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Abstract

Champernowne famously proved that the number

0.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12) · · ·

formed by concatenating all the integers one after another is normal to base 10. We
give a generalization of Champernowne’s construction to various other digit systems,
including generalized Lüroth series with a finite number of digits. For these systems,
our construction simplifies a recent construction given by Madritsch and Mance. Along
the way we give an estimation of the sum of multinomial coefficients above a tilted
hyperplane in Pascal’s simplex, which may be of general interest.

1 Introduction

A number x ∈ [0, 1) with base b expansion x = 0.d1d2d3 · · · is said to be normal to base b if
for any string s = a1a2 · · · ak of base b digits, we have

lim
N→∞

#{0 ≤ n ≤ N | dn+i = ai, 1 ≤ i ≤ k}
N

= b−k.

This may be interpreted as saying that for a normal number x, each digit string appears
with the same relative frequency as every other digit string having the same length.
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While many methods (most notably the Birkhoff ergodic theorem) can be used to show
that almost all real numbers x ∈ [0, 1) are normal to any fixed base b, we know of very few
examples of normal numbers. None of the well-known irrational constants, such as e or π, are
known to be normal to any base, and the only examples we have of normal numbers are those
explicitly constructed to be normal. The first and still most famous of these constructions
is Champernowne’s constant [7], which in base 10 looks like

0.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13) · · · ,
formed by concatenating all the integers in succession. He derived this construction after
proving the base 10 normality of the following number

0.(0)(1)(2)(3)(4)(5)(6)(7)(8)(9)(00)(01)(02)(03) · · · , (1)

formed by concatenating all base 10 digit strings of length 1 in lexicographical order, then
all the digit strings of length 2 in lexicographical order, and so on.

Constructions for base b normal numbers usually fall into one of three methods: the
combinatorial method first introduced by Copeland and Erdős [8], that is perhaps the most
natural generalization of Champernowne’s techniques; the exponential sum method first in-
troduced by Davenport and Erdős [10]; and the method of pseudo-random number generators
used most powerfully by Bailey and Crandall [2, 3].

Recently, mathematical interest has turned to providing constructions of normal numbers
in other systems. In many cases, these proofs draw from techniques used by Champernowne,
Copeland, and Erdős. We shall be concerned here with ergodic fibred systems [5, 17]. Com-
mon examples of fibred systems include base b expansions, continued fraction expansions,
generalized Lüroth series, and β-expansions.

Definition 1. Ergodic fibred systems consist with a transformation T that maps a set Ω to
itself, a measure µ on Ω that is finite and T -invariant, a digit set D ⊂ N, and a countable
collection of disjoint subsets {Id}d∈D such that every point in Ω is in some Id. The map T
is injective on each subset Id and T is ergodic with respect to µ, i.e., for every A ⊂ Ω with
T−1A = A (up to some set of µ-measure 0), either µ(A) = 0 or µ(A) = 1.

The T -expansion of a point x ∈ Ω is then given by x = [d1, d2, d3, . . .] where dn is
defined by T n−1x ∈ Idn .1 For a given fibred system, we say a point x ∈ Ω with expansion
x = [d1, d2, d3, . . .] is T -normal if for any string s = [a1, a2, . . . , ak] of digits from D we have

lim
N→∞

#{0 ≤ n ≤ N − k | dn+i = ai, 1 ≤ i ≤ k}
N

= µ(C[s]). (2)

where C[s] is the cylinder set for the string s, i.e.,

C[s] = {x = [d1, d2, . . .] | di = ai, 1 ≤ i ≤ k}.
We will often denote the measure of a cylinder set s by λs, and if s consists of a single

digit d, then we will often shorthand the measure of the set C[d] by λd.

1Our definitions here, in particular the part where {Id}d∈D form a partition of Ω, are somewhat nonstan-
dard, but they guarantee that these expansions always exist and are unique for a given x.
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We will denote the number of digits in the digit set D by D, and often assume that
D = {1, 2, . . . , D}.

Madritsch and Mance [12] recently provided a normal number construction that works for
many ergodic fibred systems, including those listed above. Their construction works roughly
as follows:

1. Let ǫk be some small positive number shrinking to 0 very quickly as k increases, and
let Sk = {s1, s2, s3, . . . , sn} be a set enumerating all strings of length k whose corre-
sponding cylinder sets have measure at least ǫk.

