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Abstract

In this work we provide a new short proof of closed formulas for the n-th derivative
of the cotangent and secant functions using simple operations in the context of the Zeon
algebra. Our main ingredients in the proof comprise a representation of the ordinary
derivative as an integration over the Zeon algebra, a representation of the Stirling
numbers of the second kind as a Berezin integral, and a change of variables formula
under Berezin integration. The approach described here is also suitable to give closed
expressions for higher order derivatives of tangent, cosecant and all the aforementioned
functions hyperbolic analogues.

1 Introduction

In this work, using basic operations on the Zeon algebra [17, 18, 29, 30], we will give a simple
and short proof of the following closed formulas for the n-th derivative of the cotangent and
secant functions [2, 8, 13, 14, 15].

1This work was supported by Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq-
Brazil) under grant 307617/2012-2.
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Theorem 1. Let n ≥ 1 be an integer. Then

dn cot(x)

dxn
= (2i)n

(

cot(x)− i
)

n
∑

k=1

k!

2k
S(n, k)

(

i cot(x)− 1
)k

(1)

and
dn sec(x)

dxn
= sec(x)in

n
∑

j=0

(−1)jj!
n

∑

k=j

(

n

k

)

S(k, j)2k−j
(

i tan(x) + 1
)j
, (2)

where i :=
√
−1,

(

n

k

)

:= n!/
(

k!(n − k)!
)

and S(n, k) denotes the Stirling numbers of the

second kind.

The determination of closed expressions for higher order derivatives of trigonometric
functions is a subject of recurrent interest [2, 3, 7, 8, 10, 11, 12, 13, 14, 15, 19, 20, 21, 22,
23, 24, 25]. As remarked earlier [13, 14, 15, 19], the closed expression in (1) remained an
open problem for several years [3, 7, 21, 22, 23]. The proof given here is worth reporting,
because, besides being an independent short proof of a non-trivial problem [19], a natural
interpretation of the proof from the point of view of the approach addressed here is at our
disposal. Simple operations on the Zeon algebra (see Definitions 2, 3 and Lemma 4 in Section
2) and the representation of the ordinary derivative and the Stirling numbers of the second
kind as a Berezin integral (see Lemma 6 and Section 3) comprise our main ingredients.

Although we will focus on the proof of Theorem 1, our approach is also suitable to prove
(following the steps described in Section 3) closed expressions for the n-th derivative of
tangent (tan), cosecant (csc), and the hyperbolic analogues of all the functions cited.

Before we continue, we establish the basic underlying algebraic setup needed to give the
proof of Theorem 1.

2 Basics of the Zeon algebra and Berezin integration

Let C, R, Z be the complex numbers, real numbers, and integers, respectively.

Definition 2. The Zeon algebra Zn ⊃ C is defined as the associative algebra generated by
the collection {εj}nj=1 (n < ∞) and the scalar 1 ∈ C, such that 1εj = εj = εj1, εjεk = εkεj
∀ j, k and ε2j = 0 ∀ j.

Note that only linear elements in Zn contribute to the calculations.
For {j, k, . . . , l} ⊂ {1, 2, . . . , n} and εjk···l ≡ εjεk · · · εl the most general element with n

generators εj can be written as (with the convention of sum over repeated indices implicit)

φn = a+ ajεj + ajkεjk + · · ·+ a12···nε12···n =
∑

j∈2[n]

ajεj, (3)

with a, aj, ajk, . . ., a12···n ∈ C, 2[n] being the power set of [n] := {1, 2, . . . , n}, and 1 ≤ j <
k < · · · ≤ n. We refer to a as the body of φn and write b(φn) = a and to φn − a as the soul
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such that s(φn) = φn − a. The top-term is given by ε12···n = ε1ε2 · · · εn, since ε12···n contains
all the elements of {εj}nj=1. Note that ε12···nεj = 0 for all j = 1, . . . , n. In Lemma 4 we will

also use the notation φn ≡ φn

(

ε ≡
(

ε1, . . . , εn
))

to indicate directly the dependence of φn

on the generators of the Zeon algebra Zn.
Any sufficiently smooth function f(z) in the complex domain admits an extension to the

context of the Zeon algebra from previous results due to DeWitt [16, Chapter 1] and Rogers
[27, Chapter 4]. More precisely, we have [16, Equation (1.1.6)]

f(φn) :=
n

∑

j=0

f (j)
(

b
(

φn

))

j!
sj
(

φn

)

