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Murty and Sumner [5] have shown that there is a sequence of integers ay, by such that the
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Abstract

In this article, we generalize a result of Murty on the non-vanishing of complemen-
tary Bell numbers and irrationality of a p-adic series. This generalization leads to a
sequence of polynomials. We partially answer the question of existence of an integral
zero of those polynomials.

Introduction

following equality

holds in Q,. Alexander [6] has shown that aj vanishes at most twice. In Proposition 1, we
generalize Eq. (1) to show that for non-negative integers k,j there exist two sequences of

o0 o0
ann! = aan! + by,
n=0 n=0

integers ax(j), bx(j) such that the following equality

> nF(n+ ) = ar(j)a + bi(j)

n=0

holds in @Q,, o being the p-adic sum > 7 nl.
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It is obvious that we would like to identify non-negative integers k and j such that

This would mean that the infinite sum on left-hand side of Eq. (2) is just an integer by (7).
In fact by Proposition 1 it would follow that

al(O) = 0,@2(1) =0

and
b1(0) = —1,b9(1) = 2.

Again by Proposition 1, it follows that

o
Zn~n! =1
n=0

and

ZnQ(n + 1) =2
n=0

On the other hand, Dragovich [2] has shown that if the series

oo
>
n=0

converges to a rational number in Q, for every prime p, then the series cannot converge to
the same rational number. Furthermore, the fact as(j) > 0 for every integer j > 2 leads us
to conclude that for a fixed integer j > 2 if the series

ZnQ(n +7)!
n=0

converges to a rational number in @Q,, then it cannot converge to a fixed rational number in
Q, for every prime p. In order to show that ay(j) is non-zero for selected values of k,j we
need certain identities for ax(j). We derive a few of those identities in the next section.

2 Recurrence for the polynomial

We begin this section by considering the series >~ (n+ j)! for a fixed non-negative integer
j. Observe that

D nA)l=> nl— O+ 1142+ +(j —1))).
n=0 n=0



Kurepa’s left factorial, K (m) for a non-negative integer m is given by
0 if m = 0;
K(m)=4" e
O+ 11 +21+---+ (m—1)I, if mis a positive integer.

It then follows that

o0

> (n+j)=a— K(j).

n=0

For reasons which will be clear in a moment, we define

ap(x) =1
bo(j) = =K (j)
Therefore, it follows that
> (4 ) = ao(j)a + bo(). (3)
n=0

We hereby present the main result of this section.

Proposition 1. Let k > 0 and j > 0 be fized integers. Then there is a polynomial ay(z)
and an integer bi(j) such that

Y0t (n+5)! = ax(ia + by(j)
n=0
where ag(z) and by(j) are defined inductively on k as follows:

ag(z) = ag—1(z+ 1) — (z+ Vag_1(z), k> 1

be(7) = bk1(G +1) = (G + Dbra(4), k=1

and

ap(z) =1

Proof. The proof is by induction on k. The case & = 0 has already been worked out. So we
may assume k > 0 and that the proposition holds for k.
Observe that

S o+ i+ D)= a4+ )+ G +1)Y e+ )
n=0 n=0 n=0



Thus using > 2 n*(n + j)! = ar(j)a + bi(j) and then comparing the coefficient of «,
term without o, we have

ar(j +1) = (G + Daw(j) = ar1(j) (4)

and
be(7+1) = (J + Dbi(f) = br+1(7)-
O

Corollary 2. The series Y - n"(n+ j)! converges to an integer whenever ay(j) vanishes.

Corollary 3.
ak(O) - ak+1(—1).

The next proposition may remind us about a similar kind of property exhibited by
Bernoulli polynomials.

Proposition 4. The derivative of ay(x) is given by

d
%ak(x) = —kap_1(x), k>1.

Proof. The proposition is easily seen to be true for £ = 1 and we prove the proposition by
induction on k. We differentiate the expression

ag(z+1) = (4 Dak(z) = arx+1(x)
given in Proposition 1 to obtain
dpe(x +1) = ax(z) = die(2) (2 + 1) = a4 (2).
We assume the proposition holds for £ = K to obtain
—Kag_1(z+1) —ax(z) + Kag_1(x)(z + 1) = a4 (2).

Again we consider Proposition 1 to obtain the desired result.