2. Let Mk be at least 1/ǫk, and construct a string Xk formed by concatenating first
⌊Mkλs1⌋ copies of s1, then ⌊Mkλs2⌋ copies of s2 and so on until ending with ⌊Mkλsn⌋
copies of sn. By construction, we expect that for strings s with length much smaller
than k that s should appear in Xk with close to the correct frequency.

3. We chose a quickly growing sequence lk and construct a digit x by first concatenating
l1 copes of X1, then l2 copies of X2, and so forth. The lk’s are chosen so that lk copies
of Xk are vastly longer than the concatenated copies of X1 up to Xk−1 that precede it.

The strings Xk are constructed to have better and better small-scale normality properties
and then are repeated so many times in the construction of x that their behavior swamps the
behavior of what came before them. This construction was based on earlier work of Altomare
and Mance [1], and Mance [13, 14] independently. The construction also bears resemblence
to an earlier, but less general construction of Martinelli [15], although their results appear
to be independent.

The advantage of the Madritsch-Mance construction is that it is extremely general, work-
ing even for the notoriously difficult β-expansions. The disadvantage of the Madritsch-Mance
construction is its inefficency. For example, if we apply the Madritsch-Mance construction
to create a normal number to base 10, it, like Champernowne’s secondary construction
(1), concatenates every digit string at some point; however, while Champernowne’s sec-
ond construction uses each digit string exactly 1 time, the Madritsch-Mance construction
concatenates a string of length k at least k2k log k times.

A different construction, by Bertrand-Mathis and Volkmann [6], is more efficient than
the Madritsch-Mance construction; however it is more restricted in application. Bertrand-
Mathis and Volkmann treat their dynamical systems symbolically, and their results only
apply to symbolic dynamical systems with maximal entropy (so they would apply to base
10 expansions, but not to any other dynamical systems which are symbolically equivalent to
base 10 expansions, such as generalized Lüroth series with 10 digits, see citation below).

Our goal in this paper is to construct and prove a normal number construction that is
simpler than the Madritsch-Mance construction in that, like Champernowne’s construction,
uses each digit string one time, and that also works for certain systems where the Bertrand-
Mathis and Volkmann construction does not.
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Definition 2. Given an ergodic fibred system, let S = {sn}n∈N be an enumeration of all
possible finite length strings ordered according to the following rule: If λsi > λsj , then
i < j. (We do not care how strings whose cylinder sets have the same measure are ordered
compared to one another. Although, if we want a rigorous definition of S, we may impose a
lexicographical order on these strings.)

Let xS be the point constructed by concatenating the strings si in order.

Note that if we consider a base 10 fibred system and impose a lexicographical order-
ing on those strings in S whose cylinder sets have the same measure, then we in fact get
Champernowne’s second construction (1) precisely. Therefore the construction of xS given in
Definition 2 is a true generalization of Champernowne’s construction to other ergodic fibred
systems.

Our goal in this paper will be to prove the following statement.

Theorem 3. Consider an ergodic fibred system generated by a transformation T such that
D is finite and such that for each string s = [a1, a2, . . . , ak], we have λs ≍ λa1λa2 · · ·λak .

For such a system, the number xS constructed in Definition 2 is T -normal.

The simplest example of such a fibred system are the generalized Lüroth series with
finitely many digits, where we have, in fact, λs = λa1λa2 · · ·λak . A good introduction to
generalized Lüroth series is given in [9, Section 2.3].

We note that for some fibred systems, there may not be a point x ∈ Ω with T -expansion
given by xS. This is due to the possibility of inadmissable strings, strings s such that λs = 0.
β-expansions, in particular, have many inadmissable strings, and in the Madritsch-Mance
construction, they get around this obstruction by including padding, a long, but finite string
of 0’s inserted before each concatenated string si.

However, the condition in Theorem 3 that λs ≍ λa1λa2 · · ·λak guarantees that no inad-
missable strings exist.

We leave as an open question—since we do not yet have enough information to be willing
to state it as a conjecture—whether this construction works for other fibred systems, includ-
ing generalized Lüroth series with an infinite number of digits, continued fraction expansions,
and (with an appropriate padding, à la Madritsch-Mance) β-expansions.

In the proof we shall make use of the following theorem, known alternately as Pjatetskii-
Shapiro normality criterion or the hot spot theorem [4, 16].