=
n

∑

j=0

f (j)
(

a
)

j!
sj
(

φn

)

, (4)

where f (j)(a) = djf(z)/dzj|z=a is the j-th ordinary derivative of f(z) at a. Note that
f
(

a+ s
(

φn

))

|s(φn)=0 = f(a) and f
(

a+ s
(

φn

))

∈ Zn, because sn+1(φn) = 0.
Concrete examples of (3), which will be important in the proof of Theorem 1, are the

generalization of the ordinary exponential and the generalized inverse (a ≡ b(φn) 6= 0 for the
generalized inverse) given by

eφn = ea
n

∑

j=0

sj
(

φn

)

j!
and φ−1

n =
1

a

n
∑

j=0

(−1)j
sj(φn)

aj
, (5)

respectively. Particular cases of (5) are given by e1+
√
2ε1−ε3+iε23 = e

(

1 − ε3 +
√
2ε1 + iε23

−
√
2ε13 + i

√
2ε123

)

with n ≥ 3 and (1− ε2 + ε146)
−1 = 1 + ε2 − ε146 − 2ε1246 with n ≥ 6.

Using (5) we can also define more complex functions, which will be needed in this work,
such as cot(φn). The generalization of the cotangent function is defined by

cot(φn) := i
eiφn + e−iφn

eiφn − e−iφn
(6)

with b(φn) ≡ a ∈ R\{kπ : k ∈ Z}. Note that b
(

eiφn − e−iφn
)

= eia − e−ia 6= 0. Therefore,
cot(φn) is well-defined using (5) and, as expected, cot(φn)|s(φn)=0 = cot(a).

Definition 3. The Berezin integral on Zn, denoted by
∫

, is the linear functional
∫

: Zn → C

such that (we use throughout this work the compact notation dµn := dεn · · · dε1)

dεjdεk = dεkdεj,

∫

φn

(

ε̂j
)

dεj = 0 and

∫

φn

(

ε̂j
)

εjdεj = φn

(

ε̂j
)

,

where φn

(

ε̂j
)

means any element of Zn with no dependence on εj. Multiple integrals are
iterated integrals, i.e.,

∫

f(φn)dµn =

∫

· · ·
(
∫
(
∫

f(φn)dεn

)

dεn−1

)

· · · dε1. (7)
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For example, it follows directly from Definition 3 that
∫

dεj = 0,
∫

εjdεj = 1,
∫

εjεkdεk =
εj ∀ j 6= k and

∫

φndµn = a12···n. In other words, the Berezin integral of φn in (3) gives the
coefficient of the top-term ε12···n. For more details on Berezin integration we refer the reader
to the books of Berezin [5, Chapter 1] and [6, Chapter 2].

It is a direct consequence of Definition 3 that a change of variables formula holds for the
Berezin integral. The proof of the change of variables formula is routine and a detailed proof
is presented in, e.g., Rogers [27, Theorem 11.2.3] or DeWitt [16, Chapter 1] in the context
of the Grassmann algebra and can be straightforwardly adapted to Zn. For our purposes it
is sufficient to consider how a simple linear transformation acting on the generators of Zn

affects the Berezin integral. From now on per(A) means the permanent of the matrix A.

