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Abstract

The m-th Cullen number Cm is a number of the form m2m + 1 and the m-th
Woodall number Wm has the form m2m − 1. In 2003, Luca and Stănică proved that
the largest Fibonacci number in the Cullen sequence is F4 = 3 and that F1 = F2 = 1
are the largest Fibonacci numbers in the Woodall sequence. A generalization of these
sequences is defined by Cm,s = msm+1 and Wm,s = msm−1, for s > 1. In this paper,
we search for Fibonacci numbers belonging to these generalized Cullen and Woodall
sequences.

1 Introduction

A Cullen number is a number of the formm2m+1 (denoted by Cm), wherem is a nonnegative
integer. The first few terms of this sequence are

1, 3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, . . .

which is the OEIS [26] sequence A002064. (This sequence was introduced in 1905 by Father
Cullen [6] and it was mentioned in the well-known book of Guy [9, Section B20].) These
numbers gained great interest in 1976, when Hooley [11] showed that almost all Cullen
numbers are composite. However, despite their being very scarce, it is still conjectured that
there are infinitely many Cullen primes. For instance, C6679881 is a prime number with more
than 2 millions of digits (PrimeGrid, August 2009).
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In a similar way, a Woodall number (also called Cullen number of the second kind) is a
positive integer of the form m2m − 1 (denoted by Wm). The first few terms of this sequence
are

1, 7, 23, 63, 159, 383, 895, 2047, 4607, 10239, . . .

which is the OEIS sequence A003261. In a personal communication to Keller [13, p. 1739],
Suyama asserted that Hooley’s method can be reformulated to show that it works for any
sequence of numbers of the formm2m+a+b where a and b are integers. In particular, Woodall
numbers are almost all composites. However, it is conjectured that the set of Woodall primes
is infinite. We remark that W3752948 is a prime number (PrimeGrid, December 2007).

These numbers can be generalized to the generalized Cullen and Woodall numbers which
are numbers of the form

Cm,s = msm + 1 and Wm,s = msm − 1,

wherem ≥ 1 and s ≥ 2. Clearly, one has that Cm,2 = Cm andWm,2 = Wm, for allm ≥ 1. For
simplicity, we call Cm,s andWm,s an s-Cullen number and an s-Woodall number, respectively.
Also, an s-Cullen or s-Woodal number is said to be trivial if it has the form s+ 1 or s− 1,
respectively, or equivalently when its first index is equal to 1. This family was introduced
by Dubner [7] and is one of the main sources for prime number “hunters”. A prime of the
form Cm,s is C139948,151 an integer with 304949 digits.

Many authors have searched for special properties of Cullen and Woodall numbers and
their generalizations. In regards to these numbers, we refer to [8, 10, 13] for primality results
and [17] for their greatest common divisor. The problem of finding Cullen and Woodall
numbers belonging to other known sequences has attracted much attention in the last two
decades. We cite [18] for pseudoprime Cullen and Woodall numbers, and [1] for Cullen
numbers which are both Riesel and Sierpiński numbers.

In 2003, Luca and Stănică [16, Theorem 3] proved that the largest Fibonacci number in
the Cullen sequence is F4 = 3 = 1 · 21 + 1 and that F1 = F2 = 1 = 1 · 21 − 1 are the largest
Fibonacci numbers in the Woodall sequence. Note that these numbers are trivial Cullen and
Woodall numbers (in the previous sense, i.e., m = 1).

In this paper, we search for Fibonacci numbers among s-Cullen numbers and s-Woodall
numbers, for s > 1. Our main result is the following

Theorem 1. Let s be a positive integer. If (m,n, ℓ) is an integer solution of

Fn = msm + ℓ, (1)

where ℓ ∈ {−1, 1} and m,n > 0, then

m < (6.2 + 1.9P (s)) log(3.1 + P (s)), (2)

and

n <
log((6.2 + 1.9P (s)) log(3.1 + P (s))s(6.2+1.9P (s)) log(3.1+P (s)) + 1)

logα
+ 2,

where P (s) denotes the largest prime factor of s and α = (1 +
√
5)/2.
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In particular, the above theorem ensures that for any given s ≥ 2, there are only finitely
many Fibonacci numbers which are also s-Cullen numbers or s-Woodall numbers and they
are effectively computable.