Theorem 4 (Pjatetskii-Shapiro). A point x with expansion x = [d1, d2, d3, . . .] is T -normal
if for any string s = [a1, a2, . . . , ak] we have

lim sup
N→∞

#{0 ≤ n ≤ N − k | dn+i = ai, 1 ≤ i ≤ k}
N

≤ c · λs.

for some constant c that is uniform over all strings.
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This normality criterion is quite useful because it means that instead of having to prove
a precise asymptotic for the counting function on the left-hand side of (2), we need only
know its value up to a constant multiple.

We will need another result on a sum of multinomial coefficients, which we present here.
Define the set Tǫ by

Tǫ =
{

x = (x1, . . . , xD) ∈ R
D
∣

∣ λx1

1 λx2

2 · · ·λxD
D ≥ ǫ, xi ≥ 0, 1 ≤ i ≤ D

}

.

We will use m = (m1,m2, . . . ,mD) ∈ Z
D to denote an integer lattice point. Then define

S(ǫ) =
∑

m∈Tǫ

(m1 + m2 + · · · + mD)
(m1 + m2 + · · · + mD)!

m1!m2! · · ·mD!
(3)

and

S#(ǫ) =
∑

m∈Tǫ

(m1 + m2 + · · · + mD)!

m1!m2! · · ·mD!
. (4)

Theorem 5. We have

S(ǫ) ≍ | log ǫ|
ǫ

S#(ǫ) ≍ 1

ǫ

as ǫ tends to 0.

The proof of Theorem 3 will be broken down into the following steps.

1. In Section 3, we shall apply a counting argument to express

#{0 ≤ n ≤ N − k | dn+i = ai, 1 ≤ i ≤ k}/N

in terms of the sums S(ǫ) and S#(ǫ), so that Theorem 3 is a simple consequence of
Theorem 5.

2. In Sections 4 and 5, we will show that the bounds in Theorem 5 follow from bounds
on similar sums, where Tǫ is replaced by a hyperplane segment

Hǫ :=

{

x = (x1, x2, . . . , xD)

∣

∣

∣

∣

∣

D
∑

i=1

xi log λi = log ǫ, xi ≥ 0, 1 ≤ i ≤ D

}

.

3. In Section 6, we analyze the size of the resulting sum over Hǫ by applying the Laplace
method (see [11] for more details).

In this paper we will frequently use the Landau and Vinogradov asymptotic notation,
such as ≪, ≫, ≍, big-O, and little-o, all with the usual meanings.
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2 Some additional results

We need a few general lemmas, which we will present here.

Lemma 6. Let 1 < x < y and suppose that 0 < δ < min{1, x− 1}, then we have, uniformly
in all variables

Γ(y − δ)

Γ(x− δ)
≪ Γ(y)

Γ(x)
≪ Γ(y + δ)

Γ(x + δ)
and x± δ ≍ x.

Proof. The first relation follows immediately from the fact that Γ(x+α) ≍ Γ(x)xα provided
x and x + α are on subset of the positive reals bounded away from 0. The second relation
is trivial.

Lemma 7. Let n be a positive integer, {pi}ni=1 be a set of real numbers, and {qi}ni=1 be a set
of positive numbers. Then we have that

(
∑n

i=1 pi)
2

∑n
i=1 qi

≤
n
∑

i=1

p2i
qi
,

with equality if and only if all the fractions {pi/qi}ni=1 have the same value.

Proof. This follows immediately from the Cauchy–Schwarz inequality:

(

n
∑

i=1

√
qi ·

pi√
qi

)2

≤
(

n
∑

i=1

√
qi

2

)(

n
∑

i=1

(

pi√
qi

)2
)

with equality if and only if there exists a constant C such that C
√
qi = pi/

√
qi.

Lemma 8. For a fixed constant C, we have

∑

−Z2/3≤k≤Z2/3

exp

(

−C

Z
k2

)

=

√

πZ

C
(1 + o(1))

as Z tends to ∞.
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Proof. We apply Euler-Maclaurin summation:

∑

−Z2/3≤k≤Z2/3

exp

(

−C

Z
k2

)

=

∫ Z2/3

−Z2/3

exp

(

−C

Z
x2

)

dx

+ O

(

∫ Z2/3

−Z2/3

C|x|
Z

exp

(

−C

Z
x2

)

dx

)

+ O

(

exp

(

−C

Z
Z4/3

))

=

√

πZ

C
− 2

√

Z

C
·
∫ ∞

Z1/6C1/2

exp
(

−x2
)

dx

+ O

(

∫ Z1/6C1/2

0

|x| exp
(

−x2
)

dx

)

+ O (1)

=

√

πZ

C
(1 + o(1)).