Lemma 4. Let ε′j = ajkεk with ajk ∈ C, and let A =
[

ajk
]

be a square matrix of order n
such that det(A) 6= 0 and per(A−1) 6= 0. With the previous assumptions and notation the

following formula holds

∫

φn(ε)dµn =
(

per
(

A−1
))−1

∫

φn(A
−1
ε
′)dµ′

n. (8)

Remark 5. Note that
(

per
(

A−1
))−1

instead of
(

det(A)
)−1

(as it occurs in ordinary calculus)
appears in (8).

The representation of the ordinary derivative as a Berezin integration can be traced
back to previous papers [4, 9]. The proof of the aforementioned representation follows by
calculating the Berezin integral of both sides of (4) with s(φn) ≡ ϕn :=

∑n

j=1 εj and observing

that
∫

ϕk
ndµn = k!δk,n with dµn = dεn · · · dε1. Finally, we obtain the desired result using the

multinomial theorem and Definition 3. For instance, see [4, Lemma 4.1 and Corollary 4.2].

Lemma 6. Let f be a sufficiently smooth function, and let ϕn =
∑n

j=1 εj, where {εj}nj=1 is

the set of generators of the Zeon algebra Zn. For x ∈ C and dµn = dεn · · · dε1, the following

Berezin integral representation of the n-th ordinary derivative of f holds

∫

f(x+ ϕn)dµn = f (n)(x).

3 Proof of Theorem 1

Before we prove Theorem 1 we will need some auxiliary results.
It is a classical result in combinatorics that the following generating function holds for

the Stirling numbers of the second kind [31, Section 1.9]:

GS(x) =
1

k!

(

ex − 1
)k

=
∞
∑

m=k

S(m, k)
xm

m!
.
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Using (4) and Lemma 6 with f = GS we find

S(n, k) =
1

k!

∫

(

eϕn − 1
)k
dµn, (9)

where eϕn is defined by (5). Setting An ≡ eϕn − 1 =
∏n

j=1 e
εj − 1 =

∏n

j=1(1 + εj) − 1

(using (5) and ε2j = 0) in (9) we get S(n, k) =
∫

Ak
ndµn/k!, recovering the representation of

S(n, k) introduced by Schott and Staples [29] and proved there directly from the definition
of S(n, k) in terms of partitions of a finite set. In this way, [29, Definition 1.3] is compatible
with Definition 3. Here we use a slightly different notation from that adopted by Schott and
Staples [29], with a subscript n added to An.

Using the representation of the ordinary derivative in Lemma 6 we are ready to prove
Theorem 1.

Proof of Theorem 1. Setting f(x) = cot(x) in Lemma 6, x ∈ R\{kπ : k ∈ Z}, we have the
representation

cot(n)(x) =

∫

cot(x+ ϕn)dµn = i

∫

ei
(

x+ϕn

)

+ e−i

(

x+ϕn

)

ei
(

x+ϕn

)

− e−i

(

x+ϕn

)dµn

= i

∫

ei
(

x+2ϕn

)

+ e−ix

ei
(

x+2ϕn

)

− e−ix

dµn = i(2i)n
∫

eix+ϕn + e−ix

eix+ϕn − e−ix
dµn. (10)

Equation (10) follows from (6) and the change of variables formula of Lemma 4 with ajk =

ajδjk and aj = 2i ∀ j. Note that
(

per
(

A−1
))−1

=
(

per[δjk/aj]
)−1

= (2i)n. Now we write
eϕn =

(

eϕn − 1
)

+ 1 and use Euler’s formula eix = cos(x) + i sin(x) to obtain

eix+ϕn + e−ix

eix+ϕn − e−ix
=

2 cos(x) + eix
(

eϕn − 1
)

2i sin(x) + eix
(

eϕn − 1
) . (11)

For k = 0 and k > n, we have
∫

(

eϕn − 1
)k
dµn = 0, (12)

since
∫

dµn = 0 (n ≥ 1) and

(

eϕn − 1
)n+1

= ϕn+1
n

(n−1
∑

j=0

ϕj
n

(j + 1)!

