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Abstract

We study a particular sequence C,, = np, — > .., Pk, n € N, involving prime
numbers by deriving two asymptotic formulae, and we find a new lower bound for
C, that improves the currently known estimates. Furthermore, for the first time we
determine an upper bound for C,,.

1 Introduction

In this paper, we study the sequence (C},),en With

Ch = npn — Y _ Prs

k<n

where p,, is the nth prime number. The motivation for considering this special sequence is
an inequality conjectured by Mandl [7, p. 1] that asserts that

npn
5 Zpk: >0 (1)

k<n
for every n > 9. This inequality originally appeared without proof. In his 1998 thesis [4],

Dusart used the equality

Pn
C’n:/ 7(z)dx,
2
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where m(z) denotes the number of primes < z, and explicit estimates for the prime counting

function m(z) to prove that

"Pn
Cn 2 ==,
2

which is equivalent to Mandl’s inequality (1), for every n > 9. At the same time, Dusart [4]
showed that ) 52
Dy Dn,

(2)

_|_
2logp, 4 log2 Dn

C,>c+

for every n > 109, where ¢ = —47.1. The first goal of this article is to study the asymptotic
behaviour of the sequence C),. This is done in the following two theorems.

Theorem 1 (Corollary 7). For each s € N there is a unique monic polynomial Uy of degree
s with rational coefficients, so that for every m € N

n? 1 & (=1)** U (loglogn) n?(loglog n)™*!
Ch=—11 log1 — = O .
2 <ogn+ eels Ty +821 slog®n * ( log” ™' n )

Theorem 2 (Theorem 10). For each m € N we have

cn:§<k—1)!(1—%) Py +o( i > (3)

- log" pn, log"™ pn

By setting m = 9 in (3), we get

2 2 2 2
D 3p 7p p
n = L+ r— + — +x(n)+ 0O . ) 4

2logp, 4 log2 pn 4 log3 Dn x(n) (log9 pn) 4)

where

_ 4bp? 93p? 945p?2 5715p2 80325p2
8 log*p,  4log’p, 8log®p, 8log'p, 16log®p,’

x(n)

In view of (4), we improve the inequality (2) by finding the following lower bound for
Ch.

Theorem 3 (Proposition 18). If n > 52703656, then

P2 3p2 2

n > + +
2logp, 4log’p, 4log®p,

+ O(n),

where
o) = 43.6p2 90.9p2 927.5p2  5620.5p2  79075.5p?

~ 8logtp, 4log’p, 8log®p, 8log'p,  16log®p,

Finally, for the first time we give an upper bound for C,, by proving the following
theorem.



Theorem 4 (Proposition 21). For every n € N,

2 3p2 T2
C, < T
2logp,  4log®p, 4log’p,

+ Q(n),

where
Q(n) = 46.4p2 95.1p2 962.5p2  5809.5p2  118848p?

- 8log’p,  4log’p, 8log®p, 8log"p, 16log®p,’

2 Two asymptotic formulae for C),

From here on, we use the following notation. Cipolla [3] showed that for each s € N and
each 0 < i < s there exist unique rational numbers a;;, where a,, = 1, such that for every
m e N

m _1 S+1 S ]
P =1 <logn + loglogn — 1 + Z ilo;s - Z a;s(log log n)l> + O(em(n)), (5)
s=1 =0
where n(loglogn)™*!
We set

Further, we recall the following definition from [2].
Definition 5. Let s,7,j,7 € Ny with j > r. We define the integers by, ;, € Z as follows:

o If j =7 =0, then

bsio0 = 1. (6)
e If j > 1, then
bsvivjvj = bS,’L’,j—l,j—l : (_i +j - 1)' (7)
o I[f > 1, then
bsijo =bsij—10-(s+7—1). (8)
o If 5 >r>1, then
bs,i,j,r = bs,i,jfl,r . (S —|—] — 1) + bs,i,jfl,rfl . (—Z +r— 1) (9)

Using (5) and [2, Thm. 2.5], we obtain the first asymptotic formula for C,,.