3 Proving Theorem 3 from Theorem 5

By Theorem 4, it suffices to show that for any string s = [a1, a2, . . . , ak], we have

#{0 ≤ n ≤ N − k | dn+i = ai, 1 ≤ i ≤ k}
N

≪ λs,

with implicit constant uniform over all strings.
The counting function

#{0 ≤ n ≤ N − k | dn+i = ai, 1 ≤ i ≤ k}

is very difficult to compute directly, so we will instead estimate its size in terms of other,
simpler functions. The Nth digit of x, dN , must appear in the concatenation of some string
sn, for which we have µ(C[sn]) = ǫ = ǫ(N).

Let A(ǫ; s) denote the number of time the string s occurs within the strings si where
λsi ≥ ǫ. Let A(ǫ) just denote the total number of digits in all the strings si where λsi ≥ ǫ.
We will also use A#(ǫ) to denote the total number of strings si where λsi ≥ ǫ.

With ǫ = ǫ(N), we clearly have

#{0 ≤ n ≤ N − k | dn+i = ai, 1 ≤ i ≤ k} ≤ A(ǫ; s) + kA#(ǫ),

where the latter term comes from a trivial estimate on how many times the string s could
occur starting in one string si and ending another string sj. Moreover, the number N itself
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is at least A(2ǫ), and thus

#{0 ≤ n ≤ N − k | dn+i = ai, 1 ≤ i ≤ k}
N

≤ A(ǫ; s) + kA#(ǫ)

A(2ǫ)
.

Now we wish to bound the A functions, in terms of the S functions (3) and (4). Following
the assumption from Theorem 3, let us assume that for a string s = [a1, a2, . . . , ak] we have

c1λa1λa2 · · ·λak ≤ λs ≤ c2λa1λa2 · · ·λak .

Suppose we want to count the total number of ways one can concatenate the string s
together with md copies of the digit d. If counted with multiplicity, this will correctly count
the total number of times s occurs in strings that have md + ed copies of the digit d, where
ed is the number of times d occurs in s. There are precisely

(1 + m1 + m2 + · · · + mD) · (m1 + m2 + · · · + mD)!

m1!m2! · · ·mD!

such strings (counted with multiplicity), each of which will have a cylinder set of measure in
the interval

[

c1
c2
λs ·

∏

d≤D

λmd
d ,

c2
c1
λs ·

∏

d≤D

λmd
d

]

.

Thus if we let

S(ǫ; s) =
∑

m1,m2,...,mD

λ
m1

1
λ
m2

2
···λ

mD
D ≥ǫ/λs

(1 + m1 + m2 + · · · + mD)
(m1 + m2 + · · · + mD)!

m1!m2! · · ·mD!

= S(ǫ/λs) + S#(ǫ/λs),

then we clearly have

S

(

c2
c1
ǫ; s

)

≤ A(ǫ; s) ≤ S

(

c1
c2
ǫ; s

)

.

By a similar argument we can show

S

(

c2
c1
ǫ

)

≤ A(ǫ) ≤ S

(

c1
c2
ǫ

)

and S#

(

c2
c1
ǫ

)

≤ A#(ǫ) ≤ S#

(

c1
c2
ǫ

)

.

Thus,

#{0 ≤ n ≤ N − k | dn+i = ai, 1 ≤ i ≤ k}
N

≤
S
(

c1
c2λs

ǫ
)

+ (k + 1)S#
(

c1
c2λs

ǫ
)

S
(

2 c2
c1
ǫ
) .
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Now applying Theorem 5 we obtain

#{0 ≤ n ≤ N − k | dn+i = ai, 1 ≤ i ≤ k}
N

≪

(

c1
c2λs

ǫ
)−1 ∣

∣

∣
log
(

c1
c2λs

ǫ
)∣

∣

∣
+ (k + 1)

(

c1
c2λs

ǫ
)−1

(

2 c2
c1
ǫ
)−1 ∣

∣

∣
log
(

2 c2
c1
ǫ
)∣

∣

∣

≪ λs,

and these bounds are uniform in s, which completes the proof of Theorem 3.

