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Abstract

In this article, we generalize a result of Murty on the non-vanishing of complemen-

tary Bell numbers and irrationality of a p-adic series. This generalization leads to a

sequence of polynomials. We partially answer the question of existence of an integral

zero of those polynomials.

1 Introduction

Murty and Sumner [5] have shown that there is a sequence of integers ak, bk such that the
following equality

∞
∑

n=0

nkn! = ak

∞
∑

n=0

n! + bk (1)

holds in Qp. Alexander [6] has shown that ak vanishes at most twice. In Proposition 1, we
generalize Eq. (1) to show that for non-negative integers k, j there exist two sequences of
integers ak(j), bk(j) such that the following equality

∞
∑

n=0

nk(n+ j)! = ak(j)α + bk(j) (2)

holds in Qp, α being the p-adic sum
∑

∞

n=0 n!.
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It is obvious that we would like to identify non-negative integers k and j such that

ak(j) = 0.

This would mean that the infinite sum on left-hand side of Eq. (2) is just an integer bk(j).
In fact by Proposition 1 it would follow that

a1(0) = 0, a2(1) = 0

and
b1(0) = −1, b2(1) = 2.

Again by Proposition 1, it follows that

∞
∑

n=0

n · n! = −1

and
∞
∑

n=0

n2(n+ 1)! = 2.

On the other hand, Dragovich [2] has shown that if the series

∞
∑

n=0

n!

converges to a rational number in Qp for every prime p, then the series cannot converge to
the same rational number. Furthermore, the fact a2(j) > 0 for every integer j ≥ 2 leads us
to conclude that for a fixed integer j ≥ 2 if the series

∞
∑

n=0

n2(n+ j)!

converges to a rational number in Qp, then it cannot converge to a fixed rational number in
Qp for every prime p. In order to show that ak(j) is non-zero for selected values of k, j we
need certain identities for ak(j). We derive a few of those identities in the next section.

2 Recurrence for the polynomial

We begin this section by considering the series
∑

∞

n=0(n+ j)! for a fixed non-negative integer
j. Observe that

∞
∑

n=0

(n+ j)! =
∞
∑

n=0

n!− (0! + 1! + 2! + · · ·+ (j − 1)!).
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Kurepa’s left factorial, K(m) for a non-negative integer m is given by

K(m) =

{

0, if m = 0;

0! + 1! + 2! + · · ·+ (m− 1)!, if m is a positive integer.

It then follows that

∞
∑

n=0

(n+ j)! = α−K(j).

For reasons which will be clear in a moment, we define

a0(x) = 1

b0(j) = −K(j).

Therefore, it follows that
∞
∑

n=0

(n+ j)! = a0(j)α + b0(j). (3)

We hereby present the main result of this section.

Proposition 1. Let k ≥ 0 and j ≥ 0 be fixed integers. Then there is a polynomial ak(x)
and an integer bk(j) such that

∞
∑

n=0

nk(n+ j)! = ak(j)α + bk(j)

where ak(x) and bk(j) are defined inductively on k as follows:

ak(x) = ak−1(x+ 1)− (x+ 1)ak−1(x), k ≥ 1

bk(j) = bk−1(j + 1)− (j + 1)bk−1(j), k ≥ 1

and

a0(x) = 1

b0(j) = −K(j).

Proof. The proof is by induction on k. The case k = 0 has already been worked out. So we
may assume k ≥ 0 and that the proposition holds for k.

Observe that

∞
∑

n=0

nk(n+ j + 1)! =
∞
∑

n=0

nk+1(n+ j)! + (j + 1)
∞
∑

n=0

nk(n+ j)!.
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Thus using
∑

∞

n=0 n
k(n + j)! = ak(j)α + bk(j) and then comparing the coefficient of α,

term without α, we have

ak(j + 1)− (j + 1)ak(j) = ak+1(j) (4)

and
bk(j + 1)− (j + 1)bk(j) = bk+1(j).

Corollary 2. The series
∑

∞

n=0 n
k(n+ j)! converges to an integer whenever ak(j) vanishes.

Corollary 3.

ak(0) = ak+1(−1).

The next proposition may remind us about a similar kind of property exhibited by
Bernoulli polynomials.

Proposition 4. The derivative of ak(x) is given by

d

dx
ak(x) = −kak−1(x), k ≥ 1.

Proof. The proposition is easily seen to be true for k = 1 and we prove the proposition by
induction on k. We differentiate the expression

aK(x+ 1)− (x+ 1)aK(x) = aK+1(x)

given in Proposition 1 to obtain

a′K(x+ 1)− aK(x)− a′K(x)(x+ 1) = a′K+1(x).

We assume the proposition holds for k = K to obtain

−KaK−1(x+ 1)− aK(x) +KaK−1(x)(x+ 1) = a′K+1(x).