Proposition 5. If ¢; denotes the coefficients of x* in ax(x) then
_kci,k—l == (’L + 1)Ci+1,k
for non-negative integers i,k and 1 < k — 1.

Proof. The proof follows by comparing constant term and the coefficient of powers of x in
Proposition 4. O



We note that if k£ is a prime then for ¢ < k — 2
ged(i+1,k) = 1.
Hence ¢ + 1 must divide ¢; ;1 and k must divide ¢;41 4 but a;(0) = a; and so we can write
a,(x) = a, — 2 (mod p).

We proceed for a few more congruences for ax(z). We start with a proposition that states
ar(z) can be determined using aj and the binomial coefficients.

Proposition 6. The polynomial ay(x) is given by

k

ag(r) =Y FCiai(—1) 2k

=0
Proof. Applying induction on Proposition 4, it follows that

dciiak(x) = (—1)'k(k = 1)(k=2) - (k =i+ Day(2).

We write ay(x) as

i

d
Th
en -

Z.ak(x) at x equal to 0 must be b;7!. Hence b; must be

(—=1)" *Cjar_i(0).

Using the fact that a;_;(0) = ax_; the result follows.

Now, we include a table containing first few polynomials ax(z).



k ar(z)
0 1
1 -
2 —1 4+ 22
3 1+ 3z — 23
4 +2 — 4z — 622 + 24
5) —9 — 10z + 1022 4+ 1023 — 2°
6 9+54 2+ 30 22 —20 2° — 15 2 +
7 50 — 63 2 — 189 22 — 70 z° + 35 2* + 21 2° — 27
8 —267 — 4002 4 25222 4+ 504 23+ 140 z* — 562° — 282° + 2°
9 413 4 2403 x + 1800 x? — 756 2> — 1134 2* — 252 2° + 84 2
+36 27 — 2°
10 2180 — 4130 x — 12015 22 — 6000 23 + 1890 z* + 2268 x°+
420 28 — 120 27 — 45 28 + 21°
11 —17731 — 23980 = + 22715 z? + 44055 z° + 16500 2* — 4158 2°
—41582°% — 66027 + 1652° + 552 — !
12 50533 + 2127722 + 14388022 — 90860z — 1321652 — 396002°
+83162° + 712827 499028 — 220 2° — 6620 + 212
13 | 110176 — 6569292 — 138301822 — 623480x° + 295295z* + 343629 z°
+858002% — 1544427 — 1158328 — 14302° + 286210 + 78z — 213
14 —1966797 — 15424642 + 459850322 + 645408423 + 21821802
—8268262° — 8018012°% — 1716002" + 2702728 4+ 180182 + 20022'°
—3642 — 91212 4 2™

It is easy to see from the table that

and so we would like to identify integers k and j such that ax(j) is zero/nonzero. We partially

al(O) = 0,@2(1) =0

identify such k£ and j in the next section.

3 On non-vanishing of the polynomials

The next proposition helps us in concluding non-vanishing of ax(z) whenever k is a prime.

Proposition 7. If p is a prime then a,(j) does not vanish for every j in Z with j incongruent

to 1 modulo p.

Proof. The proposition can be easily verified for p = 2. For p > 3, Proposition 6 and the

congruence

(?)EO (mod p) for 1 <i<p—1
i




leads us to
a,(j) = ap, — j* (mod p).
Murty [5] has shown that
a, =1 (mod p).

Considering Fermat’s theorem the proposition follows.
]

Observe that a;(z) = —z > 0 for < 0. More generally, we have the following proposi-
tion.

Proposition 8. ax(z) > (k—1)! for k> 1 and x < —k.

Proof. We prove this proposition by induction on k.
Assume ag(z) > (k — 1)! for z < —k holds for some fixed k& > 1 then the recurrence
relation

api1(z) = ap(z+ 1) — (x 4+ 1)ag(x)

for ai(z) gives us

agi1(z) > (k= 1)+ (k= 1)(k —1)!

for x < —k —1.
Hence the proposition follows.

With this proposition it is clear that ax(z) does not vanish for £ > 1 and = < —k.
To analyse ay(x) further, we start with the following result.