4 Proof of Theorem 5

We will consider two new functions H(ǫ) and H#(ǫ) given by the following.
Let Hǫ denote the hyperplane segment

Hǫ :=

{

x = (x1, x2, . . . , xD)

∣

∣

∣

∣

∣

D
∑

i=1

xi log λi = log ǫ, xi ≥ 0, 1 ≤ i ≤ D

}

.

Note that
x1 log λ−1

1 + · · · + xD log λ−1
D ≤ log ǫ−1

is equivalent to λx1

1 · · ·λxD
D ≥ ǫ. We will consider “lattice” points m ∈ Hǫ to be given by

(m1,m2, . . . ,mD) where m2, . . . ,mD ∈ Z, and m1 = M is a real number determined by the
other coordinates via the formula

M =
log (ǫ/ (λm2

2 λm3

3 · · ·λmD
D ))

log λ1

.

We then define H(ǫ) and H#(ǫ) by

H(ǫ) :=
∑

m∈Hǫ

(M + m2 + m3 + · · · + mD)
(M + m2 + m3 + · · · + mD)!

M !m2!m3! · · ·mD!

H#(ǫ) :=
∑

m∈Hǫ

(M + m2 + m3 + · · · + mD)!

M !m2!m3! · · ·mD!

We extend the factorial to real values in the natural way by x! = Γ(x + 1).
While the functions S(ǫ) and S#(ǫ) look at all values lying above the hyperplane Hǫ, the

functions H(ǫ) and H#(ǫ) instead look at values on the hyperplane Hǫ.
Theorem 5 (and therefore Theorem 3) will follow from the following two lemmas, which

we prove in subsequent sections.

Lemma 9. We have

H(ǫ/λ1) ≪ S(ǫ) ≪ H(ǫ · λ2) and H#(ǫ/λ1) ≪ S#(ǫ) ≪ H#(ǫ · λ2).

Lemma 10. We have

H(ǫ) ≍ | log ǫ|
ǫ

H#(ǫ) ≍ 1

ǫ
as ǫ tends to 0.
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5 Proof of Lemma 9

We shall provide bounds for S(ǫ). The method for S#(ǫ) is similar.
First, we place a lower bound on S(ǫ). We have

S(ǫ) =
∑

m2,...,mD

λ
m2

2
···λ

mD
D ≥ǫ









∑

m1

λ
m1

1
λ
m2

2
···λ

mD
D ≥ǫ

(m1 + m2 + · · · + mD)
(m1 + m2 + · · · + mD)!

m1!m2! · · ·mD!









≫
∑

m2,...,mD

λ
m2

2
···λ

mD
D ≥ǫ

(M ′ + m2 + · · · + mD)
(M ′ + m2 + m3 + · · · + mD)!

M ′!m2!m3! · · ·mD!
,

where in each summand M ′ is the largest integer such that

λM ′

1 λm2

2 λm3

2 · · ·λmD
D ≥ ǫ. (5)

Increasing the size of ǫ in the index of summation but not in the definition of M ′ will only
result in removing terms, therefore,

S(ǫ) ≫
∑

m2,...,mD

λ
m2

2
···λ

mD
D ≥ǫ/λ1

(M ′ + m2 + · · · + mD)
(M ′ + m2 + m3 + · · · + mD)!

M ′!m2!m3! · · ·mD!
.

Comparing this series term by term with H(ǫ/λ1) and noting that M ′ for this sum is greater
than and within 1 of the corresponding M in the terms of H(ǫ/λ1), we get that S(ǫ) ≫
H(ǫ/λ1) by Lemma 6.

For the reverse inequality, we have, for fixed m2,m3, . . . ,mD and with M ′ defined as in
(5), that

∑

m1

λ
m1

1
λ
m2

2
···λ

mD
D ≥ǫ

(m1 + m2 + · · · + mD)
(m1 + m2 + · · · + mD)!

m1!m2! · · ·mD!

≤ (M ′ + m2 + m3 + · · · + mD) ·
∑

m1

λ
m1

1
λ
m2

2
···λ

mD
D ≥ǫ

(m1 + m2 + · · · + mD)!

m1!m2! · · ·mD!