Theorem 6. For each m € N we have

2

1
C, = n (logn + loglogn — 5 - hm(n))

2
n? ™ 1)s+1 s ~ m—smin{ij} b (logl iy
Z 1 Za“ 2(loglogn)’ — S’Z’J’T(.Og (;g n)
s=1 og n o — 27 log’ n
+ O(ney,(n)).
Proof. From [2, Thm. 2.5] we know that
n? m (_1)5+1 s m—s min{i,j} bg,i,j,r(log 10g n)i—r
Zpk:? g(n)—hm(n)—l—z Toe* Ui S
k<n s=1 &N =0 o og n
+ O(nem(n)), (10)

where g(n) = logn + loglogn — 3/2. Now we multiply (5) by n and substract (10) to get
the result. n

Corollary 7. For each s € N there is a unique monic polynomial U of degree s with rational
coefficients, so that for every m € N

n? 1 &K (—1)* U (loglogn)
Chn=—11 log1 — =
5 (ogn—l— oglogn 2—1—821 slog" n

) + O(nep(n)). (11)

In particular, Uy(x) = v — 3/2 and Uy(x) = 2% — 5o + 15/2.

Proof. Since ass = 1 and bss00 = 1, the formula (11) follows from Theorem 6. Now let
m = 2. Cipolla [3] showed that ag; = —2, a;; = 1, agz = 11, a1 = —6 and agy = 1. Further,
we use formulae (6)—(9) to compute the integers b, ; ;. Then, using Theorem 6, we find the
polynomials U; and Us,. O

To find another asymptotic formula for C,,, we use the identity (see Dusart [4, p. 50] or
Hassani [5, p. 3])

C, = /2 " (@) de, (12)

which allows us to estimate C,, by using explicit bounds for m(x). Further, we use the
following integration rules (see Lemma 8), where the logarithmic integral li(z) is defined for
every real x > 2 by

T dt 1—¢ dt T
li(z) = — =i — —— + 1.04516.
i(@) o logt 50 {/0 logt + /JrE logt} / logt +

Lemma 8. Letr,s € R with s > r > 1.



(i) / TAT ) ().

log =

s 2 2
(ii) / LA o)y —2n(?) — = 4

log? & logs logr’

(ili) Ifn € N, then

/S rdx r? 52 n 2 /s T
= — - x.
. log"™tz  nlog"r nlog"s n ), log"x

(iv) For every m € N with m > 2 we have

/S rde  2m7? /S rdx _mz_12m1k(k—1)!( s2 )
. logmz (m—1)! ), log*x ~ (m—-1)! loghs loghr/)’

Proof. The rules (i) and (ii) are from Dusart [4, Lemma 1.6]. Now, (iii) follows by integration
by parts and (iv) can be shown by induction on m. O

The next proposition plays an important role for the proof of the second asymptotic
formula (Theorem 2, see Introduction) for C,,.

Proposition 9. Let m € N with m > 2. Let as,...,a,, € R and let r,s € R with s > r > 1.

Then
xdx S xdx r?
a = m - tm )
Z k/ log® 1’1/T log? x Z 1k(log S logkr)

k=2

where

, L 2l-ig
== (13)

I=j

Proof. If m = 2, the claim is obviously true. By induction hypothesis, we have

"il / xdx / rdx mzlt ( r? ) N /s xdx
a = m— A, _
). logta L log?x ~ Y \loghs  loghr ) log™ g
By Lemma 8(iii), we get
s S xdx S xdx r? 2,1 [° wdx
Zak =tm-1,1 _Ztmlk 7 + o
log x . log’z log s 1og r m ), log™x
U 115” am+17‘2

mlog™s  mlog™r’



Now we use Lemma 8(iv) and the equality ¢,,_1 1 + 2m g, /m! = tm,1 to obtain

m+1 m—1 _
xdx S xdx om—kq 1 (k—1)! s2 r?
S o [ =t [ e~ (T ) (e )
log" z r logiz = m! log"s log"r

Ay (m —1)! 52 r?
m! log”s log"r )

2m_kam+1 (k — 1)'
m!

