# A Note on a Theorem of Rotkiewicz 

Gombodorj Bayarmagnai<br>Department of Mathematics<br>National University of Mongolia<br>Baga Toirog<br>Ulaanbaatar 14200<br>Mongolia<br>bayarmagnai@smcs.num.edu.mn


#### Abstract

In 1961, Rotkiewicz presented a generalisation of the well-known fact that $n$ divides $\varphi\left(a^{n}-1\right)$ for all positive integers $n$ and $a>1$, where $\varphi$ is Euler's totient function. In this note, we extend his result to values of cyclotomic polynomials.


## 1 Introduction

Let $\varphi$ be the Euler's totient function. It is well known that $n \mid \varphi\left(a^{n}-1\right)$ for all positive integers $n$ and $a>1$ (see, e.g., Gunderson [2]). Let $\Phi_{k}$ be the homogeneous cyclotomic polynomial of order $k$, and let $d(n)$ be the number of divisors of $n$. Rotkiewicz [3] generalized the above result as follows:

$$
\left.n^{\frac{d(n)}{2}} \right\rvert\, \varphi\left(\Phi_{1}\left(a^{n}, b^{n}\right)\right)
$$

for all positive integers $a, b(a>b)$ and $n$. In this note we extend this result to values of cyclotomic polynomials.

Theorem 1. Let $n$ and $k$ be relatively prime positive integers. For all positive integers $a, b$ $(a>b)$ we have

$$
\left.k^{\alpha} n^{\frac{d(n)}{2}} \right\rvert\, \varphi\left(\Phi_{k}\left(a^{n}, b^{n}\right)\right),
$$

where

$$
\alpha= \begin{cases}d(n)-1, & \text { if } a=2 b \text { and } k e=6 \text { for some } e \mid n ; \\ d(n), & \text { otherwise } .\end{cases}
$$

Note that the case of $k=2$ was discussed in Rotkiewicz [3, Theorem 2].
Fix positive integers $a, b(a>b)$ and $k$, and define a sequence $\left(V_{n}^{(k)}\right)_{n \geq 1}$ by setting $V_{n}^{(k)}=\Phi_{k}\left(a^{n}, b^{n}\right)$. Since $\Phi_{k}$ is homogeneous, we may assume without loss of generality that $a$ and $b$ are relatively prime.

For convenience, we recall the notion of arithmetic primitive factor introduced in BirkhoffVandiver [1] in the following way. A prime of $V_{n}^{(k)}$ is called a primitive prime factor of the term if it does not divide any $V_{m}^{(k)}$ for proper divisors $m$ of $n$. We consider the arithmetic primitive factor of $V_{n}^{(k)}$ given by the product

$$
P_{n}^{(k)}=\prod_{p} p^{v_{p}\left(V_{n}^{(k)}\right)},
$$

where $p$ runs through all primitive prime factors of the term. Here, $v_{p}(n)$ denotes the exponent of $p$ in the decomposition of $n$. If $n$ and $k$ are relatively prime then it follows from the identity

$$
\begin{equation*}
\Phi_{k}\left(a^{n}, b^{n}\right)=\prod_{e \mid n} \Phi_{k e}(a, b) \tag{1}
\end{equation*}
$$

that $P_{n}^{(k)}$ divides $\Phi_{k n}(a, b)$.

## 2 Proof

Let $n$ be an integer relatively prime to a prime $p$, and let $\operatorname{ord}_{p}(n)$ be the order of $n$ modulo $p$. We now state the following useful lemma.

Lemma 2. Let p be a prime not dividing b. Then
(a) $v_{p}\left(\Phi_{k}(a, b)\right) \neq 0$ if and only if $k=p^{v_{p}(k)} \operatorname{ord}_{p}\left(a b^{-1}\right)$,
(b) if $v_{p}(k) \neq 0$ then $v_{p}\left(\Phi_{k}(a, b)\right) \leq 1$ (except $\left.k=p=2\right)$.