= (M ′ + m2 + m3 + · · · + mD) · (m2 + m3 + · · · + mD)!

m2!m3! · · ·mD!
×

∑

m1

λ
m1

1
λ
m2

2
···λ

mD
D ≥ǫ

(

m1 + m2 + m3 + · · · + mD

m2 + m3 + · · · + mD

)
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= (M ′ + m2 + m3 + · · · + mD) · (m2 + m3 + · · · + mD)!

m2!m3! · · ·mD!
×

×
(

M ′ + 1 + m2 + m3 + · · · + mD

1 + m2 + m3 + · · · + mD

)

=
m2 + 1

1 + m2 + m3 + · · · + mD

(M ′ + m2 + m3 + · · · + mD)×
(

M ′ + (m2 + 1) + m3 + m4 + · · · + mD

M,m2 + 1,m3,m4, . . . ,mD

)

≪ (M ′ + (m2 + 1) + m3 + · · · + mD) · (M ′ + (m2 + 1) + m3 + m4 + · · · + mD)!

M !(m2 + 1)!m3!m4! · · ·mD!
.

By summing over all possible m2,m3, . . . ,mD for which the sum is non-empty, we obtain
most of the terms from H(ǫ · λ2), namely all the terms where m2 ≥ 1. So therefore we have
S(ǫ) ≪ H(ǫ · λ2).

6 Proof of Lemma 10

We shall provide the proof for H(ǫ), as the proof for H#(ǫ) is similar.
We want to begin by examining the terms of H(ǫ), using Stirling’s formula. We will use

a somewhat non-standard form as follows:

x! ≍
√

2π(x + 1)
(x

e

)x

. (6)

This clearly follows from the usual Stirling’s formula for large x, since replacing x by x + 1
inside the square root introduces an error of at most 1 + O(x−1); however this function has
the added advantage of being true and uniform for all non-negative x, because the function
on the right is bounded away from 0.

Now consider a given term of H(ǫ),

(M + m2 + m3 + · · · + mD)
(M + m2 + m3 + · · · + mD)!

M !m2!m3! · · ·mD!
, (7)

where, as before,

M =
log (ǫ/ (λm2

2 λm3

3 · · ·λmD
D ))

log λ1

.

Applying Stirling’s formula (6) gives that (7) is of the order of G(m) · exp (F (m)), where

G(m) :=
(M + m2 + · · · + mD + 1)3/2

√

(M + 1)(m2 + 1)(m3 + 1) · · · (mD + 1)

11



and

F (m) := (M + m2 + m3 + · · · + mD) log(M + m2 + m3 + · · · + mD)

−M logM −
D
∑

i=2

mi logmi.

The function G is fairly smooth and, compared to the exponential of F , quite small. There-
fore we shall focus our studies primarily on understanding the properties of F .

6.1 Understanding F

In order to understand the properties of F better, it is helpful to work with an auxiliary
function. Let

F̃ (x) := (x1 + · · · + xD) log(x1 + · · · + xD) −
D
∑

i=1

xi log xi

be a function on Hǫ.
We think of F as being a function of D−1 variables. (The value of m1 = M is determined

by the others.) However, we will think of F̃ as a function on D free variables, and then restrict
our attention to the D − 1-dimensional hyperplane Hǫ.

Proposition 11. Let l = (a1t+b1, a2t+b2, . . . , aDt+bD) be a line parallel to and intersecting
the hyperplane segment Hǫ. Then the second directional derivative of F̃ along this line is
negative.

Proof. Since l is parallel to and intersecting Hǫ, we have that

D
∑

i=1

(ait + bi) log λi = log ǫ.

By isolating the coefficient of t, we obtain

D
∑

i=1

ai log λi = 0.

In particular, since all the log λi are negative, there must exist at least one positive and one
negative ai.

The second derivative of F̃ along this line is given by

d2

dt2
F̃ (a1t + b1, . . . , aDt + bD) =

(

∑D
i=1 ai

)2

∑D
i=1 (ait + bi)

−
D
∑

i=1

a2i
ait + bi

.

12



By Lemma 7, this is never positive, and is zero if and only if ai/(ait+ bi) has the same value
for all i; however, in order to be in the domain of F̃ , all the ait + bi must be positive, and
as we noted earlier, at least one mi must be positive and at least one mi must be negative,
therefore the ai/(ait+ bi) cannot all have the same value. The second derivative is therefore
strictly negative.

This proposition produces two immediate consequences. First, F̃ must have a unique
local maximum on Hǫ: it must have a maximum on Hǫ since it is a continuous function on
a compact set, and there cannot be two local maximums since on the line between them
F̃ would have strictly negative second derivative. Second, on any line passing through this
maximum, the function F̃ is strictly decreasing away from the maximum.

