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Abstract

In this paper, we show that there are infinitely many Sierpiński numbers in the se-

quence of triangular numbers, hexagonal numbers, and pentagonal numbers. We also

show that there are infinitely many Riesel numbers in the same sequences. Further-

more, we show that there are infinitely many n-gonal numbers that are simultaneously

Sierpiński and Riesel.
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1 Introduction

Polygonal numbers are those that can be expressed geometrically by an arrangement of
equally spaced points. For example, a positive integer n is a triangular number if n dots
can be arranged in the form of an equilateral triangle. Similarly, n is a square number if n
dots can be arranged in the form of a square. The diagram below represents the first four
hexagonal numbers, which are 1, 6, 15, and 28.

In 1960, Sierpiński [11] showed that there are infinitely many odd positive integers k with
the property that k ·2n+1 is composite for all positive integers n. Such an integer k is called
a Sierpiński number in honor of Sierpiński’s work. Two years later, Selfridge (unpublished)
showed that 78557 is a Sierpiński number. To this day, this is the smallest known Sierpiński
number. As of this writing, there are six candidates smaller than 78557 to consider: 10223,
21181, 22699, 24737, 55459, 67607. See http://www.seventeenorbust.com for the most
up-to-date information.

Riesel numbers are defined in a similar way: an odd positive integer k is Riesel if k·2n−1 is
composite for all positive integers n. These were first investigated by Riesel in 1956 [10]. The
smallest known Riesel number is 509203. As of this writing there are 50 remaining candidates
smaller that 509203 to consider. See http://www.prothsearch.net/rieselprob.html for
the most recent information.

The tool used to construct these numbers is a covering system. A collection of congruences

r1 (mod m1)

r2 (mod m2)

...

rt (mod mt)

is called a covering system of congruences, also called a covering system, if each integer n

satisfies n ≡ ri (mod mi) for some 1 ≤ i ≤ t. This technique was first introduced by Erdős
who later used the idea to show that there are infinitely many odd numbers that are not of
the form 2k + p, where p is a prime [4].
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Previous work has been done to show an intersection between Sierpiński or Riesel numbers
with familiar integer sequences such as the Fibonacci numbers [8, 9] and the Lucas numbers
[1]. Perfect power Sierpiński numbers and Riesel numbers have been studied in depth; in
particular, there are infinitely many Sierpiński numbers of the form kr for any fixed positive
integer r [2, 5]. For Riesel numbers, there are infinitely many k such that kr is Riesel for
values of r with gcd(r, 12) ≤ 3 [2] and for gcd(r, 105) = 1 [7]. In this paper we expand
on these findings by considering the intersection of sequences of polygonal numbers with
Sierpiński and Riesel numbers. As the kth polygonal number for an n-sided polygon is given
by 1

2
(k2(n− 2)− k(n− 4)), which is quadratic in k, we build on techniques for constructing

perfect power Sierpiński numbers and binomial Sierpiński and Riesel numbers (cf. [5, 6]).
Through the use of coverings, we construct polygonal numbers that are also Riesel numbers
and Sierpiński numbers.

Cohen and Selfridge showed that there are infinitely many numbers that are simulta-
neously Sierpiński and Riesel [3]. The smallest Sierpiński-Riesel number that came from
their construction has 26 digits. Several others also produced Sierpiński-Riesel numbers; for
example, Brier (unpublished) produced an example with 41 digits in 1998, and Gallot (un-
published) produced an example with 27 digits in 2000. In 2008, an example with 24 digits
was produced [5]. Recently, a Sierpiński-Riesel number that is 22 digits long was discovered
by Clavier (unpublished). Entry A180247 in the Online Encyclopedia of Integer Sequences
has more information about these results. (See http://oeis.org/A180247.) We use similar
techniques in this paper to find polygonal numbers that are Sierpiński-Riesel.

All computations were performed using the computer algebra system Maple.