We should recall that νp(r) denotes the p-adic order (or valuation) of r which is the
exponent of the highest power of a prime p which divides r. Also, the order (or rank) of
appearance of n in the Fibonacci sequence, denoted by z(n), is defined to be the smallest
positive integer k, such that n | Fk (some authors call it order of apparition, or Fibonacci
entry point). We refer the reader to [19, 20, 21, 22, 23] for some results about this function.
Let p be a prime number and set e(p) := νp(Fz(p)). By evaluating e(p), for primes p < 30,
one can see that e(p) = 1. In fact, e(p) = 1 for all primes p < 2.8 · 1016 (PrimeGrid, March
2014). Moreover, the assertion e(p) = 1 for all prime p is equivalent to z(p) 6= z(p2), for all
primes p (this is related to Wall’s question [28]). This question raised interest in 1992, when
Sun and Sun [27] proved (in an equivalent form) that e(p) = 1 for all primes p, implies the
first case of Fermat’s “last theorem”.

In view of the previous discussion, it seems reasonable to consider problems involving
primes with e(p) = 1 (because of their abundance). Our next result deals with this kind of
primes.

Theorem 2. There is no integer solution (m,n, s, ℓ) for Eq. (1) with n > 0, m > 1,
ℓ ∈ {−1, 1} and s > 1 such that e(p) = 1 for all prime factor p of s.

In particular, the only solutions of Eq. (1), with the previous conditions, occur when
m = 1 and have the form

(m,n, s, ℓ) = (1, n, Fn − ℓ, ℓ).

An immediate consequence of Theorem 2 and the fact that e(p) = 1 for all primes
p < 2.8 · 1016 is the following

Corollary 3. There is no Fibonacci number that is also a nontrivial s-Cullen number or
s-Woodall number when the set of prime divisors of s is contained in

{2, 3, 5, 7, 11, . . . , 27999999999999971, 27999999999999991}.

This is the set of the first 759997990476073 prime numbers.

Here is an outline of the paper. In Section 2, we recall some facts which will be useful
in the proofs of our theorems, such as the result concerning the p-adic order of Fn and
factorizations of the form Fn ± 1 = FaLb, with |a − b| ≤ 2. In the last section, we combine
these mentioned tools, the fact that a common divisor of Fa and Lb is small and a lower
bound for Fibonacci and Lucas numbers, to get an inequality of the form m < C logm which
gives an upper bound for m in terms of C which in turn depends on the factorization of s.
With this bound, we reduce the analysis of Eq. (1) for a finite number of cases which can
be settled by using an approach used in a recent paper by Bugeaud, Luca, Mignotte and
Siksek. By using these ingredients (with some more technicalities) we deal with the proofs
of Theorems 1 and 2.
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2 Auxiliary results

We cannot go very far into the lore of Fibonacci numbers without encountering its companion
Lucas sequence (Ln)n≥0 which follows the same recursive pattern as the Fibonacci numbers,
but with initial values L0 = 2 and L1 = 1. First, we recall some classical and helpful facts
which will be essential ingredients to prove Theorems 1 and 2.

Lemma 4. We have

(a) If d = gcd(m,n), then

gcd(Fm, Ln) =

{

Ld, if m/d is even and n/d is odd;

1 or 2, otherwise.

(b) If d = gcd(m,n), then gcd(Fm, Fn) = Fd.

(c) (Binet’s formulae) If α = (1 +
√
5)/2 and β = (1−

√
5)/2, then

Fn =
αn − βn

α− β
and Ln = αn + βn.

(d) αn−2 ≤ Fn ≤ αn−1 and αn−1 < Ln < αn+1 for all n ≥ 1.

(e) z(p) ≤ p+ 1, for all prime numbers p.

Proofs of these assertions can be found in [14]. We refer the reader to [2, 12, 24] for more
details and additional bibliography.