Lemma 12. The function F̃ (x) has its unique maximum on Hǫ at the point p = (λ1L, λ2L,
λ3L, . . . , λDL), where

L =
log(ǫ)

λ1 log(λ1) + λ2 log(λ2) + · · · + λD log(λD)
.

Moreover, F̃ (p) = − log ǫ.

Proof. It is easy to see that p is on the hyperplane segment Hǫ. Since all the directional
second derivatives parallel to Hǫ are negative, it suffices to show that, at the point p, all the
directional first derivatives parallel to Hǫ are 0.

As before, consider a line l(t) = (a1t+ λ1L, . . . , ant+ λDL) passing through the point p.
We again have

D
∑

i=1

ai log λi = 0.

The directional derivative of F at p along this line (in the positive t direction) is given
by

(

D
∑

i=1

ai

)

log

(

D
∑

i=1

λiL

)

−
D
∑

i=1

(ai log(λiL))

=

(

D
∑

i=1

ai

)

log

(

log(ǫ)
∑D

i=1 λi
∑D

i=1 λi log λi

)

−
D
∑

i=1

(

ai log

(

log(ǫ)λi
∑D

j=1 λj log λj

))

=

(

D
∑

i=1

ai

)

log

(

log(ǫ)
∑D

i=1 λi log λi

)

−
D
∑

i=1

(

ai log

(

log(ǫ)
∑D

j=1 λj log λj

))

−
D
∑

i=1

ai log λi

= 0.

13



This shows that p is the maximum. The value F̃ takes at this point is given by
(

D
∑

i=1

λiL

)

log

(

D
∑

i=1

λiL

)

−
D
∑

i=1

λiL log(λiL)

=
log ǫ

∑D
j=1 λj log λj

log

(

log ǫ
∑D

j=1 λj log λj

)

−
D
∑

i=1

λi log ǫ
∑D

j=1 λj log λj

log

(

λi log ǫ
∑D

j=1 λj log λj

)

= −
D
∑

i=1

λi log ǫ
∑D

j=1 λj log λj

log λi

= − log ǫ,

which completes the proof.

We will abuse notation and consider x ∈ Hǫ as being both the vector (x1, x2, . . . , xD)
and the vector (x2, . . . , xD) with implied extra variable

x1 =
1

log λ1

(

log ǫ−
n
∑

i=2

xi log λi

)

.

And likewise we will consider p ∈ Hǫ as being both the vector (λ1L, λ2L, . . . , λDL) and the
vector (λ2L, λ3L, . . . , λDL).

Therefore F can be given by

F (x) =

(

log ǫ

log λ1

+
D
∑

i=2

xi

(

1 − log λi

log λ1

)

)

log

(

log ǫ

log λ1

+
D
∑

i=2

xi

(

1 − log λi

log λ1

)

)

−
(

log ǫ

log λ1

−
D
∑

i=2

xi
log λi

log λ1

)

log

(

log ǫ

log λ1

−
D
∑

i=2

xi
log λi

log λ1

)

−
D
∑

i=2

xi log xi.

Given 2 ≤ i, j ≤ D, we have

∂2

∂xi∂xj

F (x) =

(

1 − log λi

log λ1

)(

1 − log λj

log λ1

)

log ǫ
log λ1

+
∑D

i=2 xi

(

1 − log λi

log λ1

)

−
log λi log λj

(log λ1)2

log ǫ
log λ1

−
∑D

i=2 xi
log λi

log λ1

− δi,j
xi

.

14



So, if we consider the second partial derivatives at p arranged in a matrix, then we see that
there exists a fixed real symmetric matrix A (independent of ǫ), such that

∂2

∂xi∂xj

F (p) =
1

log ǫ
Ai−1,j−1.

Since (log ǫ)−1A is a real symmetric matrix, it can be diagonalized by orthogonal matrices.
In particular, this implies that there exist unit vectors u2,u3, . . . ,uD ∈ R

D−1 and fixed
eigenvalues l2, l3, . . . , lD (again not dependent on ǫ) such that

∂2

∂ui∂uj

F (p) =







lj
log ǫ

, if i = j;

0, otherwise.

By Proposition 11 the second directional derivatives must always be negative, so lj must be
positive.

Consider a ball Bǫ around the point p, given by

Bǫ =

{

p + t2u2 + · · · + tDuD

∣

∣

∣

∣

∣

D
∑

i=2

t2i ≤ | log ǫ|2/3
}

.