Since we have

+ tmfl,k - tm,k
and t,, ;= Qi1 (m — 1)!/(ml!), the proposition is proved. O
Now we are able to prove Theorem 2.

Theorem 10. For each m € N we have

m—1
1 P2 P2 )
C, = k—l!(l——) n +O< )
kz:;( ) 2% ) log" py log™ pn

Proof. A well-known asymptotic formula for the prime counting function m(z) is given by

2 6 —1)!
p(e)= Lo Lo 2oy br om0 gy
logz  logx log”xz log™x log™ x log"™ x

Using (14) and (12), we get

:Z(k—l)!/pn xdx +O(/p" xdx )
P 9 logkx 5 logm+1x

Integration by parts gives

We now apply Proposition 9 to get

Pn d Pn d m—1 2m k -1 2
C, = / ra 1—1)/ SR ( )p”)+o
logx 2 logz = log Dn

P
log" pn )

It follows from Lemma 8(i) and Lemma 8(ii) that

m—1
2m k 1 2 2
C, = (2™ — 1) li(p?) — Z( DL )pn)+o(1 Pr )
o log" p, 0g" Pn



Now we use the well-known asymptotic formula

2 6 —1)!
li(z) = —— + —— o —— 4 — +...+u+0(+ﬂ) (15)
log x

logz  log’z  log’z logx log™ x
to obtain
m— 1 m
—1)l2mF -1 2
p S (1 ) o ()
1 2k log Pn o log® p,, log™ p,
and the theorem is proved. O

Using (14), we get the following corollary.

Corollary 11. For each m € N we have

Zpk—ﬁ(pi)JrO( ZZ?; )

log™ p,,

Proof. From Theorem 10 and the definition of C,, it follows that

Zpk:npn_z(k v, 5 (kD O( L )

k
k<n k=1 IOg Pn k=1 2 1Og Pn IOg Pn

Since n = 7(p,), we obtain

ml ml 2
> e =7(pa)pn Z n O( Pr )
=1

k<n log Pn k=1 Qk log Pn log™ pa

Using (14), we get the asymptotic formula

k 1) 2 p121 - 2 p?z

K
k<n k1210gp

and the corollary is proved. O]

Using (14), (15) and Corollary 11, we obtain the following result concerning the sum of
the first n prime numbers.

Corollary 12. For each m € N we have

S =) +0 ()

= log™ p,,




3 A lower bound for C,

Let m € N with m > 2 and let ao, ..., an, To, Yo € R, so that

T N
m(z) > —l—Z u

log z p log® z
for every x > xy and
— (- Dl
li(x) > —
= log” x

for every > yo. Then, we obtain the following lower bound for C,.
Theorem 13. If n > max{m(zo) + 1, 7(\/y0) + 1}, then
2

C>dO+Z( 1+2tk11))1p,j

og" p,’

where t; ; is defined as in (13) and dy is given by

m—1

o
do = do(m, ag, ..., am,T0) = / m(z) dr — (14 2t,,_11)li(2]) + Z tin—1k
2 k=1

Proof. Since p,, > o, we use (12) and (16) to obtain

o Prordx Prxdx
C, > x d:c—i—/ / .
/2 7T( ) . lngZ’ Z logkx

k=2

Now we apply Lemma 8(i) and Proposition 9 to get

2
o)

log® z¢

2
)

o bn :cd:c s P2
c, > / m(x) dor —li(zd) + li(p?) + tm_171/ tm (
9 v log’z p— log® p,,

Using Lemma 8(ii), we obtain

m—1 2

C > do+ (14 2t11) W(p2) = Yt .
e log" pn

Since p? > yo, we use (17) to conclude

m—1

E—1)! kE—1)! 2

Cn Z d(] + E <( 2k ) + ( ) tmfl,l - tml,k) pkn
k=1

2kt log" p,

and it remains to apply the definition of ¢;;.

