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Abstract

We introduce an inductively defined sequence of directed graphs and prove that the

number of edges added at step k is equal to the kth Catalan number. Furthermore, we

establish a bijection between the set of edges adjoined at step k and the set of planar

rooted trees with k edges.

1 Introduction

In a recent paper, the second author and Hackney introduced certain inductively defined
directed graphs with the goal of understanding the structure of a rooted category action on
another category [1]. While these graphs were developed in such a way that they encoded
the desired structure, the question remained what kinds of patterns could be found in these
inductively defined sequences of graphs. In this paper, we look at the most basic of these
graph sequences. We begin with the trivial graph with one vertex and no edges, and we
inductively add new vertices and edges depending on the number of paths in the previous
graph. We prove that at the kth step, the number of vertices and edges added is given by
the kth Catalan number.

The Catalan numbers give a well-known sequence of natural numbers, arising in many
contexts in combinatorics A000108 [3]. A long list of ways to obtain the Catalan numbers is
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found in Stanley’s book [4] and subsequent online addendum [5]. Here we use that the 0th
Catalan number is C0 = 1, and , for any k ≥ 1, the (k + 1)st Catalan number Ck+1 is given
by the formula

Ck+1 =
k∑

i=0

CiCk−i.

However, it is often of interest to determine a direct comparison with one of the other
ways of obtaining the Catalan numbers. To this end, we establish a direct bijection between
the set of edges added at step k in the action graph construction and the set of planar rooted
trees with k edges, also known to have Ck elements.

2 Action graphs

We begin by recalling a few basic definitions.

Definition 1. A directed graph is a pair G = (V,E) where V is a set whose elements
are called vertices and E is a set of ordered pairs of vertices, called edges. Given an edge
e = (v, w), we call v the source of e, denoted by v = s(e), and call w the target of e, denoted
by w = t(e).

For the directed graphs that we consider here, we assume that, for every v ∈ V , we have
(v, v) ∈ E. While we could think of these edges as loops at each vertex, we prefer to regard
them as “trivial” edges given by the vertices. Otherwise, we have no loops or multiple edges
in the graphs we consider, so there is no ambiguity in the definition as we have given it.

Definition 2. A (directed) path in a directed graph is a sequence of edges e1, . . . , en such
that for each 1 ≤ i < k, t(ei) = s(ei+1). For paths consisting of more than one edge, we
require all these edges to be nontrivial. We call s(e1) the initial vertex of the path and t(ek)
the terminal vertex of the path.

The directed graphs we consider here are labelled by the natural numbers; in other words,
they are equipped with a given function V → N.

Definition 3. For each natural number k, the action graph Ak is the labeled directed graph
defined inductively as follows. The action graph A0 is defined to be the graph with one
vertex labeled by 0 and no nontrivial edges. Inductively, given the kth action graph Ak,
define the (k + 1)st action graph Ak+1 by freely adjoining new edges by the following rule.
For any vertex v labeled by k, consider all paths in Ak with terminal vertex v. For each such
path, adjoin a new edge whose source is the initial vertex u of the path, and whose target is
a new vertex which is labeled by k + 1.
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Thus, the first few action graphs can be depicted as follows:

A0 : •0 A1 : •0 // •1

A2 : A3 : •3 •3

•2 •2 •2

OO

•2

OO

•0

OO

// •1

OO

•3 •0

OO

��

oo // •1

OO

��
•3 •3

The main result which we wish to prove is the following, which indicates how many new
vertices (and edges) are added to Ak to obtain Ak+1.

Theorem 4. When building Ak+1 from Ak, the number of vertices added and labeled k + 1
(and likewise the number of edges added) is given by the (k + 1)st Catalan number, Ck+1.

We begin with a lemma about paths in action graphs.

Lemma 5. The number of paths from 1 to k in Ak is equal to the number of paths from 0
to k − 1 in Ak−1.

Proof. In any Ak with k ≥ 1, there is only one edge connecting the single vertex labeled by 0
and the single vertex labeled by 1. Since the vertex labeled by 0 is the source and the vertex
labeled by 1 is the target, no paths whose source is the vertex labeled by 1 pass through the
vertex labeled by 0. Therefore, edges with source at the vertex labeled by 1 are adjoined
exactly in the same way as edges with source 0, but one step later.

Proof of Theorem 4. We use induction and Lemma 5. For the base case we know that A0

has one vertex labeled by 0 and C0 = 1.
For the inductive step, suppose we know Ak has Ck vertices labeled by k. There is always

a unique path from 0 to any vertex, so there are Ck paths from the vertex labeled by 0 to
a vertex labeled by k. Hence, by considering paths with source the 0 vertex, we create
Ck = C0Ck new vertices in Ak+1. Lemma 5 tells us that there are Ck−1 paths from the single
vertex labeled by 1 to vertices labeled by k. Thus, we must add Ck−1 = C1Ck−1 new vertices
in Ak+1. Applying Lemma 5 twice, we similarly see that there are Ck−2 paths from any
vertex labeled by 2 (of which there are C2) to any vertex labeled Ck, for a total of C2Ck−1

new vertices added. We continue this process, concluding by using the inductive hypothesis
that there are Ck vertices labeled by k, from each of which there is only one (trivial) path,
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from which we produce Ck = CkC0 new vertices. Taking the sum, we obtain that the total
number of paths in Ak ending at vertices labeled by k is

C0Ck + C1Ck−1 + · · ·+ CkC0 = Ck+1.