The equation Fn + 1 = y2 and more generally Fn ± 1 = yℓ with integer y and ℓ ≥ 2 have
been solved in [25] and [5], respectively. The solution for the last equation makes appeal
to Fibonacci and Lucas numbers with negative indices which are defined as follows: let
Fn = Fn+2 − Fn+1 and Ln = Ln+2 − Ln+1. Thus, for example, F−1 = 1, F−2 = −1, and so
on. Bugeaud et al. [5, Section 5] used these numbers to give factorizations for Fn ± 1. Let
us sketch their method for the convenience of the reader.

Since the Binet’s formulae remain valid for Fibonacci and Lucas numbers with negative
indices, one can deduce the following result.

Lemma 5. For any integers a, b, we have

FaLb = Fa+b + (−1)bFa−b.

Proof. The identity α = (−β)−1 together with Lemma 4 (c) leads to

FaLb =
αa − βa

α− β
(αb + βb) = Fa+b +

αaβb − βaαb

α− β
= Fa+b + (−1)bFa−b.
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Lemma 5 gives immediate factorizations for Fn ± 1, depending on the class of n modulo
4. For example, if n ≡ 0 (mod 4), then Fn + 1 = F(n/2)−1L(n/2)+1. In general, we have
Fn ± 1 = FaLb, where 2a, 2b ∈ {n± 2, n± 1}.

We remark that the p-adic order of Fibonacci and Lucas numbers has been completely
characterized. For instance, from the main results of Lengyel [15], we extract the following
results.

Lemma 6. For n ≥ 1,

ν2(Fn) =



















0, if n ≡ 1, 2 (mod 3);

1, if n ≡ 3 (mod 6);

3, if n ≡ 6 (mod 12);

ν2(n) + 2, if n ≡ 0 (mod 12),

.

ν5(Fn) = ν5(n), and if p is prime 6= 2 or 5, then

νp(Fn) =

{

νp(n) + e(p), if n ≡ 0 (mod z(p));

0, otherwise,

where e(p) := νp(Fz(p)).

Lemma 7. Let k(p) be the period modulo p of the Fibonacci sequence. For all primes p 6= 5,
we have

ν2(Ln) =











0, if n ≡ 1, 2 (mod 3);

2, if n ≡ 3 (mod 6);

1, if n ≡ 0 (mod 6)

and

νp(Ln) =

{

νp(n) + e(p), if k(p) 6= 4z(p) and n ≡ z(p)
2

(mod z(p));

0, otherwise.

Observe that the relation L2
n = 5F 2

n + 4(−1)n implies that ν5(Ln) = 0, for all n ≥ 1.
Now we are ready to deal with the proofs of our results.

3 The proofs

3.1 The proof of Theorem 1

In order to simplify our presentation, we use the familiar notation [a, b] = {a, a + 1, . . . , b},
for integers a < b.

The smallest value of (6.2+ 1.9P (s)) log(3.1+P (s)) is 16.292 . . . (it happens when s is a
power of 2). Thus, we may suppose m > 16 (however, for our purpose it suffices to consider
m > 4).
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We rewrite Eq. (1) as Fn−ℓ = msm. Since ℓ ∈ {−1, 1}, then Lemma 5 gives FaLb = msm,
where 2a, 2b ∈ {n± 2, n± 1} and |a− b| ∈ {1, 2}. Observe that in this case gcd(Fa, Lb) = 1
or 3 (Lemma 4 (a)).

Case 1. If s 6≡ 0 (mod 3). Since gcd(Fa, Lb) = 1 or 3 and 3 ∤ s, then, without loss of
any generality, we can write s = pa11 · · · pakk , with ai ≥ 0, such that pa11 · · · patt divides Fa and
p
at+1

t+1 · · · pakk divides Lb, where p1, . . . , pk are distinct primes. Thus νpi(Fa) ≥ aim, for i ∈ [1, t]
and νpj(Lb) ≥ ajm, for j ∈ [t+ 1, k], and on the other hand, Lemmas 6 and 7 imply

νpi(Fa) ≤ νpi(a) + (1− δpi,5 + δpi,2)e(pi)

and
νpj(Lb) ≤ max{νpj(b) + e(pj), 2},

where δr,s denotes the usual Kronecker delta. Since 1− δpi,5 + δpi,2 ≤ 2 and m > 2, then

νpi(Fa) ≤ νpi(a) + 2e(pi) and νpj(Lb) ≤ νpj(b) + e(pj).