1ogk 0

(16)

(17)

)



4 An upper bound for C,

Next, we derive for the first time an upper bound for C,. Let m € N with m > 2 and let
ag, ..., 0y, r1 € R so that

x " apx
Tr) < —+ Y (18)
log x — log"
for every x > x1 and let A\, y; € R so that
m—2
—1)! A
li(z) < S U . Jo Az (19)
o log’ log" " x
for every x > y;. Setting
xr1 m—1 2
x
dy =dy(m,ag, ... an, 1) = / m(z)dr — (1 + 2tp_11) li(z]) + Z b1 ———,
) £t gk o
where t,,,_1 is defined by (13), we obtain the following
Theorem 14. If n > max{m(z1) + 1,7(\/y1) + 1}, then
m—2
(k—1)! P (142t 1) am v;
C, <d+ Z ( —— (14 2tp-1.1) — + — s
k=1 2 log Pn 2 m—1 log Pn

Proof. Since p,, > x1, we use (12) and (18) to get

o Proxdx “ Pr v dx
Cn§/2 W(x)dx—i—/x logx+z_:ak/ —

1

We apply Lemma 8(i) and Proposition 9 to obtain

“ Pn d m—1 2 2
C, < / m(x) dx — li(2?) + li(p?) + tml,l/ raxr - Ztmfl,k < Pn T ) .
’ * k=2

. log?x log"p,  log"z;

Using Lemma 8(ii), we get

m—1 9
Cp, < dy + (14 2ty 1) li(p2) — E lmn—1k—
et log” pn,

Now we use the inequality (19) to obtain

< ok ok—1 log” pn
(1+2tp-11)A P2
( gm-1 mLmI) log™ " pn
and it remains to apply the definition of ¢;;. O]



5 Numerical results

5.1 An explicit lower bound for C,

The goal of this subsection is to improve the inequality (2) in view of (4). In order to do
this, we first give two lemmata concerning explicit estimates for li(x) and 7(z), respectively.

Lemma 15. [f x > 4171, then

T T 2x 6x 24x 120x 720z 5040

li(x) > + + + + :
(z) 2 logz  log*z  log’z log*z log’z loglz log"z log’z

Proof. We denote the right hand side of the above inequality by a(x) and let f(z) = li(z) —
a(x). Then, f(4171) > 0.00019 and f’(x) = 40320/ log” x, and the lemma is proved. O

Lemma 16. If x > 10'%, then

< 2 n x . 2x n 6x . 24x+120x+900x
“logx  log’z log*z  log'z  log’z  logbz  log'z’

li(x)

Proof. Similarly to the proof of Lemma 15. O]
Lemma 17. If x > 1332450001, then

x x 2x 5.65x  23.65x 11825z  709.5x  4966.5x
() > 2 3 1 5 6 7 8 .-
logz  log“xz log’z log*xz log’w log” x log" x log® x
Proof. See [1, Thm. 1.2]. O
Setting

n) — 43.6p2 90.9p2 927.5p2  5620.5p2  79075.5p2
~ 8logtp, 4log’p, 8logp, 8log'p,  16log®p,

we get the following improvement of (2).

Proposition 18. Ifn > 52703656, then

2 3 2 7 2

> +
2logp,  4log’p,  4log’p,

Proof. We choose m =9, as = 1, ag = 2, ay = 5.65, a5 = 23.65, ag = 118.25, a; = 709.5,
ag = 4966.5, ag = 0, o = 1332450001 and y, = 4171. By Lemma 17, we obtain the
inequality (16) for every x > xy and (17) holds for every = > yy by Lemma 15. Substituting
these values in Theorem 13, we get

2 3p2 7
Pn Dn Pr | o(n)