Again we consider Proposition 1 to obtain the desired result.

Proposition 5. If ci,k denotes the coefficients of xi in ak(x) then

−kci,k−1 = (i+ 1)ci+1,k

for non-negative integers i, k and i ≤ k − 1.

Proof. The proof follows by comparing constant term and the coefficient of powers of x in
Proposition 4.
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We note that if k is a prime then for i ≤ k − 2

gcd(i+ 1, k) = 1.

Hence i+ 1 must divide ci,k−1 and k must divide ci+1,k but ak(0) = ak and so we can write

ap(x) ≡ ap − xp (mod p).

We proceed for a few more congruences for ak(x). We start with a proposition that states
ak(x) can be determined using ak and the binomial coefficients.

Proposition 6. The polynomial ak(x) is given by

ak(x) =
k

∑

i=0

kCiai(−1)k−ixk−i.

Proof. Applying induction on Proposition 4, it follows that

di

dxi
ak(x) = (−1)ik(k − 1)(k − 2) · · · (k − i+ 1)ak−i(x).

We write ak(x) as

ak(x) =
k

∑

i=0

bix
i.

Then
di

dxi
ak(x) at x equal to 0 must be bii!. Hence bi must be

(−1)i kCiak−i(0).

Using the fact that ak−i(0) = ak−i the result follows.

Now, we include a table containing first few polynomials ak(x).
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k ak(x)
0 1
1 −x

2 −1 + x2

3 1 + 3x− x3

4 +2− 4x− 6x2 + x4

5 −9− 10x+ 10x2 + 10x3 − x5

6 9 + 54 x+ 30 x2 − 20 x3 − 15 x4 + x6

7 50− 63 x− 189 x2 − 70 x3 + 35 x4 + 21 x5 − x7

8 −267− 400x+ 252x2 + 504 x3+ 140 x4 − 56x5 − 28x6 + x8

9 413 + 2403 x+ 1800 x2 − 756 x3 − 1134 x4 − 252 x5 + 84 x6

+36 x7 − x9

10 2180− 4130 x− 12015 x2 − 6000 x3 + 1890 x4 + 2268 x5+
420 x6 − 120 x7 − 45 x8 + x10

11 −17731− 23980 x+ 22715 x2 + 44055 x3 + 16500 x4 − 4158 x5

−4158x6 − 660x7 + 165x8 + 55x9 − x11

12 50533 + 212772x+ 143880x2 − 90860x3 − 132165x4 − 39600x5

+8316x6 + 7128x7 +990x8 − 220 x9 − 66x10 + x12

13 110176− 656929x− 1383018x2 − 623480x3 + 295295x4 + 343629 x5

+85800x6 − 15444x7 − 11583x8 − 1430x9 + 286x10 + 78x11 − x13

14 −1966797− 1542464x+ 4598503x2 + 6454084x3 + 2182180x4

−826826x5 − 801801x6 − 171600x7 + 27027x8 + 18018x9 + 2002x10

−364x11 − 91x12 + x14

It is easy to see from the table that

a1(0) = 0, a2(1) = 0

and so we would like to identify integers k and j such that ak(j) is zero/nonzero. We partially
identify such k and j in the next section.

3 On non-vanishing of the polynomials

The next proposition helps us in concluding non-vanishing of ak(x) whenever k is a prime.

Proposition 7. If p is a prime then ap(j) does not vanish for every j in Z with j incongruent
to 1 modulo p.

Proof. The proposition can be easily verified for p = 2. For p ≥ 3, Proposition 6 and the
congruence

(

p

i

)

≡ 0 (mod p) for 1 ≤ i ≤ p− 1
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leads us to
ap(j) ≡ ap − jp (mod p).

Murty [5] has shown that
ap ≡ 1 (mod p).

Considering Fermat’s theorem the proposition follows.

Observe that a1(x) = −x > 0 for x < 0. More generally, we have the following proposi-
tion.

Proposition 8. ak(x) > (k − 1)! for k ≥ 1 and x ≤ −k.

Proof. We prove this proposition by induction on k.
Assume ak(x) > (k − 1)! for x ≤ −k holds for some fixed k ≥ 1 then the recurrence

relation

ak+1(x) = ak(x+ 1)− (x+ 1)ak(x)

for ak(x) gives us
ak+1(x) > (k − 1)! + (k − 1)(k − 1)!

for x ≤ −k − 1.
Hence the proposition follows.

With this proposition it is clear that ak(x) does not vanish for k ≥ 1 and x ≤ −k.
To analyse ak(x) further, we start with the following result.

Proposition 9. For a non-negative integer m and an integer j

ap+m(j) ≡ am+1(j) + am(j) (mod p).