Proof. See Roitman [4].
Proof of Theorem. Let $d$ be a divisor of $n$. The identity (1) implies that every primitive prime of $V_{k d}^{(1)}$ is a factor of $P_{d}^{(k)}$. Hence, by Zsigmondy's theorem, $P_{d}^{(k)} \neq 1$ if

$$
\begin{equation*}
(k d, a, b) \neq(6,2,1) . \tag{2}
\end{equation*}
$$

Under the condition (2), we claim that $P_{d}^{(k)}$ has a prime factor not dividing $k d$. Suppose that $p$ is a prime of $k d$ dividing $\Phi_{k d}(a, b)$. Then Lemma 2(a) implies that $k d / p^{v_{p}(k d)}<p$ and so $p$ is the largest prime of $k d$. Thus, by Lemma $2(b), p$ is the greatest common divisor of $k d$ and $\Phi_{k d}(a, b)$. Hence, if the claim is not true, then it follows that $P_{d}^{(k)}$ equals the largest prime
of $k d$. Moreover, it also equals the primitive factor $P_{k d}^{(1)}$. But this contradicts to the fact that $P_{n}^{(1)}$ is prime to $p$ if the largest prime $p$ of $n$ is a factor of $V_{n}^{(1)}$ (see Birkhoff-Vandiver [1, Theorem 4$]$ ).

Next we have that the primitive factors $P_{d}^{(k)}$ are pairwise relatively prime. Indeed, if $p$ is a factor of $P_{d_{1}}^{(k)}$ and $P_{d_{2}}^{(k)}$ then we may apply Lemma 2(a) to conclude that $d_{1} / d_{2}$ is a power of $p$. Hence, $p$ is not a primitive factor of one of $V_{d_{1}}^{(k)}$ and $V_{d_{2}}^{(k)}$. This is a contradiction.

Assume that (2) holds for each factor $d$ of $n$. Let $q$ be a prime factor of $P_{d}^{(k)}$ not dividing $k d$. Then it follows from Lemma $2(a)$ that $k d \mid q-1$. Hence we obtain

$$
\begin{equation*}
k^{2} n \left\lvert\, \varphi\left(P_{d}^{(k)}\right) \varphi\left(P_{\frac{n}{d}}^{(k)}\right)\right. \tag{3}
\end{equation*}
$$

for each $d$ such that $n \neq d^{2}$. Thus, it is now clear that the factor $\prod_{d \mid n} \varphi\left(P_{d}^{(k)}\right)$ of $\varphi\left(V_{n}^{(k)}\right)$ is divisible by $k^{d(n)} n^{\frac{d(n)}{2}}$.

It remains to consider only the case $(k d, a, b)=(6,2,1)$ with $d \mid n$. In this case we have

$$
P_{\frac{6}{k}}^{(k)}= \begin{cases}1, & \text { if } k \text { is } 1 \text { or } 2 \\ 3, & \text { otherwise }\end{cases}
$$

Thus, (3) implies that $k n \left\lvert\, \varphi\left(P_{\frac{6}{k}}^{(k)}\right) \varphi\left(P_{\frac{n k}{6}}^{(k)}\right)\right.$ for $k=3,6$. When $k=2$, we combine (3) with the fact that $2^{3}+1 \mid V_{n}^{(2)}$. If $k=1$ then $P_{3}^{(1)}=7$ and so

$$
n^{2} \left\lvert\, \varphi\left(P_{3}^{(1)} P_{\frac{n}{3}}^{(1)}\right) \varphi\left(P_{\frac{n}{6}}^{(1)}\right)\right.
$$

as in the previous case. This completes the proof.

## 3 Acknowledgment

The author would like to thank the referee for carefully reading the paper and for some suggestions.

## References

[1] G. D. Birkhoff and H. S. Vandiver, On the integral divisors of $a^{n}-b^{n}$, Ann. of Math. 5 (1904), 173-180.
[2] N. G. Gunderson, Some theorems on the Euler $\phi$-function, Bull. Amer. Math. Soc. 49 (1943), 278-280.
[3] A. Rotkiewicz, On the numbers $\varphi\left(a^{n} \pm b^{n}\right)$, Proc. Amer. Math. Soc. 12 (1961), 419-421.
[4] M. Roitman, On Zsigmondy primes, Proc. Amer. Math. Soc. 125 (1997), 1913-1919.

2010 Mathematics Subject Classification: Primary 11A25; Secondary 11B83.
Keywords: Euler's totient function, primitive factor, cyclotomic polynomial.

Received November 25 2014; revised versions received February 4 2015; February 13 2015; February 14 2015. Published in Journal of Integer Sequences, February 142015.

Return to Journal of Integer Sequences home page.