+ +
2logp,  4log’p,  4log®p,

2

Cn > do +

10



for every n > 66773605, where dy = dy(9, 1, 2,5.65,23.65, 118.25, 709.5, 4966.5, 0, ) is given
by

o 753.1 375.0522  186.025x3  183.025x%2  88.6875x3
do = / () dr — li(22) + Yo - Yo - Yo - o
9 3 3log g 3log” xg 3log” xg log™ xq
165.552%  354.75x2 n 709.523
log® z log® z log” o

Since 3 > 109, it follows from Lemma 16 that

o x? 33 Tad 5.45x%2  22.725x2
doZ/ ﬁ(x)dx—Qlo - 20 - 3? T4 - - 5 -
9 ogxrg 4log”xg 4log”xy log” xg log” z

B 115.937522 B 1055.578125x3

log® z log” z '

Using log x¢ > 21.01027, we get

o
do > / m(x) dr — 4.22512933 - 10'° — 0.30164729 - 10'° — 0.03349997 - 10*°
2
— 0.0049656 - 10'% — 0.00098548 - 10'° — 0.0002393 - 10'® — 0.0001037 - 10'¢

o
= / 7(z) dz — 4.56657067 - 10'°. (20)
2
Since Ty = pgsrr3604, We use (12) a computer to obtain
o
/ W(JZ) dr = 066773604 = 45665745738169817.
2

Hence, by (20), we get dy > 3.9-10'% > 0. So we obtain the asserted inequality for every n >
66773605. For every 52703656 < n < 66773604 we check the inequality with a computer. [

5.2 An explicit upper bound for C,
We begin with the following two lemmata.
Lemma 19. If z > 10'®, then

li(z) < x x 2z . 6z 24x 120x 720z 6300z
i(x :
“logz  log’z log*z  log*z  log’z  logbz  log'z  logdz

Proof. Similarly to the proof of Lemma 15. O
Lemma 20. If x > 1, then

x x 2x 6.3bx  24.35x 121.75x  730.5x  6801.4x
m(x) < 2 3 1 5 6 7 8. -
logz  logx log’xz log"z  log’x log” x log" x log® x

11



Proof. See [1, Thm. 1.1]. O

Using these upper bounds, we obtain the following explicit upper bound for C,,, where

Q(n) 46.4p2 95.1p2 962.5p2  5809.5p2  118848p?
n)= .
8log*p, 4log’p, 8log’p, 8log"'p, 16log®p,
Proposition 21. For everyn € N,
2 32 72
Cp<oto Ty P o)
2logp,  4log”p, 4log’p,

Proof. We choose as = 1, a3 = 2, ag = 6.35, a5 = 24.35, ag = 121.75, ay = 730.5, ag =
6801.4, A = 6300, x; = 11 and y; = 10'®. By Lemma 20, we get that the inequality (18)
holds for every & > z; and by Lemma 19, that (19) holds for all y > y;. By substituting
these values in Theorem 14, we get

pi Spi Tp? 0.8751072I

— + Q(n)

+ +
2logp,  4log’p, 4log’p,

C, <d +

— 21
o 16log8 DPn (21)
for every n > 50847535, where d; = dy(9,1,2,6.35,24.35,121.75,730.5,6801.4, 0, ) is given

by

“ 950777 .. . 9476272 94132722 928727x2
dy = m(x)dr — li(xg) 5 3
9 3150 6300logzy  12600log”zy 12600 log” xq
9020572 N 42546122 N 1871632 N 340072
84001og* xy  2100log’xy  420log®zy  35log’ @y

Since li(z?) > 34.59 and logz; > 2.39, we obtain d; < 450. We define
f(x) = ——— — 450.

Since f(6 - 10%) > 109 and f'(x) > 0 for every = > e, we get f(p,) > 0 for every n >
7(6 - 10°) + 1 = 412850. Now we can use (21) to obtain the desired inequality for every
n > 50847535. For every 1 < n < 50847534 a computer makes the rest of work. ]
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