Thus one obtains that νpi(a) ≥ aim−2e(pi), for all i ∈ [1, t] and νpj(b) ≥ ajm− e(pj), for all

j ∈ [t+1, k]. Since p1, . . . , pk are pairwise coprime, we have a ≥ p
a1m−2e(p1)
1 · · · pakm−2e(pt)

k and

b ≥ p
at+1m−e(pt+1)
t+1 · · · pakm−e(pk)

k . Hence FaLb = msm together with the estimates in Lemma 4
(d) yields

mpma1
1 · · · pmak

k ≥ αa+b−3

> α
∏t

i=1 p
mai−2e(pi)
i +

∏k
i=t+1 p

mai−2e(pi)
i −3,

where we used the inequality mai − e(pi) > mai − 2e(pi). Note that we may suppose that
mai > 2e(pi), for all i ∈ [1, k] (otherwise, we would have m ≤ 2e(pi), for some i and Theorem
1 is proved). Also pi ≥ 2, for all i ∈ [1, k] and then

t
∏

i=1

p
mai−2e(pi)
i +

k
∏

i=t+1

p
mai−2e(pi)
i ≥

k
∑

i=1

p
mai−2e(pi)
i .

Thus we have
4.3mpma1

1 · · · pmak
k > αp

ma1−2e(p1)
1 · · ·αp

mak−2e(pk)

k ,

where we have used that α3 < 4.3. But for m > 4, it holds that 4.3m < 2m ≤ pm1 and so

p
m(a1+1)
1 · · · pmak

k > αp
ma1−2e(p1)
1 · · ·αp

mak−2e(pk)

k .

If the inequality p
mai−2e(pi)
i > m(ai + 1)(log pi)/ logα holds for all i ∈ [1, k], we arrive at the

following absurdity

p
m(a1+1)
1 · · · pmak

k > αp
ma1−2e(p1)
1 · · ·αp

mak−2e(pk)

k > p
m(a1+1)
1 · · · pm(ak+1)

k .
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Thus, there exists i ∈ [1, k], such that p
mai−2e(pi)
i ≤ m(ai+1)(log pi)/ logα. Now, by applying

the log function in the previous inequality together with a straightforward calculation, we
obtain

m

logm
≤ 1

log pi
+

log(ai + 1)

ai logm log pi
+

log
(

log pi
logα

)

ai logm log pi
+

2e(pi)

ai logm
.

Note that ai ≥ 1, log pi ≥ log 2 > 0.69 and logm ≥ log 3 > 1.09. Also, the functions
x 7→ (log(x+1))/x and x 7→ (log(log x/ logα))/(log x) are nonincreasing for x ≥ 1 and x ≥ 4,
respectively, then (log(ai + 1))/ai ≤ log 2 and (log(log pi/ logα))/(log pi) < 0.77. Therefore,

m

logm
< 3.1 + 1.9e(pi).

Since the function x 7→ x/ log x is increasing for x > e, it is a simple matter to prove
that, for A > e,

x

log x
< A implies that x < 2A logA. (3)

A proof for that can be found in [3, p. 74].
By using (3) for x := m and A := 3.1 + 1.9e(pi) > e, we have that

m < (6.2 + 3.8e(pi)) log(3.1 + 1.9e(pi)). (4)

Since pi ≤ P (s), then in order to get the desired inequality in (2), it suffices to prove that
e(p) ≤ p/2 for all primes p. Clearly, the inequality holds for p = 2, so we may suppose p ≥ 3.
Since pe(p) | Fz(p), we have pe(p) ≤ Fz(p). Suppose, towards a contradiction, that e(p) > p/2,
then we use Lemma 4 (d) and (e) to obtain

pp/2 < pe(p) ≤ Fz(p) ≤ αz(p)−1 ≤ αp.

This yields that p < α2 < 2.619 which is impossible, since p ≥ 3. Thus e(p) ≤ p/2 ∗. Thus

m < (6.2 + 1.9P (s)) log(3.1 + P (s)),

where we used that P (s) ≥ pi, for all i ∈ [1, k].
Now, we use Lemma 4 (d) to get αn−2 ≤ Fn ≤ msm+1 and a straightforward calculation

yields

n <
log((6.2 + 1.9P (s)) log(3.1 + P (s))s(6.2+1.9P (s)) log(3.1+P (s)) + 1)

logα
+ 2,

where we used the upper bound for m in terms of s.

