynomials

When Z(t) = o + t and A(t) = 1 + 4t + 6t*, the production matrix of the corresponding
exponential Riordan array [g, f] is tri-diagonal, beginning as follows.

o 1 0 0 0 0
8 a+n 1 0 0 0
0 28+0) a+2y 1 0 0
0 0 3(B+20) a+3y 1 0
0 0 0 4(B+30) a+dy 1
0 0 0 0 5(8+46) a+5y

As a consequence, [g, f]7! is the coefficient array of the family of orthogonal polynomials
P,(t) defined by the three-term recurrence [8, 12, 21|

Po(t) = (t = (a+ (n = 1)) Poca(t) = (n = 1)(B + (n — 2)0) P (1),
with Py(t) = 1 and P;(t) = © — a. These are precisely the Sheffer orthogonal polynomials
1, 13).
Example 12. We take the case of
Aty =1+t+t>,  Z({t)=1+t

We have .

_f O=1Tr+e
Choosing the constant of integration so that f(0) = 0, we get

F(t) = —= tan™! (%\/El) - 3%.

Thus

ft)y = ﬁtan (@—f—ﬁ) L

2 2 6 2
2sin (*/Et>
- \/§c0s (@> — sin (@)
2 tan (‘f’t

V3 — tan (%)

14



We now have

o) =58 -
and hence
ot = gt () fmr ey -
From this we infer that )
g(t) = Vie?

V3 cos (‘[t) sin (‘”)

The function g(t) generates the sequence A049774, which counts the number of permutations
of n elements not containing the consecutive pattern 123.
The sought-for matrix is thus

V3es 2 sin <‘[t>
\/§COS(\N) sm(‘”) \/gcos(ft>—sin (@)

This exponential Riordan array is A182822, which begins

9, f] =

1 0 0 0 00

1 1 0 0 00

2 3 1 0 00

5 12 6 1 0 0 ,

17 53 39 10 1 0
1

70 279 260 95 15

with production matrix that begins

110 0 0 O
121 0 0 0
043 1 00
009 4 1 0
00016 5 1
000 0 25 6

Example 13. We change the previous example slightly by taking

Ay =1+2t+2=(1+1t)?  Z({t)=1+t.
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Then we have

This means that

Now we have

and hence

This implies that

Thus

Thus [g, f]7! is the coefficient array of the Laguerre polynomials [5].
We finish by noting that the simple addition of ¢ to A(t) has allowed us to go from the
relatively complicated exponential Riordan array

e 2sin (@)
V3 cos (@) — sin (@) ’ V3 cos (@) — sin <@>

to the simple exponential Riordan array
1 t
1—t1—t]

6 Appendix: exponential Riordan arrays

NI

The exponential Riordan group [6, 9, 11], is a set of infinite lower-triangular integer matrices,
where each matrix is defined by a pair of generating functions g(t) = go + g1t + got® + - - -
and f(t) = fit + fot®> + -+ where gy # 0 and f; # 0. We usually assume that

go=fi=1

The associated matrix is the matrix whose i-th column has exponential generating function
g(t)f(t)!/i! (the first column being indexed by 0). The matrix corresponding to the pair f, g
is denoted by [g, f]. The group law is given by

9, f]-[h, 1] =[g(ho f),lo f].

16



The identity for this law is I = [1,¢] and the inverse of [g, f] is [g, f] ' = [1/(go f), f] where
f is the compositional inverse of f.

If M is the matrix [g, f], and u = (u,),>0 is an integer sequence with exponential gener-
ating function U (t), then the sequence Mu has exponential generating function g(t)U(f(t)).
Thus the row sums of the array [g, f] have exponential generating function given by g(t)e/®
since the sequence 1,1, 1, ... has exponential generating function e,

As an element of the group of exponential Riordan arrays, the binomial matrix B with
(n, k)-th element (Z) is given by B = [e!,t]. By the above, the exponential generating
function of its row sums is given by ee! = €% as expected (e* is the e.g.f. of 2).

To each exponential Riordan array L = [g, f] is associated [10, 11| a matrix P called its

production matrix, which has bivariate g.f. given by
e*(Z(t) + A(t)2)

where

We have
P=L"'L

where L [16, 22] is the matrix L with its top row removed.
The ordinary Riordan group is described in [18].
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