2 Triangular and hexagonal numbers

2.1 Triangular-Sierpiński numbers

Let Tk denote the k
th triangular number. That is, Tk =

k(k+1)
2

. Now, consider the implications
in Table 1 below.

n ≡ 1 (mod 2) & k ≡ 1 (mod 3) =⇒ 3 | (Tk · 2
n + 1)

n ≡ 0 (mod 3) & k ≡ 3 (mod 7) =⇒ 7 | (Tk · 2
n + 1)

n ≡ 2 (mod 4) & k ≡ 1 or 3 (mod 5) =⇒ 5 | (Tk · 2
n + 1)

n ≡ 4 (mod 8) & k ≡ 1 or 15 (mod 17) =⇒ 17 | (Tk · 2
n + 1)

n ≡ 8 (mod 12) & k ≡ 4 or 8 (mod 13) =⇒ 13 | (Tk · 2
n + 1)

n ≡ 16 (mod 24) & k ≡ 53 or 187 (mod 241) =⇒ 241 | (Tk · 2
n + 1)

Table 1
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The congruences for n in Table 1 form a covering. In each row, the congruence for k

results in Tk ·2
n+1 being divisible by one of the primes in P = {3, 5, 7, 17, 13, 241} for every

positive integer in the congruence class for n. Assume that our values of k in each row will
be chosen large enough from the congruence for k such that Tk · 2

n + 1 is larger than its
prime divisor in that row. It follows that each of these Tk · 2

n + 1 must be composite for
every positive integer in this congruence class. To ensure that Tk is odd (in order to satisfy
the definition of a Sierpiński number), we also include the congruence k ≡ 1 or 2 (mod 4).
If k = 4ℓ+ 1, we have

Tk =
1

2
k(k + 1) =

1

2
(4ℓ+ 1)(4ℓ+ 2) = (4ℓ+ 1)(2ℓ+ 1),

and if k = 4ℓ+ 2, we have

Tk =
1

2
k(k + 1) =

1

2
(4ℓ+ 2)(4ℓ+ 3) = (2ℓ+ 1)(4ℓ+ 3),

both of which are clearly odd.
Now, we find the intersection of all congruences for k to find a Tk that is a Sierpiński

number. Using the Chinese remainder theorem, we have the following result.

Theorem 1. There are infinitely many Sierpiński numbers in the sequence of triangular

numbers.

The smallest solution to the congruences for k that we find using the Chinese remainder
theorem is 698953, and if k is a natural number with k ≡ 698953 (mod 4 ·3 ·5 ·7 ·13 ·17 ·241),
then Tk is a Sierpiński number. Thus, the smallest Triangular-Sierpiński number from this
construction is 244267997581.

2.2 Triangular-Riesel numbers

Consider the implications in Table 2 below.

n ≡ 0 (mod 2) & k ≡ 1 (mod 3) =⇒ 3 | (Tk · 2
n − 1)

n ≡ 0 (mod 3) & k ≡ 1 or 5 (mod 7) =⇒ 7 | (Tk · 2
n − 1)

n ≡ 1 (mod 4) & k ≡ 2 (mod 5) =⇒ 5 | (Tk · 2
n − 1)

n ≡ 7 (mod 8) & k ≡ 8 (mod 17) =⇒ 17 | (Tk · 2
n − 1)

n ≡ 11 (mod 12) & k ≡ 5 or 7 (mod 13) =⇒ 13 | (Tk · 2
n − 1)

n ≡ 16 (mod 24) & k ≡ 5 or 235 (mod 241) =⇒ 241 | (Tk · 2
n − 1)

Table 2
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We also include k ≡ 1 or 2 (mod 4) to ensure Tk is odd. Once again, the congruences for
n in Table 2 form a covering. In each row, the congruences for k result in Tk · 2

n − 1 being
divisible by one of the primes in the set

P = {3, 7, 5, 17, 13, 241}

for every positive integer n in the same row. As before, assume that our values of k will
be chosen large enough from those in the congruence for k so that Tk is larger than any
of the primes in the set P . It follows that each of these Tk · 2n − 1 must be composite
for every positive integer n. We then find the intersection of all congruences for k to find
a Tk that is a Riesel number. By use of the Chinese remainder theorem, we see that the
smallest residue class that is in the intersection of all congruences for k is k ≡ 888802
(mod 4 · 3 · 7 · 5 · 17 · 13 · 241). Thus, for every such value of k, the triangular number Tk is
Riesel. Hence, we have the following theorem.