Case 2. If s ≡ 0 (mod 3). We can proceed as before unless gcd(Fa, Lb) = 3. In this
case, for some suitable choice of ǫ1, ǫ2 ∈ {0, 1}, with ǫ1 + ǫ2 = 1, we have

Fa

3ǫ1
· Lb

3ǫ2
=

msm

3

and gcd(Fa/3
ǫ1 , Lb/3

ǫ2) = 1. From this point on the proof proceeds along the same lines as
the proof of previous case.

∗In fact, the same proof gives the sharper bound e(p) ≤ (p logα)/ log p. This bound together with the
squeeze theorem gives lim

p→∞

e(p)/p = 0.
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3.2 The proof of Theorem 2

Let (m,n, s, ℓ) be a solution of Eq. (1) satisfying the conditions in the statement of Theorem
2 and suppose that m ≤ 16. Note that Fn = 4s4±1 can be rewritten as Fn = (2s2)2±1, but
Bugeaud et al. [5, Theorem 2] listed all solutions of the Diophantine equation Fn ± 1 = yt.
A quick inspection in their list gives y = 1, 2 or 3, but none of these values have the form
2s2, for s > 1. So, there is no solution for Eq. (1) when m = 4.

So, we wish to solve the equation Fn = msm ± 1, when m ∈ [2, 16]\{4}. As previously
done, let us rewrite it as FaLb = msm. Note that m has at most 2 distinct prime factors and
they belong to {2, 3, 5, 7, 11, 13}. Since gcd(Fa, Lb) = 1 or 3, we can deduce that

Fa = pα1
1 pα2

2 pα3
3 (sr1)

p, (5)

where p1, p2, p3, p are primes less than 17, α1, α2, α3 ∈ {0, 1, 2, 3, 4}, s1 | s and m = pr.
However, in 2007, by combining some deep tools in number theory, Bugeaud, Luca,

Mignotte and Siksek [4, Theorem 4 for m = 1], found (in particular) all solutions of the
Diophantine equation

Ft = 2x1 · 3x2 · · · 541x100yp,

where xi ≥ 0 and p is a prime number. More precisely, they proved that in this case, one
has

t ∈ [1, 16] ∪ [19, 22] ∪ {24, 26, 27, 28, 30, 36, 42, 44}. (6)

In particular, t ≤ 44.
Note that Eq. (5) is a particular case already treated by Theorem 4 of [4]. However,

for convenience of the reader, we describe in a few words how these calculations can be
performed. First, if m = 2, then we have the equation Fa = 2α1 · 3α2s21 and after a quick
inspection in (6), one can see that possible values for a do not give any solution for Eq. (1).
In the case of m ≥ 3, we use that a ≤ 44 together with a ≥ (n− 2)/2 to get n ≤ 90 and so

3s3 − 1 ≤ msm + ℓ = Fn ≤ F90 = 2880067194370816120.

Therefore s ≤ 986492. Now by using Mathematica [29], one deduces that the Diophantine
equation Fn = msm + ℓ, for 2 ≤ n ≤ 90, 3 ≤ m ≤ 16, ℓ ∈ {−1, 1} and 2 ≤ s ≤ 986492, has
no any solution.

Let us suppose that m > 16. We remark that in order to get the inequality (4) in the
proof of Theorem 1, we only assume that m > 4. Thus, we have

m < (6.2 + 3.8e(pi)) log(3.1 + 1.9e(pi)),

where pi is a prime factor of s. However, by hypothesis, all prime factors p of s satisfy
e(p) = 1. In particular, e(pi) = 1 and so we have the following absurdity: 16 < m <
10 log 5 = 16.094 . . . . This completes the proof of the theorem.
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[8] J. M. Grau and A. M. Oller-Marcén, An Õ(log2(N)) time primality test for generalized
Cullen numbers, Math. Comp. 80 (2011), 2315–2323.

[9] R. Guy, Unsolved Problems in Number Theory (2nd ed.), Springer-Verlag, 1994.
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