Proposition 9. For a non-negative integer m and an integer j
apim(J) = ame1(j) + am(j)  (mod p).
Proof. For an integer j, by Proposition 6 it follows that
a,(j)=1—7 (mod p).
Applying the recurrence given in Proposition 1 and the fact
as(j) +ai(j) =72 —j — 1,

it follows that
ap+1(j) = az(j) + a1(j) (mod p).

Again, applying the recurrence in Proposition 1 repeatedly we obtain the desired result.
O



Proposition 10. For a prime p such that

apt+1(j) does not vanish for any integer j.
Proof. By previous proposition

ap1(j) =5°=j—1 (mod p),
However, for a prime p # 2,5 considering

AP =i -1 =2 -1 =5,

it is clear that a,1(j) is not congruent to 0 modulo p whenever the Legendre symbol

(-~

p=2,3 (mod5).

Now, (Z) = —1 if and only if

Hence the proposition follows. O]
Corollary 11. ag(j), a14(j), a1s(j) and as4(j) does not vanish for any integer j.

Proposition 12. For a prime p = 2,5,6,7,8,11 (mod 13) and an integer j not divisible by
D, Gpi2(j) does not vanish.

Proof. By Proposition 9, for m = 2, one has
app2(j) = —j(i> —j—3) (mod p).
Hence the proposition follows. O

Proposition 13. If a,(1) is not divisible by p?, then a,(z) is an irreducible polynomial over

Q.
Proof. By Proposition 6 we have

ap(r+1)=a,— (x+1)P (mod p).
Considering the congruence for a, given by Murty [5] again it follows that
ap(x +1) = —2” (mod p).

Hence by Eisenstein’s criterion, the result follows.



As a consequence of Proposition 13 it is clear that if a,(1) is not divisible by p?, then there
does not exist an integer j such that a,(j) = 0. The next proposition gives us a conditional
statement for deciding whether a,(j) is different from 1.

Proposition 14. For an odd prime p, if a, — 1 is not divisible by p*, then ay(x) — 1 is an
wrreducible polynomial.

Proof. Following the steps of Proposition 13 we have
ay(x) —1=—2" (mod p).

Hence by Eisenstein’s criterion for the irreducibility of a polynomial, the result follows.
O

Proposition 15. For non-negative integers m,t and an integer j the following congruence

holds
atp+m Z Ci am—l—z (IﬂOd p)' (5)

Proof. The case t = 0 is obviously true. As our induction hypothesis we assume that the
congruence in Eq. (5) is true for some ¢t > 0 and by Proposition 9 it follows that

a(t+1)p+m(j) = apim+1(J) + aprm () (mod p). (6)

Hence by our induction hypothesis

t
QA(t+1) p+m Z & am-i-l-i-z ) + Z tciam+i(j) (mOd p) (7)
t+1
= MCitpnyi(j)  (mod p). (8)
Hence the result follows by induction. O]

Proposition 16. For non-negative integers m,v and an integer j the following congruence

holds
api-km(j) = aerl(j) + Zam(]) (mOd p)

Proof. The case 1 = 0 is a trivial case and the case ¢ = 1 follows from Proposition 9. So we
assume ¢ > 2.
For 1 < j < p'~! — 1, considering the congruence

(pill) =0 (mod p)

J



and t = p'~! in the above proposition it follows that
apipm(J) = am(f) + api-145,(j)  (mod p).
Repeating the previous step » number of times where » < i — 1 we have
pitm () = Tam(]) + api-rin(j)  (mod p).
Choosing r = i — 1 we have
Apiym () = (1 — 1)an(j) + appm(y)  (mod p).
The result follows from the above congruence and Proposition 9. ]

Corollary 17. For a positive integer i,

a, =1 (mod p).
Proof. Choosing m, j equal to 0 the corollary follows. O
Proposition 18. a,=(j) does not vanish for any integer j not divisible by p.

Proof. We consider ¢ = zp for some non-negative integer z in the previous proposition to
obtain

asz—l-m(j) = apy1(j)  (mod p).
Choosing m = 0, the result follows. m

Proposition 19. For a non-negative integer t and an integer j

az(j) # 0.
Proof. Considering ¢ = 2, p = 2 in Proposition 16, it follows that
1m(J) = ar4m(j)  (mod 2).
Choosing m = 2,5,8,--- it is easy to see that for a positive integer ¢
as = az(j) (mod 2).