)n+1

= 0.

Next, we use (5) with φn ≡ 2i sin(x)+eix
(

eϕn−1
)

, (11), (12), and the linearity of the Berezin
integral to get

∫

eix+ϕn+e−ix

eix+ϕn−e−ixdµn =
∑n

k=0(−1)keikx
∫

(

2 cos(x)+eix
(

eϕn−1
))(

eϕn−1
)k

(

2i sin(x)
)k+1 dµn

=
(

cos(x)
i sin(x)

− 1
)
∑n

k=1(−1)keikx
∫

(

eϕn−1
)k

(

2i sin(x)
)k dµn

= −
(

i cot(x) + 1
)
∑n

k=1
k!
2k

(

i cot(x)− 1
)k 1

k!

∫ (

eϕn − 1
)k
dµn.
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Going back to (10) and using the Berezin integral representation of S(n, k) of (9) we obtain
the desired result, i.e., Equation (1).

Using Lemma 6, x ∈ R\{(2k + 1)π/2 : k ∈ Z}, we get

sec(n)(x) =

∫

sec(x+ ϕn)dµn =

∫

2

ei(x+ϕn) + e−i(x+ϕn)
dµn =

∫

2eiϕn

ei(x+2ϕn) + e−ix
dµn.

Now we write e2iϕn = (e2iϕn − 1) + 1 and use (5) to get

sec(n)(x) = 2
n

∑

l=0

(−1)leilx
∫

eiϕn

(

ei2ϕn − 1
)l

(

2 cos(x)
)l+1

dµn. (13)

Next, we make the expansion eiϕn =
∏n

j=1(1 + iεj) and, as a result, we need to analyze a
general term such as

∑

1≤j1<···<jk≤n

ik
∫

εj1 · · · εjk
(

ei2ϕn − 1
)l
dµn =

(

n

k

)

ik
∫

εn · · · εn−k+1

(

ei2ϕn − 1
)l
dµn

=

(

n

k

)

ik
∫

(

ei2ϕn−k − 1
)l
dµn−k

=

(

n

k

)

(2i)n−kik
∫

(

eϕn−k − 1
)l
dµn−k. (14)

The invariance of ei2ϕn under permutations of εj with j = 1, . . . , n was used to obtain the
first equality. The second equality follows from

εn · · · εn−k+1

(

ei2ϕn − 1
)l
= εn · · · εn−k+1

(

ei2ϕn−k − 1
)l

and (7). Finally, the change of variables formula of Lemma 4 was used to obtain the last
equality. Note that the constraint n − k ≥ l follows from the properties of the Berezin
integral. Using (14) and the representation of (9) in (13) we obtain the desired result, i.e.,
Equation (2).

4 Concluding remarks

We have shown that closed formulas for the n-th derivative of the cotangent and secant
functions in Theorem 1 follow from simple computations in the context of the Zeon algebra.
Our approach is also suitable to give closed formulas for higher order derivatives of other
trigonometric functions, i.e., csc, tan and hyperbolic functions such as coth, sech, csch and
tanh. Our starting point was an extension of a function in the complex domain to the
more general scenario of the Zeon algebra (see (4)). Along the way, the Berezin integral
representation of the Stirling numbers of the second kind played a key role in our analysis.
The aforementioned extension led us to prove Theorem 1 quite naturally using known results
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about the Zeon algebra (Lemma 4 and Lemma 6) and, at the same time, taking advantage
of the computational power of the Zeon algebra, i.e., the fact that only linear terms on the
generators appear in the calculations. The final message is that techniques based on super-
analysis [5, 6], as it occurs in other contexts [1, 9, 26, 28], may provide a useful computational
toolbox in representing combinatorial numbers, such as the Stirling numbers of the second
kind, and in proving combinatorial identities of the type considered here.
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