Proof. For an integer j, by Proposition 6 it follows that

ap(j) ≡ 1− j (mod p).

Applying the recurrence given in Proposition 1 and the fact

a2(j) + a1(j) = j2 − j − 1,

it follows that
ap+1(j) ≡ a2(j) + a1(j) (mod p).

Again, applying the recurrence in Proposition 1 repeatedly we obtain the desired result.

7



Proposition 10. For a prime p such that

p ≡ 2, 3 (mod 5),

ap+1(j) does not vanish for any integer j.

Proof. By previous proposition

ap+1(j) ≡ j2 − j − 1 (mod p).

However, for a prime p 6= 2, 5 considering

4(j2 − j − 1) = (2j − 1)2 − 5,

it is clear that ap+1(j) is not congruent to 0 modulo p whenever the Legendre symbol

(

5

p

)

= −1.

Now,
(

5
p

)

= −1 if and only if

p ≡ 2, 3 (mod 5).

Hence the proposition follows.

Corollary 11. a8(j), a14(j), a18(j) and a24(j) does not vanish for any integer j.

Proposition 12. For a prime p ≡ 2, 5, 6, 7, 8, 11 (mod 13) and an integer j not divisible by
p, ap+2(j) does not vanish.

Proof. By Proposition 9, for m = 2, one has

ap+2(j) ≡ −j(j2 − j − 3) (mod p).

Hence the proposition follows.

Proposition 13. If ap(1) is not divisible by p2, then ap(x) is an irreducible polynomial over
Q.

Proof. By Proposition 6 we have

ap(x+ 1) ≡ ap − (x+ 1)p (mod p).

Considering the congruence for ap given by Murty [5] again it follows that

ap(x+ 1) ≡ −xp (mod p).

Hence by Eisenstein’s criterion, the result follows.
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As a consequence of Proposition 13 it is clear that if ap(1) is not divisible by p2, then there
does not exist an integer j such that ap(j) = 0. The next proposition gives us a conditional
statement for deciding whether ap(j) is different from 1.

Proposition 14. For an odd prime p, if ap − 1 is not divisible by p2, then ap(x) − 1 is an
irreducible polynomial.

Proof. Following the steps of Proposition 13 we have

ap(x)− 1 ≡ −xp (mod p).

Hence by Eisenstein’s criterion for the irreducibility of a polynomial, the result follows.

Proposition 15. For non-negative integers m, t and an integer j the following congruence
holds

atp+m(j) ≡
t

∑

i=o

tCiam+i(j) (mod p). (5)

Proof. The case t = 0 is obviously true. As our induction hypothesis we assume that the
congruence in Eq. (5) is true for some t ≥ 0 and by Proposition 9 it follows that

a(t+1)p+m(j) ≡ atp+m+1(j) + atp+m(j) (mod p). (6)

Hence by our induction hypothesis

a(t+1)p+m(j) ≡
t

∑

i=o

tCiam+1+i(j) +
t

∑

i=o

tCiam+i(j) (mod p) (7)

≡
t+1
∑

i=o

t+1Ciam+i(j) (mod p). (8)

Hence the result follows by induction.

Proposition 16. For non-negative integers m, i and an integer j the following congruence
holds

api+m(j) ≡ am+1(j) + iam(j) (mod p).

Proof. The case i = 0 is a trivial case and the case i = 1 follows from Proposition 9. So we
assume i ≥ 2.

For 1 ≤ j ≤ pi−1 − 1, considering the congruence

(

pi−1

j

)

≡ 0 (mod p)
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and t = pi−1 in the above proposition it follows that

api+m(j) ≡ am(j) + api−1+m(j) (mod p).

Repeating the previous step r number of times where r ≤ i− 1 we have

api+m(j) ≡ ram(j) + api−r+m(j) (mod p).

Choosing r = i− 1 we have

api+m(j) ≡ (i− 1)am(j) + ap+m(j) (mod p).

The result follows from the above congruence and Proposition 9.

Corollary 17. For a positive integer i,

api ≡ i (mod p).

Proof. Choosing m, j equal to 0 the corollary follows.

Proposition 18. apzp(j) does not vanish for any integer j not divisible by p.

Proof. We consider i = zp for some non-negative integer z in the previous proposition to
obtain

apzp+m(j) ≡ am+1(j) (mod p).

Choosing m = 0, the result follows.

Proposition 19. For a non-negative integer t and an integer j

a3t(j) 6= 0.

Proof. Considering i = 2, p = 2 in Proposition 16, it follows that

a4+m(j) ≡ a1+m(j) (mod 2).

Choosing m = 2, 5, 8, · · · it is easy to see that for a positive integer t

a3t ≡ a3(j) (mod 2).