The fact
az(j) #0 (mod 2)

leads to the desired result.

Proposition 20. For a non-negative integer t

apt = a;—1  (mod p).

10



Proof. Through Proposition 6 it is easy to see that

k

ak(—l) = Z kCiCLZ'

=0

However, by the recurrence 1
CLk(—l) = ak,l(O).
By congruence (5)

t
Aptm(J) = Z ‘Ciamyi(j)  (mod p).
i=0

For m = 0,7 = 0 above congruence reduces to

t

ap(0) = ZtC’iai(O) (mod p)

1=0

and so

O

Proposition 21. For a positive integer v and an integer j if

j#i (mod p)
then
Api (J) #0.
Proof. Choosing m = 0 in Proposition 16 we have
ayi(j) = a1(j) +iap(j) (mod p).

The result follows.

O

The next result gives us a much stronger congruence of a (7).

Theorem 22. For non-negative integers t,m, a positive integer n, an odd prime p and an
integer j such that
j=0,1,2 (mod p)

the ?OHO’ZUYLTLQ congruence
app—l (]) — @m(]) (IIlOd pn)
L]

. n—lt
p—1 P +m

holds.

11



Proof. We consider three cases: 7 =0 (mod p), 7 =1 (mod p) and j =2 (mod p)
Case 1. For an integer j =0 (mod p) and a positive integer r, it is easy to see that

pP—1

pP—1 n-1 —g)rephTt Pl ol g
<p1 rp )(_j)’“: p_l( 7 <P—1 b >EO (mod p").

r r—1
For an odd prime p, following a slightly different notation, Alexander [6] has proved that

a =a,, (mod p"), t,m being non-negative integers.

D _
pp7 Lopn—1iym

Hence by Proposition (6), it follows that for an integer j = 0 (mod p)

awa(j)=1 (mod p"). (9)

p—1
. . . you— n—1
For simplicity we denote ’;Tl -p" ! by k.
Case 2. In this case we are expressing ax(j) in terms of ag1(j — 1) and ax(j — 1) and then

deriving the required congruence.
Replacing j by j — 1, Eq. (4) can be written as

ar(j) = akr1(j — 1) + jar(j — 1). (10)

For an integer j =1 (mod p) and k = ’j:ll prhn>1

agr1(j—1) =ags1 — (j — 1)(kE+ Dag  (mod p).
Again using the result of Alexander [6], it follows that

(=1 =G -D=aG-1) (modp")
Hence, it follows that
ag(j) =1 (mod p") for j =1 (mod p) (11)
Case 3. In this case, we express a(j) in term of ap4o(j — 2) and other similar terms.

Replacing k by k+ 1 and j by j — 1, Eq. (10) can be written as

ap1(J — 1) = ap2(j — 2) + (J — Daky1(j — 2) and (12)
replacing j by j — 1, Eq. (10) can be written as

ar(j —1) = ar1(j —2) + (U — Dar(j — 2) (13)
Eliminating ag(j — 1), ar41(j — 1) from Egs. (10), (12), and (13), it follows that
ar(j) = arp2(j = 2) + ( = Daraa (4 = 2) + {aen G —2) + (G - Dax(G —2)}. (14)

12



But for an integer j = 2 (mod p), by Proposition 6 it is easy to see that

(k+2)(k+1)
2

apg2(J — 2) = g + (B +2)(2 = J)agr + (j —2)%ax  (mod p")

Again, considering the result of Alexander it would follow that

ria(j —2) = —1+(j —2)" = ax(j —2) (mod p"). (15)
Also it is easy to obtain that
ap1(j —2) = ao(j —2) (mod p"). (16)
Applying Egs. (14),(15),(16) it would follow that for an integer j =2 (mod p),
ar(j) =1 (mod p"). (17)
Therefore, using Eq. (4) the result follows. O

Corollary 23. For non-negative integers t,m and a positive integer n, the following con-
gruence

A an—14pm (J) = an(j) (mod 3")
holds.

Proof. The proof follows by considering p = 3 in previous proposition. O]

Remark: The polynomials ay(x) were previously analyzed by Wannemacker [8]. He has
verified numerically that ay(x) is irreducible over Z for all 6 < k& < 200. He conjectured that
ai(z) is irreducible over Z for all k > 6.
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