Theorem 2. There are infinitely many Riesel numbers in the sequence of triangular numbers.

2.3 Hexagonal-Sierpiński and Riesel numbers

Let Hk denote the kth hexagonal number. That is, Hk = 2k2 − k. Notice that if k = 2ℓ+ 1,
we have Tk = 1

2
k(k + 1) = 2ℓ2 + 3ℓ + 1 = Hℓ+1. That is, when k is odd, the triangular

number Tk is also a hexagonal number. Thus, if we include the congruences from Table 1
and k ≡ 1 (mod 2), then we will have a subset of the triangular numbers that are also
Sierpiński numbers in addition to hexagonal numbers. The smallest such k is 698953, and
all positive integers k congruent to 698953 modulo 4 · 3 · 7 · 5 · 17 · 13 · 241 also give Tk which
are also Sierpiński and hexagonal. Similarly, the positive integers k that are congruent to
2916817 modulo 4 · 3 · 7 · 5 · 17 · 13 · 241 yield Tk which are Riesel and also hexagonal. Thus,
we have the following corollaries.

Corollary 3. There are infinitely many Sierpiński numbers in the sequence of hexagonal

numbers.

Corollary 4. There are infinitely many Riesel numbers in the sequence of hexagonal num-

bers.

2.4 Triangular-Sierpiński-Riesel numbers

Table 3 below gives congruences for k to construct triangular numbers Tk that are simulta-
neously Sierpiński and Riesel.
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n ≡ 1 (mod 2) & k ≡ 1 (mod 3) =⇒ 3 | (Tk · 2
n + 1)

n ≡ 1 (mod 3) & k ≡ 2 or 4 (mod 7) =⇒ 7 | (Tk · 2
n + 1)

n ≡ 5 (mod 9) & k ≡ 23 or 49 (mod 73) =⇒ 73 | (Tk · 2
n + 1)

n ≡ 6 (mod 12) & k ≡ 1 or 11 (mod 13) =⇒ 13 | (Tk · 2
n + 1)

n ≡ 8 (mod 18) & k ≡ 6 or 12 (mod 19) =⇒ 19 | (Tk · 2
n + 1)

n ≡ 2 (mod 36) & k ≡ 15 or 21 (mod 37) =⇒ 37 | (Tk · 2
n + 1)

n ≡ 20 (mod 36) & k ≡ 24 or 84 (mod 109) =⇒ 109 | (Tk · 2
n + 1)

n ≡ 4 (mod 5) & k ≡ 13 or 17 (mod 31) =⇒ 31 | (Tk · 2
n + 1)

n ≡ 6 (mod 10) & k ≡ 3 or 7 (mod 11) =⇒ 11 | (Tk · 2
n + 1)

n ≡ 8 (mod 20) & k ≡ 9 or 31 (mod 41) =⇒ 41 | (Tk · 2
n + 1)

n ≡ 0 (mod 15) & k ≡ 69 or 81 (mod 151) =⇒ 151 | (Tk · 2
n + 1)

n ≡ 12 (mod 60) & k ≡ 20 or 40 (mod 61) =⇒ 61 | (Tk · 2
n + 1)

n ≡ 0 (mod 2) & k ≡ 1 (mod 3) =⇒ 3 | (Tk · 2
n − 1)

n ≡ 1 (mod 4) & k ≡ 2 (mod 5) =⇒ 5 | (Tk · 2
n − 1)

n ≡ 7 (mod 8) & k ≡ 8 (mod 17) =⇒ 17 | (Tk · 2
n − 1)

n ≡ 11 (mod 16) & k ≡ 128 (mod 257) =⇒ 257 | (Tk · 2
n − 1)

n ≡ 11 (mod 24) & k ≡ 90 or 150 (mod 241) =⇒ 241 | (Tk · 2
n − 1)

n ≡ 3 (mod 48) & k ≡ 41 or 55 (mod 97) =⇒ 97 | (Tk · 2
n − 1)

n ≡ 19 (mod 48) & k ≡ 315 or 357 (mod 673) =⇒ 673 | (Tk · 2
n − 1)

Table 3

In Table 3, the congruences for n above the horizontal line form a covering. This part
of the table ensures that the congruences for k yield a Sierpiński number Tk. In addition,
the congruences for n below the horizontal line also form a covering. Thus, the bottom
part of the table ensures that the congruences for k yield a Riesel number. Notice that
the congruences for k above the line and those below the line are compatible; the only
modulus that is repeated in the two parts of the table is 3, and in both instances, we have
k ≡ 1 (mod 3).