The fact
a3(j) 6≡ 0 (mod 2)

leads to the desired result.

Proposition 20. For a non-negative integer t

apt ≡ at−1 (mod p).
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Proof. Through Proposition 6 it is easy to see that

ak(−1) =
k

∑

i=0

kCiai

However, by the recurrence 1
ak(−1) = ak−1(0).

By congruence (5)

apt+m(j) ≡
t

∑

i=0

tCiam+i(j) (mod p).

For m = 0, j = 0 above congruence reduces to

apt(0) ≡
t

∑

i=0

tCiai(0) (mod p)

and so
apt(0) ≡ at−1 (mod p).

Proposition 21. For a positive integer i and an integer j if

j 6≡ i (mod p)

then
api(j) 6= 0.

Proof. Choosing m = 0 in Proposition 16 we have

api(j) ≡ a1(j) + ia0(j) (mod p).

The result follows.

The next result gives us a much stronger congruence of ak(j).

Theorem 22. For non-negative integers t,m, a positive integer n, an odd prime p and an
integer j such that

j ≡ 0, 1, 2 (mod p)

the following congruence

a
pp−1
p−1

·pn−1t+m

(j) ≡ am(j) (mod pn)

holds.
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Proof. We consider three cases: j ≡ 0 (mod p), j ≡ 1 (mod p) and j ≡ 2 (mod p)
Case 1. For an integer j ≡ 0 (mod p) and a positive integer r, it is easy to see that

(pp−1
p−1

· pn−1

r

)

(−j)r =

pp−1
p−1

(−j)r · pn−1

r

(pp−1
p−1

· pn−1 − 1

r − 1

)

≡ 0 (mod pn).

For an odd prime p, following a slightly different notation, Alexander [6] has proved that

a
pp−1
p−1

·pn−1t+m

≡ am (mod pn), t,m being non-negative integers.

Hence by Proposition (6), it follows that for an integer j ≡ 0 (mod p)

a pp−1

p−1

(j) ≡ 1 (mod pn). (9)

For simplicity we denote pp−1
p−1

· pn−1 by k.

Case 2. In this case we are expressing ak(j) in terms of ak+1(j− 1) and ak(j− 1) and then
deriving the required congruence.

Replacing j by j − 1, Eq. (4) can be written as

ak(j) = ak+1(j − 1) + jak(j − 1). (10)

For an integer j ≡ 1 (mod p) and k = pp−1
p−1

· pn−1, n ≥ 1

ak+1(j − 1) ≡ ak+1 − (j − 1)(k + 1)ak (mod pn).

Again using the result of Alexander [6], it follows that

ak+1(j − 1) ≡ −(j − 1) ≡ a1(j − 1) (mod pn).

Hence, it follows that

ak(j) ≡ 1 (mod pn) for j ≡ 1 (mod p) (11)

Case 3. In this case, we express ak(j) in term of ak+2(j − 2) and other similar terms.
Replacing k by k + 1 and j by j − 1, Eq. (10) can be written as

ak+1(j − 1) = ak+2(j − 2) + (j − 1)ak+1(j − 2) and (12)

replacing j by j − 1, Eq. (10) can be written as

ak(j − 1) = ak+1(j − 2) + (j − 1)ak(j − 2) (13)

Eliminating ak(j − 1), ak+1(j − 1) from Eqs. (10), (12), and (13), it follows that

ak(j) = ak+2(j − 2) + (j − 1)ak+1(j − 2) + j{ak+1(j − 2) + (j − 1)ak(j − 2)}. (14)
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But for an integer j ≡ 2 (mod p), by Proposition 6 it is easy to see that

ak+2(j − 2) ≡ ak+2 + (k + 2)(2− j)ak+1 +
(k + 2)(k + 1)

2
(j − 2)2ak (mod pn)

Again, considering the result of Alexander it would follow that

ak+2(j − 2) ≡ −1 + (j − 2)2 ≡ a2(j − 2) (mod pn). (15)

Also it is easy to obtain that

ak+1(j − 2) ≡ a0(j − 2) (mod pn). (16)

Applying Eqs. (14),(15),(16) it would follow that for an integer j ≡ 2 (mod p),

ak(j) ≡ 1 (mod pn). (17)

Therefore, using Eq. (4) the result follows.

Corollary 23. For non-negative integers t,m and a positive integer n, the following con-
gruence

a
13·3n−1t+m

(j) ≡ am(j) (mod 3n)

holds.

Proof. The proof follows by considering p = 3 in previous proposition.

Remark: The polynomials ak(x) were previously analyzed by Wannemacker [8]. He has
verified numerically that ak(x) is irreducible over Z for all 6 ≤ k ≤ 200. He conjectured that
ak(x) is irreducible over Z for all k ≥ 6.
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