Note that for sufficiently small ǫ, we have Bǫ ⊂ Hǫ. We also consider a box Bǫ given by

Bǫ =

{

p + t2e2 + · · · + tDeD

∣

∣

∣

∣

|ti| ≤
1√

D − 1
| log ǫ|2/3

}

,

where ei are the elementary basis vectors. We have that Bǫ ⊂ Bǫ.
If x ∈ Bǫ, then each coordinate xi of x must be on the order of | log x|. Therefore for all

points x ∈ Bǫ, the third partial derivative of F satisfies the following bound:

∂3

∂uj∂uD∂ul

F (x) ≪ | log ǫ|−2.

By Taylor’s Theorem, for any point x = p + t2u2 + · · · + tDuD ∈ Bǫ, we have

F (x) = − log ǫ +
D
∑

i=2

li
log ǫ

t2i + O(1). (8)

Let F+ and F− be given by

F+(x) = − log ǫ +

(

max
2≤i≤D

li
log ǫ

) D
∑

i=2

t2i

and

F−(x) = − log ǫ +

(

min
2≤i≤D

li
log ǫ

) D
∑

i=2

t2i ,
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so that
F−(x) ≤ F (x) + O(1) ≤ F+(x).

These functions are advantageous because
∑D

j=2 t
2
j is invariant under rotation around p. If

x = p + y2e2 + · · · + yDeD is in the box Bǫ, then

F+(x) = − log ǫ +

(

max
2≤i≤n

li
log ǫ

) n
∑

i=2

y2i ,

and likewise for F−.
Moreover, for each point x outside of the box Bǫ, we can draw a line between x and p

and note that by Lemma 12, F increases along the line as we move towards p. Therefore,
the value of F at x 6∈ Bǫ is at most the maximum of F on the boundary of Bǫ, and by (8),
this is at most − log ǫ− C| log ǫ|1/3 for some fixed positive constant C.

6.2 Returning to the full sum

For points x ∈ Bǫ, it is easy to see that G(x) is on the order of | log ǫ|(3−D)/2 and for x 6∈ Bǫ,
the value G(x) could be as large as | log ǫ|. Therefore,

∑

m∈Hǫ\Bǫ

G(m) exp(F (m)) ≪
∑

m∈Hǫ\Bǫ

| log ǫ| exp(− log ǫ− C| log ǫ|1/3)

≪ | log ǫ|D exp(− log ǫ− C| log ǫ|1/3) = o(ǫ−1).

Here we used the fact that mi ≪ | log ǫ|.
Therefore

H(ǫ) ≍
∑

m∈Bǫ

G(m) exp(F (m)) + o(ǫ−1).

Since, as noted above G(m) is on the order of | log ǫ|(3−D)/2 for m ∈ Bǫ, to complete the
proof it suffices to prove that

∑

m∈Bǫ

exp(F (m)) ≍ | log ǫ|D−1

ǫ
.

First we note that
∑

m∈Bǫ

exp(F−(m)) ≪
∑

m∈Bǫ

exp(F (m)) ≪
∑

m∈Bǫ

exp(F+(m)).

There exists a point p′ within distance
√
D − 1/2 from p, such that p′ is an integer lattice

point. For m ∈ Bǫ, let m′ = m+p−p′. Then we have F±(m)−F±(m′) = O(| log ǫ|−1/3) =
O(1). Moreover, each vector m′ can be written as p + k2e2 + · · · + kDeD ∈ Bǫ with each ki
in the interval

I =

[

−c| log ǫ|2/3 −
√
D − 1

2
, c| log ǫ|2/3 +

√
D − 1

2

]

.
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Therefore

∑

m∈Bǫ

exp(F+(m)) ≍
∑

m∈Bǫ

exp(F+(m + p− p′)) (9)

≤ 1

ǫ

D
∏

i=2

(

∑

ki∈I

exp

((

max
2≤i≤D

li
log ǫ

)

k2
i

)

)

, (10)

and likewise

∑

m∈Bǫ

exp(F−(m)) ≫ 1

ǫ

D
∏

i=2

(

∑

ki∈J

exp

((

max
2≤i≤D

li
log ǫ

)

k2
i

)

)

, (11)

where

J =

[

−c| log ǫ|2/3 +

√
D − 1

2
, c| log ǫ|2/3 −

√
D − 1

2

]

.

Applying Lemma 8 to (10) and (11) completes the proof.
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