Now we include the congruence k ≡ 1 or 2 (mod 4) to ensure that Tk is odd, and then
use the Chinese remainder theorem to combine all of the congruences for k. The smallest
solution to this set of congruences is

k ≡ 92290397124858700233022 (mod 270351155161021554764103899940).

We conclude there are infinitely many Sierpiński-Riesel numbers in the sequence of triangular
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numbers, and the smallest example resulting from this construction is

4258758700732063521204486546872386447899742753.

We state this result as a theorem below.

Theorem 5. There are infinitely many triangular numbers that are simultaneously Sierpiński

numbers and Riesel numbers.

2.5 Hexagonal-Sierpiński-Riesel numbers

If we again include the congruence k ≡ 1 (mod 2) with the congruences in the previous sub-
section, we then have triangular numbers that are also hexagonal, in addition to being both
Sierpiński and Riesel. Combining these congruences using the Chinese remainder theorem,
we find the smallest solution to this set of congruences is

k ≡ 24743267730877977274574137 (mod 270351155161021554764103899940),

then Tk is hexagonal, Sierpiński, and Riesel. We conclude with the following:

Theorem 6. There are infinitely many hexagonal numbers that are simultaneously Sierpiński

and Riesel numbers.

3 Pentagonal numbers

Let Pk denote the kth pentagonal number. We then have Pk = 1
2
k(3k − 1). In this sec-

tion, we show that there are infinitely many pentagonal-Sierpiński numbers, infinitely many
pentagonal-Riesel numbers, and infinitely many pentagonal numbers that are simultaneously
Sierpiński and Riesel.

3.1 Pentagonal-Sierpiński numbers

Consider the implications in Table 4 below.

n ≡ 1 (mod 2) & k ≡ 1 (mod 3) =⇒ 3 | (Pk · 2
n + 1)

n ≡ 2 (mod 3) & k ≡ 2 or 3 (mod 7) =⇒ 7 | (Pk · 2
n + 1)

n ≡ 2 (mod 4) & k ≡ 1 (mod 5) =⇒ 5 | (Pk · 2
n + 1)

n ≡ 4 (mod 8) & k ≡ 1 or 5 (mod 17) =⇒ 17 | (Pk · 2
n + 1)

n ≡ 0 (mod 12) & k ≡ 3 or 6 (mod 13) =⇒ 13 | (Pk · 2
n + 1)

n ≡ 16 (mod 24) & k ≡ 189 or 213 (mod 241) =⇒ 241 | (Pk · 2
n + 1)

Table 4
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Observe that if k ≡ 1 or 2 (mod 4), then Pk is odd. To see this, notice that if k = 4ℓ+1,
we have

Pk =
1

2
k(3k − 1) =

1

2
(4ℓ+ 1)(12ℓ+ 3− 1) = (4ℓ+ 1)(6ℓ+ 1),

and if k = 4ℓ+ 2 we have

Pk =
1

2
k(3k − 1) =

1

2
(4ℓ+ 2)(12ℓ+ 6− 1) = (2ℓ+ 1)(12ℓ+ 5),

which are both clearly odd. Thus, we also include k ≡ 1 or 2 (mod 4) in order to construct
Sierpiński numbers in this sequence.