Since a new vertex is added for each such path, and a new edge for each such vertex, we
have completed the proof.

The main theorem has the following immediate consequence.

Corollary 6. The number of vertices in the kth action graph Ak is given by the kth term in
the sequence of partial sums of Catalan numbers A014137 [3].

3 A comparison with planar rooted trees

In this section, we give an explicit one-to-one correspondence between the set of leaves of
Ak+1 and the set of planar rooted trees with k + 1 edges. The latter set has Ck+1 elements
[2, 8.4].

We begin with the necessary definitions. Here, we work with graphs which are no longer
assumed to be directed. A graph is connected if there exists a path between any two vertices.

Definition 7. A tree is a connected graph with no loops or multiple edges. A rooted tree is
a tree with a specified vertex called the root.

Definition 8. A leaf of a rooted tree is a vertex of valence 1 which is not the root. (In the
case of a single vertex with no edges, we take this root vertex also to be a leaf.) A branch of
a rooted tree is a path from either the root or from a vertex of valence greater than 2 to a
leaf.

Note in particular that the action graphs are (directed) trees, and that the vertices of
Ak+1 which are not in Ak are precisely the leaves of Ak+1.

Here we want to consider planar rooted trees. Thus, if we view the bottom vertex as the
root, we regard the following two trees as different:

• •

• • • •

•

@@@@@@@

~~~~~~~
•

@@@@@@@

~~~~~~~

To aid in our comparison with action graphs, we define a means of labeling the vertices of a
planar rooted tree. The root vertex is always given the label 0. Given a representative of the
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tree with the root at the bottom, label the vertices by successive natural numbers, moving
upward from the root and from left to right. For example, we have the labelings

•2 •3

•1 •3 •1 •2

•0

BBBBBBBB

||||||||
•0.

CCCCCCCC

{{{{{{{{

Our goal is to prove that we can use these labels to assemble planar rooted trees together
to form the action graph in such a way that each planar rooted tree corresponds to exactly
one vertex of highest labeling in the action graph.

Observe that the set of all directed trees with k edges can be partially ordered by the
length of the unique path from the vertex labeled by 0 to the vertex labeled by k. Beginning
with the tree with longest such path length, namely, the tree with a branch of length k,
for each directed tree, identify the edge from 0 to 1, and any branches that do not end in
the vertex k, with vertices and edges already present in the graph. Adjoin new vertices and
edges to the graph corresponding to the branch containing the vertex k. Using the partial
ordering on the set of trees guarantees that, as we assemble the trees together, each tree
that is added contributes only (part of) a branch. Hence, any possible ambiguity about
placement is eliminated. Repeating for all planar rooted trees with k edges, we claim that
the resulting directed graph is precisely the action graph Ak.

This assembly can be depicted for the case when k = 2 as follows. We two planar rooted
trees with two edges are given by

•2

•1

OO�
�

�

•1 •2

•0

OO�
�

�

•0

`` >>

and can thus be assembled to form the action graph A2, as given by

•2 •2

•0

OO

//___ // •1.

OO�
�

�

Observe in this example that the overlap of the two trees in A2 corresponds to the action
graph A1, and that the two new edges in A2 correspond exactly to the two ways to attach
an edge to the unique planar rooted tree with one edge to obtain a planar rooted tree with
two edges.

Generalizing this example, we obtain the following explicit correspondence.
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Theorem 9. The function assigning any planar rooted tree with k edges to the leaf that it
contributes to the action graph Ak defines a bijection.

Proof. We prove this theorem inductively. When k = 0, both A0 and the only planar rooted
tree with no edges consist of a single vertex and no edges.

Thus, suppose that we have proved the result for k ≥ 0. Consider the set of planar
rooted trees with k + 1 edges. By our inductive hypothesis, the trees with k edges assemble
to produce the action graph Ak. But these trees can be obtained from those with k + 1
vertices by removing the leaf labeled by k + 1. Indeed, the (possibly multiple) ways of
obtaining a rooted tree with k + 1 edges from one with k edges correspond to the ways we
adjoin new leaves to produce Ak+1 from Ak. In particular, there is precisely one edge ending
in a vertex labeled by k + 1 coming from each planar rooted tree.

Conversely, regard Ak+1 as a labeled rooted tree. We claim that the subtrees of Ak+1

containing exactly one vertex labeled by i for each 0 ≤ i ≤ k + 1 correspond exactly to
the planar rooted trees with k + 1 edges. Again, assume this fact is true for k ≥ 0. Given
every such subtree with k edges, and vertices labeled from 0 to k, the choices for adjoining
an extra edge containing a vertex labeled by k+ 1 correspond exactly to the vertices on the
path from the vertex labeled by 0 to the vertex labeled by k. But, these choices coincide
with the ways to obtain a planar rooted tree with k + 1 edges from a given planar rooted
tree with k edges.

Observe that the action graph Ak can thus be regarded as a universal tree for all planar
rooted trees with k edges, in that it is built from these subtrees and that, using the labeling
scheme for planar rooted trees, these subtrees can be recovered from Ak.
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