Once again, the congruences for n in Table 4 form a covering. In each row, the con-
gruences for k and n result in Pk · 2n + 1 being divisible by one of the primes in the set
P = {3, 5, 7, 13, 17, 241}. As before, assume that our values of k will be chosen large enough
from those in the congruence classes for k so that Pk is larger than any of the primes in the
set P . It follows that each of these Pk · 2

n − 1 must be composite for every positive integer
n. We deduce the intersection of all congruences for k to find a Pk that is a Sierpiński
number. Using the Chinese remainder theorem for the congruences for k, we find that there
are infinitely many such k, and the smallest solution that arises out of these congruences is

k ≡ 56101 (mod 22369620).

We conclude the following:

Corollary 7. There are infinitely many pentagonal numbers that are Sierpiński numbers.

3.2 Pentagonal-Riesel numbers

In this section, we demonstrate the following result:

Theorem 8. There are infinitely many pentagonal numbers that are Riesel numbers.

We again prove this statement using a covering of the integers, shown in Table 5 below.

n ≡ 0 (mod 2) & k ≡ 1 (mod 3) =⇒ 3 | (Pk · 2
n − 1)

n ≡ 2 (mod 3) & k ≡ 6 (mod 7) =⇒ 7 | (Pk · 2
n − 1)

n ≡ 3 (mod 4) & k ≡ 3 or 4 (mod 5) =⇒ 5 | (Pk · 2
n − 1)

n ≡ 1 (mod 8) & k ≡ 10 or 13 (mod 17) =⇒ 17 | (Pk · 2
n − 1)

n ≡ 1 (mod 12) & k ≡ 11 (mod 13) =⇒ 13 | (Pk · 2
n − 1)

n ≡ 21 (mod 24) & k ≡ 61 or 100 (mod 241) =⇒ 241 | (Pk · 2
n − 1)

Table 5

8



The congruences for n form a covering of the integers, so we again use the Chinese
remainder theorem to combine the congruences for k (including k ≡ 1 or 2 (mod 4)); the
smallest solution for k that satisfies all of the congruences in the table is

k ≡ 590029 (mod 22369620).

For any of these solutions for k, the expression Pk · 2
n − 1 is divisible by one of the primes

in the set P = {3, 5, 7, 13, 17, 241}.

3.3 Pentagonal-Sierpiński-Riesel

We show now that there are infinitely many pentagonal numbers that are simultaneously
Sierpiński and Riesel. Consider the congruences in Table 6.

In Table 6, the congruences for n above the horizontal line form a covering of the integers.
Thus, the congruences for k above this line yield pentagonal numbers Pk that are Sierpiński.
Similarly, the congruences for n below the horizontal line also form a covering of the integers.
Thus, the corresponding congruences for k in the bottom part of the table yield pentagonal
numbers Pk that are also Riesel. Again, the congruences for k above and below the line are
compatible; the only repeated modulus is 3, and in both parts of the table, we have k ≡ 1
(mod 3). When we also include k ≡ 1 or 2 (mod 4) to make sure that the resulting Pk is
also an odd integer, we find that there are 217 solutions for k modulo

M = 4 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 31 · 37 · 41 · 61 · 73 · 97 · 109 · 151 · 241 · 257 · 673.

The smallest such solution is

k ≡ 180972518141277924651218 (mod M),

yielding the smallest pentagonal-Sierpiński-Riesel from this construction:

49126578483592751315774667185145775331460999677.

Thus, we have shown the following result.

Theorem 9. There are infinitely many pentagonal numbers that are simultaneously Sierpiński

and Riesel numbers.

4 Polygonal numbers

Theorem 10. For infinitely many values of s, there are infinitely many s-gonal numbers

that are Sierpiński numbers.
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n ≡ 0 (mod 2) & k ≡ 2 (mod 3) =⇒ 3 | (Pk · 2
n + 1)

n ≡ 1 (mod 4) & k ≡ 3 or 4 (mod 5) =⇒ 5 | (Pk · 2
n + 1)

n ≡ 1 (mod 10) & k ≡ 2 (mod 11) =⇒ 11 | (Pk · 2
n + 1)

n ≡ 7 (mod 8) & k ≡ 9 or 14 (mod 17) =⇒ 17 | (Pk · 2
n + 1)

n ≡ 3 (mod 18) & k ≡ 15 or 17 (mod 19) =⇒ 19 | (Pk · 2
n + 1)

n ≡ 11 (mod 24) & k ≡ 162 or 240 (mod 241) =⇒ 241 | (Pk · 2
n + 1)

n ≡ 3 (mod 16) & k ≡ 140 or 203 (mod 257) =⇒ 257 | (Pk · 2
n + 1)

n ≡ 43 (mod 48) & k ≡ 32 or 33 (mod 97) =⇒ 97 | (Pk · 2
n + 1)

n ≡ 27 (mod 48) & k ≡ 112 or 337 (mod 673) =⇒ 673 | (Pk · 2
n + 1)

n ≡ 1 (mod 2) & k ≡ 2 (mod 3) =⇒ 3 | (Pk · 2
n − 1)

n ≡ 6 (mod 10) & k ≡ 2 (mod 11) =⇒ 11 | (Pk · 2
n − 1)

n ≡ 4 (mod 12) & k ≡ 4 or 5 (mod 13) =⇒ 13 | (Pk · 2
n − 1)

n ≡ 12 (mod 18) & k ≡ 15 or 17 (mod 19) =⇒ 19 | (Pk · 2
n − 1)

n ≡ 24 (mod 36) & k ≡ 29 or 33 (mod 37) =⇒ 37 | (Pk · 2
n − 1)

n ≡ 10 (mod 20) & k ≡ 19 or 36 (mod 41) =⇒ 41 | (Pk · 2
n − 1)

n ≡ 58 (mod 60) & k ≡ 50 or 52 (mod 61) =⇒ 61 | (Pk · 2
n − 1)

n ≡ 6 (mod 36) & k ≡ 83 or 99 (mod 109) =⇒ 109 | (Pk · 2
n − 1)

n ≡ 2 (mod 3) & k ≡ 6 (mod 7) =⇒ 7 | (Pk · 2
n − 1)

n ≡ 0 (mod 9) & k ≡ 1 or 48 (mod 73) =⇒ 73 | (Pk · 2
n − 1)

n ≡ 4 (mod 5) & k ≡ 22 or 30 (mod 31) =⇒ 31 | (Pk · 2
n − 1)

n ≡ 7 (mod 15) & k ≡ 28 or 73 (mod 151) =⇒ 151 | (Pk · 2
n − 1)

Table 6

Proof. Observe that the kth s-gonal number is given by

Sk = Sk(s) =
1

2
k
(

(s− 2)k − (s− 4)
)

.

Using the congruences in Table 1, if s ≡ 3 (mod p) for each p in the set

P := {3, 5, 7, 13, 17, 241},

then we have
Tk ≡ Sk (mod

∏

p∈P

p)

10



and

n ≡ 1 (mod 2) & k ≡ 1 (mod 3) =⇒ 3 | (Sk · 2
n + 1)

n ≡ 0 (mod 3) & k ≡ 3 (mod 7) =⇒ 7 | (Sk · 2
n + 1)

n ≡ 2 (mod 4) & k ≡ 1 or 3 (mod 5) =⇒ 5 | (Sk · 2
n + 1)

n ≡ 4 (mod 8) & k ≡ 1 or 15 (mod 17) =⇒ 17 | (Sk · 2
n + 1)

n ≡ 8 (mod 12) & k ≡ 4 or 8 (mod 13) =⇒ 13 | (Sk · 2
n + 1)

n ≡ 16 (mod 24) & k ≡ 53 or 187 (mod 241) =⇒ 241 | (Sk · 2
n + 1)

Table 7

This implies that the expression Sk ·2
n+1 is composite for all positive integers n if k lies

in the intersection of the congruence classes listed in the table above since the congruences
for n form a covering of the integers. If we also include the congruence k ≡ 1 (mod 4), then
the resulting polygonal number Sk is odd since k = 4ℓ+ 1 implies

Sk = (4ℓ+ 1)(2ℓs− 4ℓ+ 1).

The conclusion follows.

Using the same technique, we also deduce the following results.

Theorem 11. For infinitely many values of s, there are infinitely many s-gonal numbers

that are Riesel numbers.

Theorem 12. For infinitely many values of s, there are infinitely many s-gonal numbers

that are Sierpiński-Riesel numbers.
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